• No se han encontrado resultados

TRANSISTORES DE EFECTO CAMPO

N/A
N/A
Protected

Academic year: 2018

Share "TRANSISTORES DE EFECTO CAMPO"

Copied!
23
0
0

Texto completo

(1)

TEMA 4

TRANSISTORES DE EFECTO CAMPO

Profesores:

(2)

CONTENIDO

• Introducción

• El transistor JFET

• Análisis de la recta de carga.

• Circuitos de polarización.

(3)

INTRODUCCION

• Los transistores de efecto campo (FET) son dispositivos que, al igual

que los BJT, se utilizan como amplificadores e interruptores lógicos.

• Existen dos grandes grupos de FET: los de unión (JFET) y los

metal-óxido semiconductor (MOSFET). Dentro de los MOSFET está el de

acumulación, el cual ha propiciado los rápidos avances de los

dispositivos digitales.

• Diferencias entre BJT y FET:

• Diferencias entre BJT y FET:

– El BJT es un dispositivo no lineal controlado por corriente.

– El BJT tiene tres modos de funcionamiento: corte, activa y saturación.

– Los FET son la siguiente generación de transistores después de los BJT. – El flujo de corriente del FET depende solo de los portadores mayoritarios

(Unipolares).

– La corriente de salida es controlada por un campo eléctrico (fuente de tensión).

(4)

MOSFET Y BJT. VENTAJAS E INCONVENIENTES

Ventajas

– Los FET son dispositivos sensibles al voltaje, con una gran impedancia de entrada (del orden de 10 Mohm a 1 Gohm). Al ser mucho más alta que la correspondiente a los BJT, se prefieren como etapa de entrada en amplificadores multietapa.

– Los JFET generan menos ruido que los BJT.

– Los FET son más fáciles de fabricar que los BJT; pudiéndose incluir un mayor número de FET en un solo chip (requieren menor área), de aquí que memorias y microprocesadores se implementen únicamente con MOSFET.

– Los FET funcionan como resistencias variables controladas por voltaje para valores – Los FET funcionan como resistencias variables controladas por voltaje para valores

pequeños de voltaje de drenaje a fuente.

– La elevada impedancia de entrada de los FET permite que almacenen la carga durante tiempo suficientemente largo como para usarlos como elementos de almacenamiento.

– Los FET de potencia controlan potencia elevadas y conmutan grandes corrientes. – Los FET no son tan sensibles a la radiación como los BJT.

Inconvenientes

– Los FET exhiben una pobre respuesta en frecuencia, debido a la alta capacidad de entrada.

– Algunos FET tienen una pobre linealidad.

(5)

CLASIFICACION DE LOS FET

TRANSISTOR

DE EFECTO CAMPO DE UNIÓN (JFET)

CANAL N

CANAL P

ACUMULACION

CANAL N (NMOS)

TRANSISTORES DE METAL OXIDO SEMICONDUCTOR

DE EFECTO CAMPO (MOSFET)

ACUMULACION O

ENRIQUECIMIENTO CANAL P (PMOS)

DEPLEXION O

EMPOBRECIMIENTO

CANAL N

(6)

EL TRANSISTOR JFET

• La estructura física de un JFET (transistor de efecto campo de unión)

consiste en un canal de semiconductor tipo n o p dependiendo del tipo de JFET, con contactos óhmicos (no rectificadores) en cada extremo, llamados FUENTE y DRENADOR. A los lados del canal existen dos regiones de

material semiconductor de diferente tipo al canal, conectados entre sí, formando el terminal de PUERTA.

• En el caso del JFET de canal N, la unión puerta – canal, se encuentra

polarizada en inversa, por lo que prácticamente no entra ninguna corriente a través del terminal de la puerta.

a través del terminal de la puerta.

• El JFET de canal p, tiene una estructura

inversa a la de canal n; siendo por tanto necesaria su polarización de puerta

también inversa respecto al de canal n. • Los JFET se utilizan preferiblemente a los

MOSFET en circuitos discretos.

• En el símbolo del dispositivo, la flecha

(7)

JFET DE CANAL N

• En la unión pn, al polarizar en inversa la puerta y el canal, una capa del canal adyacente a la puerta se convierte en no conductora. A esta capa se le llama zona de carga espacial o deplexión.

• Cuanto mayor es la polarización inversa, más gruesa se hace la zona de

deplexión; cuando la zona no conductora ocupa toda la anchura del

canal, se llega al corte del canal. A la tensión necesaria para que la zona de deplexión ocupe todo el canal se le llama tensión puerta-fuente de corte (VGSoff ó Vto). Esta tensión es negativa en los JFET de canal n.

• En funcionamiento

Estados del JFET canal N

• En funcionamiento

normal del JFET canal n, D es positivo respecto a S.

• La corriente va de D a S

a través del canal.

• Como la resistencia del

(8)

CURVAS CARACTERISTICAS DEL JFET CANAL N

• Para obtener las curvas características del JFET de canal n, se hace uso del circuito mostrado. Haciendo Vgs = 0 y variando Vds:

– A medida que aumenta Vds, Id aumentará. El canal es una barra de material conductor con contactos

óhmicos en los extremos, exactamente igual al tipo de construcción utilizada en las resistencias. Así, paravalores de Vds pequeños, Id es proporcional a Vds pequeños, Id es proporcional a Vds (zona óhmica).

– A valores mayores de Vds, la corriente aumenta cada vez mas

lentamente, debido a que el extremo del canal próximo D se halla polarizado en inversa. Al aumentar Vds, la zona de deplexión se hace más ancha, y la resistencia del canal se incrementa, haciendo que Id sea casi constante para siguientes incrementos de Vds (zona saturación).

– El paso entre las dos zonas se produce en el valor de tensión de

(9)

CURVAS CARACTERISTICAS DEL JFET DE CANAL N

off

GS GS V

V

Ahora lo que hacemos variar es Vgs. Si Vgs<0, la unión puerta canal está polarizada en inversa, incluso con Vds = 0. Así, la resistencia del canal es elevada. Esta es evidente para valores de Vgs próximos a VGSoff. Si

(tensión de corte), la resistencia se convierte en un circuito abierto y el dispositivo está en CORTE.

• La zona donde Id depende de Vds se llama REGIÓN LINEAL U ÓHMICA, y el dispositivo funciona como una resistencia. El valor de esta resistencia (pendiente de recta) varía con Vgs. • La zona donde Id se hace constante (fte de Intensidad cte)

es la REGIÓN DE SATURACIÓN. Id es máxima para Vgs =

Idss

Esta gráfica nos define la relación Id=f(Vgs) solo para la zona de saturación de la gráfica de abajo (a la derecha de la curva azul discontinua).

es la REGIÓN DE SATURACIÓN. Id es máxima para Vgs = 0 (Idss), y es menor cuanto más negativa es Vgs. Para Vgs=0 la región comienza a partir de Vp.

• Siempre se cumple que Vgsoff = -Vp. Idss y Vp (ó Vgsoff) son datos dados por el fabricante.

(10)

RUPTURA DEL JFET

• Cuando la polarización inversa entre

puerta y canal se hace demasiado grande, la unión sufre una ruptura inversa, y la corriente de drenador aumenta

rápidamente.

• La polarización inversa de mayor magnitud

tiene lugar en el extremo correspondiente al drenador. La ruptura se producirá

al drenador. La ruptura se producirá cuando Vdg exceda de la tensión de

(11)

RECTA DE CARGA

• La recta de carga se calcula de forma similar a los casos estudiados

para el BJT.

– Se determina la malla drenador – fuente, aplicando la 2LK.

– Se hallan los puntos de corte con los ejes coordenados suponiendo Id=0 mA, primero, y posteriormente Vds = 0v.

– Se representan dichos puntos y se unen por una recta.

– El punto de trabajo del transistor coincidirá con la intersección de la recta – El punto de trabajo del transistor coincidirá con la intersección de la recta

(12)

AUTOPOLARIZACION DEL JFET

• Se basa en que la puerta está conectada a masa a través de una

resistencia, siendo por tanto Vg=0v. En la fuente existe un potencial Vs debido a la circulación de corriente a través de Rs.

• Por tanto, Vgs = Vg-Vs = -Vs = -Id Rs

• Si Id aumenta, Vgs se hace más negativa, aumentando la resistencia y

reduciendo la Id. Así pues, se puede decir que Rs realimenta negativamente la polarización del transistor.

Vdd

2k2

0

Vsal

1Mohm

1Kohm J2N3819

Vdd

(13)

CIRCUITO DE POLARIZACON CON DIVISOR DE TENSION

• Inicialmente, se analiza de forma análoga al del

BJT, es decir, el divisor de tensión se sustituye por la tensión Thevenin y en serie su resistencia Rth.

• Así, la Vs = Id Rs = Vth – Vgs

• Id = (Vth – Vgs) / Rs

• Si Vgs se pudiera despreciar frente a Vth, la Id tomaría un valor constante (Id=Vth / Rs), aunque se modifique la característica de transferencia del

R1 R3

VCC

se modifique la característica de transferencia del JFET.

• Sin embargo, tiene un problema de diseño, y es

que para una misma Id, dos transistores pueden tener diferente Vgs (ver característica de

transferencia).

• Este circuito es más estable que el de

autopolarización, pero no llega a ser tan estable como en los BJT.

J2 J2N3819

0 0

(14)

EL TRANSISTOR MOSFET

• La estructura de un MOSFET (Metal Oxido Semiconductor FET), consta de cuatro terminales: Drenador (D), Fuente (S), Puerta (G) y Sustrato (B). En los NMOS (MOSFET de canal N), el sustrato es un semiconductor tipo p. Generalmente, el sustrato se conecta a la fuente.

• La puerta se halla aislada del sustrato por una fina capa de dióxido de silicio y por el terminal de la puerta fluye una corriente despreciable.

(15)

MOSFET EN CORTE Y ZONA OHMICA

• Si a D se aplica una tensión positiva respecto a S, con Vgs=0, las uniones pn están polarizadas a la inversa, por lo que no circula corriente, y se

encuentra en corte.

• A medida que Vgs aumenta, el dispositivo permanece en corte hasta que Vgs alcanza un valor umbral Vt.

• Si Vgs es mayor que la tensión umbral, el campo • Si Vgs es mayor que la tensión umbral, el campo

eléctrico que resulta de la tensión aplicada a la puerta ha repelido a los huecos de la región

situada bajo la puerta, y ha atraído electrones que pueden fluir con facilidad. Esta repulsión y

atracción simultáneas crean un canal de tipo n entre drenador y surtidor.

• Para valores pequeños de Vds, la corriente Id es proporcional a Vds. Además, para cada valor (pequeño) de Vds, la corriente de drenador es también proporcional al exceso de tensión de la puerta (Vgs-Vt).

Canal

(16)

MOSFET EN SATURACION

• A medida que aumenta Vds, el canal se

estrecha en el extremo del drenador debido a que los electrones son

atraídos por el terminal positivo de la fuente de tensión del drenador, e Id se incrementa con más lentitud. Cuando Vds > Vgs – Vt, Id es constante.

• En la curva característica de salida se • En la curva característica de salida se

indica el límite de transición de la zona óhmica a la de saturación.

• Observar que esta saturación no

(17)

CARACTERISTICA DE SALIDA DEL MOSFET

• En la curva característica de salida se muestran las tres zonas de

trabajo del MOSFET.

• Las ecuaciones correspondientes

son:

(

)

= 2 V V K I Saturación Zona

• Siendo K la constante del

dispositivo medida en mA/V2

(18)

PROTECCION DE PUERTA DEL MOSFET

• Los MOSFET presentan unas impedancias de entrada entre puerta y canal

superior a 1 Gohm. Al manejar estos dispositivos, es fácil que se generen tensiones electroestáticas mayores que la tensión de ruptura dieléctrica del aislamiento de puerta. La ruptura de la capa aislante da como

resultado un cortocircuito entre la puerta y canal.

• Para reducir este problema, los terminales de puerta pueden protegerse

con dos diodos zener.

• Si se expone el dispositivo a una carga

• Si se expone el dispositivo a una carga

electroestática, se produce una avalancha del diodo zener, lo que proporciona una ruta de descarga no destructiva. Los diodos

zener se fabrican en el mismo chip que el FET.

• Los diodos de protección no son necesarios

para los dispositivos internos de los circuitos integrados que no tengan conexiones

directas al exterior. Protección contra

(19)

MOSFET DE DEPLEXION

• Tiene las curvas características casi idénticas a las de los JFET.

• Existe un delgado canal de material semiconductor tipo n que comunica

la fuente con el drenador. Encima de éste canal, se encuentra el material aislante y la capa metálica (aluminio o silicio policristalino), que forma la puerta.

• La diferencia de funcionamiento con el JFET de canal n reside en que el

MOSFET de deplexión puede funcionar con valores positivos de Vgs, mientras que esto no se puede hacer en el JFET (polarización directa de la puerta).

la puerta).

(20)

EL JFET EN CONMUTACION

• Al igual que el BJT, los FET pueden trabajar como un interruptor, aunque en

este caso en vez de trabajar entre corte y saturación, se trabaja entre corte y zona óhmica.

• En el caso del JFET, la tensión Vgs se restringe a dos valores: 0 v o una tensión negativa mayor o igual a Vgs(off), sin exceder la tensión de ruptura.

• En el caso de trabajar como interruptor paralelo, el JFET precisa una Ven

menor de 100 mV. Además, Rd debe ser mucho mayor que Rds.

• Cuando Vgs es cero, actúa en la zona óhmica como interruptor cerrado.

• En este caso, Vsal es mucho menor que Ven debido al divisor de tensión.

• Cuando es más negativa que Vgs(off), el JFET está en corte, por lo que Vsal

es igual a Ven.

Ven

Rd

Vsal Ven

J2N3819

Vsal

0

1

2

Rds Rd

0

(21)

EL JFET EN CONMUTACION

• Cuando el JFET trabaja como interruptor serie, si la Vgs es cero, el interruptor estará cerrado y el JFET equivale a una resistencia de valor Rds. En este caso la salida es prácticamente igual a la entrada.

• Si la Vgs es igual o más negativa que Vgs(off), el JFET está abierto y Vsal es 0V.

• El JFET se utiliza más como interruptor serie porque su razón

conexión –

desconexión

es mucho más alta.

• La razón

conexión – desconexión

es la relación entre la señal de salida a nivel • La razón

conexión – desconexión

es la relación entre la señal de salida a nivel

alto, y la señal de salida a nivel bajo. Cuanto mayor sea, más fácil será discriminar entre ambos estados.

Rds J2N3819

0

Vgs

Rd

1 2

Ven Rd

Vsal

0

(22)

EL NMOS EN CONMUTACION

• El NMOS por su tensión umbral, es ideal para emplearse en conmutación, de

ahí que haya revolucionado la industria de las computadoras.

• Cuando la tensión de puerta es mayor que la tensión umbral, el dispositivo

conduce.

• En la figura se muestra el inversor con carga pasiva (resistencia normal),

funciona con una Ven menor que la Vt o mayor que Vt. (Ej: 0 v y +5 v)

– Si Ven es menor que Vt, estará en corte, y la Vsal = Vdd.

– Si Ven es mayor que Vt, estará en conducción y Vsal cae a un valor pequeño. – Si Ven es mayor que Vt, estará en conducción y Vsal cae a un valor pequeño.

• Debe ser Rds<<Rd en la zona óhmica (funcionamiento correcto).

0

M1

IRF150

Rd Vdd

Vsal

Ven

• Inversor: la salida tiene nivel opuesto a la entrada.

• Los circuitos de conmutación son menos exigentes

que los de amplificación. Sólo se requiere que se pueda reconocer fácilmente dos estados diferentes. • Se puede simplificar a un interruptor, como en el

(23)

EL NMOS EN CONMUTACION

• El inconveniente de utilizar una carga pasiva es que el tamaño de integración

es mucho mayor que el propio MOSFET.

• En el primer esquema se muestra un inversor con carga activa.

• El MOSFET inferior actúa como conmutador, mientras que el superior

sustituye a la carga pasiva el ejemplo anterior, trabajando como una

resistencia de elevado valor, ya que Vgs=Vds, y los puntos que cumplen dicha igualdad sobre las curvas características del MOSFET (Vds vs Id; Vgs)

presentan mayor resistencia que la correspondiente a la zona óhmica presentan mayor resistencia que la correspondiente a la zona óhmica (MOSFET inferior).

• El inversor CMOS (MOS complementarios), se construyen con un transistor canal p y otro n.

• Es el más importante de todos por su consumo extremadamente bajo.

• Cuando uno conduce, el otro está en corte. Así, se reduce la intensidad que circula por el transistor en conducción.

0

Ven

IRF150 Vdd

IRF150

Vsal

0

Ven

Vdd

Referencias

Documento similar

You may wish to take a note of your Organisation ID, which, in addition to the organisation name, can be used to search for an organisation you will need to affiliate with when you

Where possible, the EU IG and more specifically the data fields and associated business rules present in Chapter 2 –Data elements for the electronic submission of information

The 'On-boarding of users to Substance, Product, Organisation and Referentials (SPOR) data services' document must be considered the reference guidance, as this document includes the

In medicinal products containing more than one manufactured item (e.g., contraceptive having different strengths and fixed dose combination as part of the same medicinal

Products Management Services (PMS) - Implementation of International Organization for Standardization (ISO) standards for the identification of medicinal products (IDMP) in

This section provides guidance with examples on encoding medicinal product packaging information, together with the relationship between Pack Size, Package Item (container)

1º) una motivación social minusvaloradora, despectiva o, incluso, estigmatizadora: las personas contra las que se discrimina, caracterizadas por lo general mediante su pertenencia a

E Clamades andaua sienpre sobre el caua- 11o de madera, y en poco tienpo fue tan lexos, que el no sabia en donde estaña; pero el tomo muy gran esfuergo en si, y pensó yendo assi