ContentslistsavailableatSciVerseScienceDirect
Cell
Calcium
jo u r n al h om ep a g e :w w w . e l s e v i e r . c o m / l o c a t e / c e c a
Cytosolic
organelles
shape
calcium
signals
and
exo–endocytotic
responses
of
chromaffin
cells
Antonio
G.
García
a,b,c,∗,1,
Fernando
Padín
a,b,1,
José
C.
Fernández-Morales
a,b,
Marcos
Maroto
a,b,
Javier
García-Sancho
daInstitutoTeófiloHernando,InstitutodeInvestigacionesSanitariasdelHospitaldelaPrincesa,FacultaddeMedicina,UniversidadAutónomadeMadrid,Madrid,Spain bDepartamentodeFarmacologíayTerapéutica,InstitutodeInvestigacionesSanitariasdelHospitaldelaPrincesa,FacultaddeMedicina,UniversidadAutónomadeMadrid,
Madrid,Spain
cServiciodeFarmacologíaClínica,InstitutodeInvestigacionesSanitariasdelHospitaldelaPrincesa,FacultaddeMedicina,UniversidadAutónomadeMadrid,Madrid,Spain dInstitutodeBiologíayGenéticaMolecular(IBGM),UniversidaddeValladolidandCSIC,c/SanzyForés,3,47003Valladolid,Spain
a
r
t
i
c
l
e
i
n
f
o
Articlehistory:
Received13October2011
Receivedinrevisedform2December2011 Accepted5December2011
Available online 29 December 2011
Keywords: Calciumtetrads Chromaffincells Calciumsignalling Calciummicrodomains Exocytosis
Endocytosis Mitochondria Endoplasmicreticulum Ca2+cycling
a
b
s
t
r
a
c
t
Theconceptofstimulus–secretioncouplingwasbornfromexperimentsperformedinchromaffincells50 yearsago.Stimulationofthesecellswithacetylcholineenhancescalcium(Ca2+)entryandthisgeneratesa
transientelevationofthecytosolicCa2+concentration([Ca2+]
c)thattriggerstheexocytoticreleaseof
cat-echolamines.Thecontrolofthe[Ca2+]
csignaliscomplexanddependsonvariousclassesofplasmalemmal
calciumchannels,cytosoliccalciumbuffers,theuptakeandreleaseofCa2+fromcytoplasmicorganelles,
suchastheendoplasmicreticulum,mitochondria,chromaffinvesiclesandthenucleus,andCa2+
extru-sionmechanisms,suchastheplasmamembraneCa2+-stimulatedATPase,andtheNa+/Ca2+exchanger.
ComputationoftheratesofCa2+fluxesbetweenthedifferentcellcompartmentssupporttheproposal
thatthechromaffincellhasdevelopedfunctionalcalciumtetradsformedbycalciumchannels,cytosolic calciumbuffers,theendoplasmicreticulum,andmitochondrianearbytheexocytoticplasmalemmalsites. ThesetetradsshapetheCa2+transientsoccurringduringcellactivationtoregulateearlyandlatestepsof
exocytosis,andtheensuingendocytoticresponses.Thedifferentpatternsofcatecholaminesecretionin responsetostressmaythusdependonsuchlocal[Ca2+]
ctransientsoccurringatdifferentcell
compart-ments,andgeneratedbyredistributionandreleaseofCa2+bycytoplasmicorganelles.Inthismanner,
thecalciumtetradsservetocouplethevariableenergydemandsduetoexo–endocytoticactivitieswith energyproductionandproteinsynthesis.
© 2011 Elsevier Ltd. All rights reserved.
1. Introduction
Stressful conflicts trigger a surge of the catecholamines adrenalineandnoradrenalinethatmobilizethebodytosurviveby combatinganenemyortofleefromdanger,theso-called“fight orflight”response.Thisresponseistheendresultofasecretory eventthattakesplacein theadrenal medulla,theinnerpartof thetwoadrenalglandslocatedjustabovethekidneys.Theadrenal medullaiscomposedofchromaffincellsthatsecreteadrenaline andnoradrenaline.Thesecellsareofinterestnotonlytoexplore themechanismsunderlyingthe“fightorflight”response,butalso becausetheyhavebeenusedfordecadesasexcellentmodelsto studytheworkingofothersecretorycells,inparticularneurons.
∗Correspondingauthorat:InstitutoTeófiloHernando,FacultaddeMedicina,
Uni-versidadAutónomadeMadrid,C/ArzobispoMorcillo,4,28029Madrid,Spain. Tel.:+34914973120.
E-mailaddress:agg@uam.es(A.G.García).
1Equalcontributors.
Acetylcholine, the physiological neurotransmitter at the splanchnicnerve-chromaffincellsynapse[1],causesthereleaseof catecholaminesfromtheadrenalgland.Thissecretoryresponseis suppressedintheabsenceofextracellularcalcium(Ca2+)[2].Also,
acetylcholineenhancesCa2+entryintoadrenalmedullary
chromaf-fincells[3].Onthebasisoftheseandotherpioneeringexperiments William W. Douglas coined the expression “stimulus–secretion coupling”asthebasic mechanisminvolved inneurotransmitter andhormonesecretion;Ca2+wasthecouplingionbetweenthe
stimulusandtheexocytoticresponse[4].Sincethen,adrenal chro-maffin cells from various mammalian species but mostly from bovine,ratsandmicehaveextensivelybeenusedtostudythe rela-tionshipbetweenthechangesofcytosolicconcentrationsoffree Ca2+ionsinthecytosol([Ca2+]
c),itsredistributionintoorganelles,
itsclearancefromthecytosolandtheexocytoticandendocytotic responsestriggeredbyacetylcholineandothernicotinicand mus-carinicreceptoragonists,variousagonistsforG-proteincoupled receptorsand differentdepolarising stimuliincludinghigh con-centrationsofpotassium(K+),squaredepolarisingpulsesoraction
potentials.
0143-4160/$–seefrontmatter© 2011 Elsevier Ltd. All rights reserved.
Chromaffincells areexcitablecellsand fireaction potentials thatopenvariousoftheneuronal-typevoltage-dependentcalcium channels(VDCCs)andproduceCa2+entry;theresulting[Ca2+]
c
sig-naltriggers exocytosis.Becausecytoplasmicorganellescantake upandreleaseCa2+tothecytosol,understandingthe[Ca2+]
c
sig-nalrequiresunderstandingoftheCa2+redistributionbetweenthe
cytosolandthedifferentorganelles.Thecodingofthe photopro-tein aequorin gene [5] made it possible to introduce targeting sequences, and measuring selective [Ca2+] changes in different
organelles[6].Thismethodologyhasbeenappliedduringthelast decadetogaininsightintotheroleoforganellesinshaping[Ca2+]
c
signallingandexocytosisinchromaffincells.Thisreviewfocuseson thepathwaysforCa2+entryintothechromaffincell,onthe
intra-cellularorganellesthatcontributetotheredistributionoftheCa2+
enteringthecell,andonthemechanismsthatterminatethe[Ca2+] c
signalsandextrudethecationoutsidethecell.Wealsoanalysethe influenceofthisCa2+traffickingbetweenthedifferentorganelles
ontheexocytoticresponses.Finally,weanalysethekineticsofCa2+
handlingatdifferentcellcompartments,tryingtoobtaina uni-fiedpictureofCa2+handlingandtheexo–endocytoticresponsesof
chromaffincells.Severalreviewsofsomeofthesequestionshave beenpublished[7–11].
2. Calciuminflux
ThemostrelevantCa2+entrypathwaysinchromaffincellsare
VDCCs,store-operatedCa2+channels(SOCCs)andligand-gated
cal-ciumchannels.Thecharacteristicsand regulationofthevarious VDCCsubtypeswillextensivelybedescribedbyE.Carboneinthis specialnumberofCellCalcium.So,wewillonlymakeabrief men-tiontothem.
2.1. Voltage-dependentcalciumchannels
Asinneurons[12],multipleVDCCsareexpressedinchromaffin cells[13].Significantdifferencesexistinthedensitiesofeach chan-nelsubtypeincellsfromdifferentspecies.Forinstance,Lchannels (␣1D,Cav1.3)carrynear50%ofthewhole-cellcurrentincat,rat
andmousechromaffincells.Incontrast,P/Qchannels(␣1A,Cav2.1)
accountfor50–60%ofthecurrentinbovineandhuman chromaf-fincells.N-typechannels(␣1B,Cav2.2)contribute80%inpig,45%
incatand30%inbovine,rat,mouseandhumanchromaffincells. Finally,R-typechannels(␣1E,Cav2.3)arepresentonlyinmouse
chromaffincells[9].
2.2. Store-operatedcalciumchannels
Inmanynon-excitablecells,inositol1,4,5-trisphosphate(InsP3)
generated byagoniststimulationcauses a biphasicelevationof [Ca2+]
c. Theinitialpeak isdue toERCa2+ release viatheInsP3
receptorchannelwhilethesubsequentmaintainedplateauphase isassociated toCa2+entrythrough SOCCs[14–16].Theplateau
phaseisproducedbyasmall-conductance,voltage-independent Ca2+releaseactivatedCa2+current(I
CRAC),thatservestoreplenish
theCa2+store[17–19].HavingmultipletypesofVDCCs,excitable
cellscouldberefillingtheirdepletedERCa2+storebyCa2+entering
throughthosehigh-conductancechannels.Thishasbeenshownto applyforsomeneurosecretorycells[20,21]includingbovine chro-maffincells;inthesecellsloadedwithER-targetedaequorin,high K+acceleratestheERCa2+storerefillinguponCa2+reintroduction
[22].
Early experiments demonstrated Ca2+ influx through SOCCs
uponERCa2+depletionofbovinechromaffincells[23];thiswas
corroboratedbylaterexperiments[22,24–28].Adirectprooffor thepresenceofSOCCswasobtainedfromvoltage-clampedbovine chromaffin cells where a small-amplitude,voltage-independent
ICRACcarriedbyCa2+andNa+,wascharacterisedunderconditions
ofCa2+storedepletion[29].ACa2+entrypathwaytriggeredby
his-tamineandindependentoftheERCa2+storeisalsopresentinthese
cells[25,30].
A few studieshave explored therole of Ca2+ entrythrough
SOCCsin triggeringexocytosisin bovinechromaffincells. Thus, histamineandangiotensinIIstimulateexocytosisbya combina-tionofERCa2+releaseandadditionalCa2+entrythroughSOCCs [24].Moreconvincingevidencearisesfromexperimentsperformed involtage-clampedcells,whereangiotensinII-inducedexocytosis wasassociatedwithanuncharacterisedleakcurrent[27].In addi-tion,exocytosiscouldbeelicitedintheabsenceofdepolarisationby photolysisofcagedInsP3[31]orbybradykinin[32].Butthemost
convincingevidencecomesfromexperimentsdonewith stimula-tionofCa2+entrythroughSOCCsbystoredepletionthatproduces
exocytosisatnegativemembranepotentialsthatmaintainclosed theVDCCs[29].
Whya bovinechromaffincellexpressingL,Nand P/Q high-conductanceVDCCs[9]shouldstill requireadditional pathways forCa2+entryispuzzling.Thefactsuchpathwayscanbe
physio-logicallyactivatedbyactionpotentialsorsustaineddepolarisation triggered by acetylcholine is even more puzzling. Combining aequorins and confocal microscopy, Ca2+-induced Ca2+ release
(CICR)wasshown tobeactivated byK+ or 50-msdepolarising
pulsesinbovinechromaffincells[22].Uponrepetitivestimulation withbursts ofactionpotentialsunderstress,CICR mayproduce partialERCa2+depletionandgiverisetoSOCCactivation.A
modula-toryroleofthiscapacitativeCa2+entryonexocytosisinchromaffin
cellshasbeensuggested,butotherpathwaysforCa2+entrywere
notundercontrolintheseexperiments[26].Later,direct experi-mentsdemonstratedthatreceptor-freeactivationofCa2+entryvia
SOCCsissufficienttotriggerandorfacilitateexocytosisinthese cells[29].Inthiscontext,itisinterestingthathyperpolarisationis associatedwithhistaminereceptorstimulationthatiscoupledto ERCa2+releaseandactivationofsmall-conductanceCa2+-activated
K+ channels[33].ThismechanismcouldamplifyCa2+ influxvia
SOCCs,thusfacilitatingtheexocytosistriggeredbyburstsofaction potentials, ina kindof long-lasting modulatory mechanism for stimulus–secretioncoupling.
2.3. Ligand-gatedcalciumchannels
Nicotinicreceptorsforacetylcholine(nAChRs),aswellas recep-tors forglutamate and ATP,underlieexcitatory transmissionat centralandperipheralsynapses.Thesereceptorsareionchannels permeabletocations.Thefractionoftheinwardcationcurrent car-riedbyCa2+,triggeredbyagonistsinvariouscelltypesisabout
5%fornAChRsandATPreceptorsandaround10%for N-methyl-d-aspartate(NMDA)receptors[34,35].Inbovinechromaffincells the fractionof acetylcholine-elicited inward current carried by Ca2+accountsfor about5%[36]. Ca2+entering throughnAChRs
maycontributetoaugmentvesiclemovementandthesizeofthe ready-releasevesiclepool[37,38].Furthermore,glutamate recep-torsseemtomediateanincreaseof[Ca2+]
candexocytosisinbovine
chromaffincells[39].Ontheotherhand,variouspurinoceptor sub-typesthatrespondtoATPwitha[Ca2+]
c increasehavealsobeen
foundinthesecells[40].Remarkabledifferencesamongspecies havebeenfound.Forinstance,ratchromaffincellslackP2X recep-tors while in the guinea-pig, ATP generatesan inward current that seemsto be associated toP2X2 receptors[41].Na+ influx
throughP2Xchannelscauses depolarisationofbovine chromaf-fincells,enhancesCa2+entrythroughVDCCsandcatecholamine
receptorsexertanautocrineregulatoryinhibitionofinwardCa2+
currentsthroughVDCCsofbovinecells[44,45].
GABAAreceptoragonistsalsocausecelldepolarisation,an
ele-vationof[Ca2+]
c,likelyduetoopeningofVDCCsandthereleaseof
catecholamines[46–48].Furthermore,GABAenhancesthe[Ca2+] c
elevationelicitedbylow-frequencyelectricalfieldstimulationof perfusedratadrenals[49].ItisstillunclearhowGABAcanexert thosemodulatoryeffects;aparacrinerolehasbeensuggestedfor GABAco-storedandco-releasedwithcatecholaminesduring elec-tricalstimulationofthesplanchnicnervesattheadrenalmedulla
[49].
3. Calciumredistribution
Theabrupt[Ca2+]
ctransientgeneratedbydepolarisingstimuli
elicitedbyeitheractionpotentialsorsustaineddepolarisations,are controllednotonlybythedifferentsubtypesofVDCCsexpressed by chromaffin cells, but also bycytosolic calciumbuffers, Ca2+
sequestrationorreleasebycytoplasmicorganellesandextrusion byplasmalemmalcalciumtransporters.Wewillseparatelyanalyse thesecalciumregulatoryelements(Fig.1).
3.1. Cytosoliccalciumbuffers
Ca2+ buffering and diffusion in bovine chromaffin cells has
beenstudiedextensivelybyNeherandcoworkers(seeSection5). However,themolecular natureof thecytosolic calciumbuffers isunknown.Onlyafewreportshavebeendevotedtothestudy ofcalcium-bindingproteinsin chromaffincells.For instance,in
Fig.1.Calcium(Ca2+)cyclinginthechromaffincell.Uponcelldepolarisation,
extra-cellularCa2+entersthecellthroughvoltage-dependentCa2+channels(1,VDCCs).
ThisgeneratesalocalcytosolicCa2+transient([Ca2+]
c),withactivationand
clear-ancephasesexhibitingspatialandtemporalpatternsthataretightlyregulatedby nearbypoorlydefinedimmobilecytosoliccalciumbuffers(2,CCB),theendoplasmic reticulum(3,ER)andthemitochondrion(4,MIT).Ca2+takenupbyorganellesand
cytosoliccalciumbuffersisreleasedbackintothecytosolallowingitsredistribution towardsthecellcore(5).Finally,tore-establishthecellCa2+balance,the
plas-malemmalCa2+pump(6,PMCA)andNa2+/Ca2+exchangerNCX(7)driveCa2+efflux
backtotheextracellularspace.Thenucleus(8)andchromaffinvesicles(9,CV)may alsocontributetoCa2+redistribution.PathwaysforCa2+entryotherthanVDCCs,
suchasstore-operatedcalciumchannels(SOCCs),nicotinicacetylcholinereceptors, purinergicreceptors,GABAandglutamatereceptorshavealsobeenreportedtobe presentinchromaffincells;theyarenotrepresentedforthesakeofsimplicity.Being anexcitablecelldrivenbythesympatheticnervoussystem,theCa2+cyclingmust
becontinuouslygoingonintheintactadrenalmedullarytissue.Thevelocityofsuch Ca2+cycling(10),dependsontherateofactionpotentialfiringandthesympathetic
cholinergicinputatdifferentstresssituations.SuchvariationsinthevelocityofCa2+
cyclingservetoadaptthebioenergeticneedsofthecell,inordertosecuretherapid releaseofcatecholaminesintothecirculation,topreparethebodyforthefightor flightresponse.
bovinecellsparvalbumincontainsCa2+/Mg2+mixedsitesthatshow
slowCa2+-bindingkineticsunderphysiologicalconditions.
Parval-bumin actsas a Ca2+ sourceduring relaxation of[Ca2+] c peaks
andextendsthe[Ca2+]
c transientbyconversionofa
monoexpo-nentialdecayinabiexponentialone[50].Anotherstudyreported thatcalbindin-D28kishomogeneouslydistributedinthecytosol of bovinecells while itsdistributionwaspreferentially concen-tratedatsubmembranesitesinmousecells.Theclearanceofthe K+-evoked[Ca2+]
c transientswasslowerinbovinecells, butthe
initialquantalsecretoryresponsewasfasterin mouse chromaf-fincells. Thus,thedifferentdistributionofcalbindin-D28kdoes certainly affectCa2+signalling andexocytosisinbothcelltypes
[51].
3.2. Nucleus
Ca2+hasrelevantfunctionsintheregulationofgene
expres-sioninthenucleus.In addition,afew studieshaveapproached the nuclearCa2+ kinetics[52]. For instance,there is consensus
thatthenuclearenvelopemaysomewhatdelaythepropagation ofCa2+wavesfromthecytosoltothenucleus[53–55].InPC12
andothercelltypes,half-equilibriumtimesforCa2+fluxesthrough
thenuclearenvelopeareintherangeofseconds[54].Underthese conditions,strongstimuli such asK+ depolarisation or
stimula-tionwithUTPorbradykiningenerateCa2+signalsthatarequickly
transmittedtothenucleus. Onthe contrary,theprogression of high-frequency[Ca2+]
c oscillationstothenucleusmaybe
damp-enedbythenuclearenvelope[54].Thenuclearmatrixalsodiffer fromthecytosolinhavinga largerCa2+-bufferingcapacity[56],
whichwouldalsoresultinanobviousslowingintheprogression oftheCa2+wave.Itisinterestingtonotethatselectivenuclear
sig-nallingmightbeachievedbyCa2+releasefromnuclearstoresin
certaincells[57].
3.3. Chromaffinvesicles
Chromaffinvesiclesofbovinechromaffincellscontainasmuch as 40mMcalcium [58].Most ofthis calcium(>99.9%) is bound tochromograninsandthefreeCa2+concentrationisabout40M
[59,60].AtpH7.5,chromograninAbinds32molofCa2+/mol
pro-tein,withaKDof4mM;thebindingcapacityincreasesto55molof
Ca2+/molproteinwithaK
Dof2.7mMattheintravesicularpHof5.5 [61].Thus,anincreaseofintravesicularpHincreasesthefreeCa2+
concentration,therebyfacilitatingitsreleaseintothecytosol.This hasbeenexperimentally demonstrated withalkalinisingagents andprotonophores,whichenhancevesicularCa2+release,vesicle
motionandexocytosis[62–66].Asmuchas20–30%ofthebasal chromaffincellsvolumeisoccupiedbyabout20,000chromaffin vesicles[67]thatstorearound60%oftotalcellCa2+[59,68];
how-ever,scarcedataareavailabletosupporttheoriginalhypothesis statingthatintravesicularCa2+couldbeinvolvedintheexocytotic
process [69].Experiments withalkalinisingagentsare certainly interesting;but it isdifficult toenvision thephysiological con-textthattheycouldmimic.ThepresenceofInsP3receptorsinthe
chromaffinvesiclemembrane [70,71]andInsP3-induced
vesicu-larCa2+release[60,72,73]suggestthattheInsP
3pathwaymaybe
physiologicallyrelevant.ItseemslikelythatvesicularCa2+release
couldbeinvolvedinslowpre-exocytoticstepsaimedat mobiliz-ingvesiclesfromareservepooltoa ready-releasablepool,asit isthecasefor Ca2+releasefromtheER(seeSection3.4).
How-ever,itisunlikelythatthisslowCa2+releasecancompetewiththe
rapidhigh-Ca2+microdomains(HCMDs)formedat
tosuchHCMDsmayenlightenthecontributionofvesicularCa2+
releaseinthevariousstepsofexocytosis.Forfurtheranalysisof thistopic,seetworecentreviews[74,75].
3.4. Endoplasmicreticulum
EarlierobservationsestablishedthatCa2+uptakeoccurredin
thesarcoplasmic reticulumofskeletalmuscle[76,77]througha Mg2+-andATP-dependentP-typetransportCa2+ATPase,the
sarco-endoplasmicreticulumCa2+-ATPase(SERCA)[78].Thisledtothe
conceptofintracellularcalciumstoresthatwassoonextendedto mostnonexcitableandexcitablecellsincludingneuronsand neu-rosecretory cells [79]. Twochannelsare mainlyresponsible for thereleaseofCa2+fromtheERstorenamely,theInsP
3 receptor
channel,whichisactivatedbytheInsP3generatedasaresultof
G-proteincoupledmembranereceptor activation,andthe ryan-odinereceptorchannel(RyR)thatisactivatedbyenhanced[Ca2+]
c,
caffeineandryanodine. Ca2+ bindingtoRyRopensthechannel,
therebytriggeringthereleaseofCa2+intothecytosolthroughthe
Ca2+-inducedCa2+releasemechanism(CICR).
Considerableeffortshavebeendevotedtoclarifythekinetics ofCa2+fluxesoftheERCa2+store,anditsroleincontrolling
pre-exocytoticand thelast exocytoticstepsin chromaffincells. For instance,histamine,angiotensinII,bradykininandcarbacholhave beenshowntoaugmenttheproductionofInsP3inbovine
chro-maffincells[80–82].AparallelincreaseofInsP3and[Ca2+]coccurs
uponchallengingthesecellswithhistamineorangiotensinII[83]. Theaugmentationof[Ca2+]
celicitedbystimulationwithhistamine
ismimickedbydirectstimulationwithInsP3,suggestingthat
stim-ulationofhistaminereceptorsiscoupledtoInsP3generationand
thesubsequentstimulationof InsP3 receptorsto causeERCa2+
release[84,85].Pituitaryadenylatecyclase-activatingpolypeptide (PACAP)hasalsobeenshowntoenhancebothInsP3 production
andenhanced[Ca2+]
c [86].Inratchromaffincells,stimulationof
muscarinicand2adrenergicreceptorsmodulatestheamplitude
of[Ca2+]
coscillations[87];suchCa2+oscillationsaredependenton
ERCa2+releasefromheparin-sensitiveCa2+stores[88].
Thefunctionalcorrelateofhistamine-elicitedERCa2+release
hasalsobeenstudied.For instance,this [Ca2+]
c signalactivates
small-conductanceCa2+-activatedK+channelsleadingto
hyperpo-larisationofbovinechromaffincells[33].Inthislineisthefinding thatmuscarineproducesa[Ca2+]
celevationandanoutwardK+
cur-rent,duetoactivationofCa2+-activatedK+channelsinguinea-pig
chromaffincells[89].Thesechannelsareregulatingthenicotinic andmuscarinicsecretoryresponseofcatandbovinechromaffin cells[90–92].WhileERCa2+releasebyhistaminecausesa mild
and transientcatecholaminerelease response [93],a more sus-tainedapplicationcausesalongereffect[93–95].Thisgreatereffect couldbeexplainedby thefacthistamine-elicited[Ca2+]
c
eleva-tionshastwo components:aninitialtransientphase duetoER Ca2+releaseand alate moresustainedphasedue toCa2+entry
[30,83,96,97].Thesecondcomponenthasbeenassociatedto
inhi-bitionofanM-currentbysustainedhistamineapplication,leading tocelldepolarisation,dischargeofactionpotentialsandopening ofVDCCsinbovinechromaffincells[98],althoughstimulationof SOCCsbyERemptyingcouldalsocontributetothiseffect(see Sec-tion2.2).Finally,itisinterestingthathistaminehasbeenusedas atooltoelicitsubthreshold[Ca2+]
celevationsinvoltage-clamped
bovinechromaffincells.This[Ca2+]
csignaldoesnotelicit
exocyto-sisbyitself,butpotentiatesthesubsequentexocytoticresponseto adepolarisingstimulus,likelyduetoanaccelerationoftheflowof newvesiclestowardsexocytoticsubplasmalemmalsites[99].Also, angiotensinIIaugments[Ca2+]
candsecretioninbovinechromaffin
cellsbuttoalesserextentthanhistamine[24,100].Ontheother hand,thenicotinicresponseseemstohaveacomponentlinkedto ERCa2+release[101].
ConcerningRyRchannels,ithasbeenknownforlongthatbovine chromaffincellspossessapowerfulcaffeine-sensitivecalciumstore
[102].ThereleaseofERCa2+bycaffeinewaslatershowntofollowa
quantalpattern,suggestingthatthecaffeine-sensitiveCa2+poolis
composedoffunctionallydiscretestoreswithheterogeneous sensi-tivitiestocaffeine[103,104].Additionally,thepresenceofseparate oroverlappingCa2+poolsresponsivetoeithercaffeine,InsP
3 or
cyclicADPribose,theirdifferentialsensitivitytoSERCAinhibitors suchasthapsigargin,andthephysiologicalsignificanceorthe dif-ferentCa2+releasemechanisms,havebeensubjectofdebatefor
manyyears[85,105–108].
Direct monitoring of changes in the ER Ca2+ concentration
([Ca2+]
ER)inbovinechromaffincellstransfectedwithER-targeted
aequorin,permittedclarificationofsomeofthoseissues[22,109]. Thus, Ca2+ entry elicited by depolarisation triggers a transient
Ca2+ release from the ER that is highly dependent on[Ca2+] ER
andsensitisedbylowcaffeineconcentrations.Ontheotherhand, caffeine-inducedCa2+releasewasquantalinnaturedueto
mod-ulationby[Ca2+]
ER.Whereascaffeinereleasesessentiallyallthe
Ca2+fromtheER,InsP
3-producingagonistsreleaseonly60–80%.
However,indigitonin-permeabilisedcellsbothInsP3andcaffeine
emptiedcompletelythecalciumstorewhilecyclicADPribosehas noeffect.Finally,thewaveofCa2+elicitedby100msdepolarising
pulsesmeasuredwithconfocalmicroscopy,isdelayedandreduced inintensityinryanodine-treatedcells.Thesedatasuggestthatthe ERof bovinechromaffincells behavesasa single thapsigargin-sensitivecalciumpoolthatcanreleaseCa2+bothviaInsP
3receptors
orCICR.Alaterreportshowedthatmousechromaffincellsinthe intactglandexhibitedasmallerornonexistentCICR[110]. How-ever,inarecentstudyperformedonculturedmousechromaffin cellstheexpressionofRyRsandafunctionalCICRmechanismwas shown[111].
Inisolatedbovinechromaffincells,caffeinecausesamild secre-toryresponse[102],andthiseffectisalsoobservedintheabsence ofextracellularCa2+[112,113].ActivationofCICRduringcell
depo-larisationmayhavefunctionalconsequencesforthecontrolofthe exocytoticprocess.Inthiscontext,itisinterestingthatwhenthe Ca2+storehasbeendepletedbysustainedcaffeinestimulation,a
subsequentdepolarisationbyhighK+ elicitsasmallersecretion.
Consistently,afterfullERCa2+depletion,thefirsttwoorthreeinitial
depolarisationscontributetorefilltheERwithCa2+andtherefore,
theERbehavesasasink,reducingtheamountofCa2+availablefor
secretion[113].
Involtage-clampedbovinechromaffincells,exocytosisis unaf-fectedbypreviousERCa2+depletionwiththapsigargin[114,115];
however,alaterstudyshowdepressedsecretion[115].Inbovine chromaffin cells stimulated with acetylcholine, severe ER Ca2+
depletionwith a mixture of caffeine,ryanodine and thapsigar-ginhalvesthecatecholaminereleaseresponses.However,theK+
responses are little affected. This may be due to thefact that acetylcholine elicits discrete and more localised [Ca2+]
c
eleva-tions, whereasK+ pulsesproduce higher[Ca2+]
c transients that
spreadquicklythroughoutthecytosol[116].Thisdifferencemay beexplainedconsideringthatacetylcholineevokesaction poten-tials[117]whileK+producessustainedcelldepolarisation[118]in
bovinechromaffincells.Thus,itisplausiblethatthecontribution ofCICRtotheexocytoticresponseismorevisibleunderconditions ofphysiologicalstimulationofchromaffincellswithacetylcholine.
3.5. Mitochondria
Mitochondriaarethemainenergy-producingcentresof eukary-oticcells[119,120].Theyarecapableofaccumulatingvastamounts ofCa2+intheirmatrixthroughtheirCa2+uniporter,thatusesthe
withalargetransmembranepotentialdifference(near−180mV) thatisgeneratedbytherespiratorychainorbyATPhydrolysis.Ca2+
accumulatedinmitochondriaisthenreleasedbackintothe cyto-solbyelectroneutralantiportersthatexportCa2+fromthematrix
byswappingoneCa2+ionfortwoNa+throughthemitochondrial
Na+/Ca2+exchanger(mNCX).ANa+/H+exchangemechanismdoes
alsoexist,butitislessactivethanmNCX[122,123].Additionally, mitochondrialCa2+-inducedCa2+releasemediatedbythecalcium
uniporterhasalsobeenobserved[124].
Duringcellactivation,somemitochondriatakeupCa2+from
cytosolicHCMDsthatarecreatedbytheopeningofnearbyVDCCs
[109,125].Inratchromaffincells,mitochondriaactasrapidand
reversibleCa2+buffersduringcellstimulation[126,127];theyalso
contributetotheclearanceoflargeCa2+loadsinbovinechromaffin
cells[109,128].However,earlymeasurementsof[Ca2+]changesin
themitochondrialmatrix([Ca2+]
M)providesvaluesonlyinthelow
micromolarrange[126],mostprobablybecauseunderestimation bysaturationofthemeasuringfluorescentCa2+probe.Byusing
mitochondriallytargetedaequorinswithdifferentCa2+affinities,
whichhaveamuchwiderdynamicrange[52,129],itwaslateron shownthatbovinechromaffincellmitochondriaexhibit surpris-inglyrapidmillimolarCa2+transientsuponcellstimulationwith
acetylcholine,caffeineorK+[130].
Thisavid Ca2+ uptake bymitochondriasurelyhasfunctional
consequences. For instance, dissipation of the proton gradi-ent by protonophores decreases the Ca2+ buffering capacity of
mitochondria[130,131]and drasticallyaugmentstheexocytotic responsein voltage-clampedbovinechromaffincells stimulated withdepolarisingpulses[132].Inperifusedpopulationsofbovine chromaffin cells stimulated with acetylcholine, caffeine or K+,
mitochondrialprotonophoresenhance3–5foldthereleaseof cat-echolamines[116,130,133].Blockadeofthemitochondrialcalcium uniporteralsoenhancestheK+-evokedsecretioninsinglebovine
chromaffin cells [131]. K+-elicited secretionis particularly
aug-mentedbyprotonophoreswhen Ca2+entryviaL-typeVDCCsis
enhancedbyFPL64176[134].Inmousechromaffincellshowever, protonophoreshalved theK+-evoked [Ca2+]
c and catecholamine
releaseresponses[135];thiscouldbeexplainedbydifferencesin theexpressionofVDCCsubtypesinbovineversusmouse chromaf-fincells,and/ordifferentratesofinactivationofVDCCsubtypes dur-ingblockadeofmitochondrialCa2+uptakebyprotonophores[136].
4. Calciumefflux
ThemaintransportersusedbycellstoextrudeCa2+fromthe
intracellulartotheextracellularcompartmentarethe plasmalem-malCa2+pumporCa2+-ATPaseandtheNa+/Ca2+exchanger(NCX)
(Fig.1).Bothtransporterscontributetomaintainthelong-term Ca2+ homeostasisthrougha wellbalancedCa2+ influxand Ca2+
efflux activities. The functional expression of these two trans-porterswasfirstdemonstratedusingplasmamembranevesicles from bovine adrenal medulla [137]. The plasmalemmal Ca2+
-ATPase has a high Ca2+ affinity (K
D in the 10−7M range) and
operates asan electrogenic Ca2+/H+ exchanger witha 1:1
stoi-chiometry[138].
TheNCXusestheenergyprovidedbytheNa+gradienttoachieve
an electrogenic exchange of 3 Na+ ions for 1 Ca2+ ion. Under
physiologicalconditionsNa+istransportedintothecellandCa2+
isextrudedfromthecytosol[139].However,whenthe electro-chemicalgradientforNa+isreversed,suchasduringmembrane
depolarisationortheopeningofgatedNa+channels,theexchanger
movesNa+outofthecellandCa2+intothecell[140].TheCa2+
exitmodeisreferredtoastheforwardmode,andtheCa2+entry
modeasthereversemodeoftheNCX[141].Bovinechromaffincells expressthemajorisoformoftheNCX,namelyNCX1[142],which
canmediateNa+-dependentCa2+influx[143]orCa2+export[144],
dependingonthecircumstances.
Thecardiotonicsteroidouabain,theclassicalinhibitorof the plasmalemmalNa+/K+-ATPase(NKA)orNa+pump[145]hasbeen
widely used toinfer therole of theNCX in various celltypes. AlthoughouabainupsetsprimarilytheNa+andK+gradientsacross
theplasmamembrane,thecollapseoftheNa+gradientcan sec-ondarily drive Ca2+ entry though NCX. This is the mechanism
underlyingtheheartinotropiceffectofcardiacglycosides.Onthe otherhand,repeatedactionpotentialfiringleadingtoNa+
accu-mulation,canalsoforceNCXtoworkinreversemode, thereby increasing[Ca2+]
c andfavouringthereplenishmentwithCa2+of
thesarcoplasmicreticulum.Duringsubsequentactionpotentials, augmentedCICR,whichispotentiatedbytheincreased[Ca2+]
ER,
leadstoenhancedcardiaccontraction[146].
Sincelongweknowthatouabainenhancesboththe sponta-neous[147–149]andtheK+-evokedcatecholaminereleasefrom
catchromaffincells[150]andbovinechromaffincells[151,152]. Theseeffectswereinitiallyinterpretedasasecondaryactivationof theNCXbyouabain[143,153,154],throughamechanismsimilar tothatoccurringintheheart.However,analternativeexplanation canbeinferredfromtherecentobservationthatNKAco-localises withsubplasmalemmalregionsoftheER[155,156].Recentdata onbovinechromaffincellsshowthatouabaincausestherelease ofCa2+ fromtheERand augmentsthecatecholaminesecretory
responsestosequentialK+pulses.ERCa2+depletionpreventssuch
potentiationandcausesagradualdecreaseoftheresponsestoK+.
Furthermore,ouabainenhancesthenumberofdockedvesiclesat subplasmalemmalregions,asrevealedwithTIRFmicroscopy[152]. AllthesedatasupportearliersuggestionsthattheERCa2+store
contributes tomaintainhealthy secretory responseselicited by depolarisingpulsesappliedtobovinechromaffincells[115,116]. Thefactthatendogenousouabainhasbeenidentifiedinhuman plasma [157,158]and thatbovineadrenal cortexis particularly richinendogenousouabain[159],suggestsaphysiologicalroleof thismediatorinthecontrolofCa2+-dependentvesicleflowfroma
reservepooltowardsready-releaseandimmediate-releasevesicle poolsatsubplasmalemmalsites[7].
Bovine chromaffin cells express the major isoform of the
NCX, NCX1 [160]. In bovine chromaffin cells NCX1 can favour
Na+-dependentCa2+ influx [143]or Ca2+ export [144]and has
been proposed to participate in the regulation of [Ca2+]
c and
exocytosis in cat [150,161,162] and bovine chromaffin cells
[142,143,153,163–165]. In addition,chromaffin cells co-express
NCXandtheretinalrod-typeK+-dependentNa+/Ca2+exchanger
[166].AttemptstoclarifytheparticipationoftheNCXin
physio-logicalandpathologicalprocesseshavebeenhamperedbythelack ofpotentandselectiveblockers.TheantagonistKB-R7943 pref-erentiallyinhibits,atlowmicromolarconcentrations,thereverse
modeoftheNCX[167].Unfortunately,thiscompoundalsoblocks
othertransporters,suchasthemitochondrialuniporter[168],and thenicotinicreceptorsofbovinechromaffincells[169].Noveland moreselectiveinhibitorssuchasSEA0400,SN-6andYM-244769
[170]shouldhelptofurtherclarifytheroleoftheNCXinCa2+
sig-nallingandexocytosisinchromaffincells.Infact,SEA0400inhibits Na+-dependentCa2+uptakeandcatecholaminereleaseinbovine
chromaffincells,withIC50 of40 and100nM,respectively,
com-paredwithIC50of1.8and3.7MforKB-R7943,thatwas40-fold
lesspotent[171].
5. Afunctionaltetradshapescalciumgradientsand calciummicrodomains
Fig.2.Functionaltetradstoshapethehigh-Ca2+microdomains(HCMDs)an
low-Ca2+microdomains(LCMDs)thatdetermine,respectively,thefastexocytosis(FE)
releaseofadrenaline(AD)andnoradrenaline(NA),fromanimmediatelyreleasable vesiclepool(IRP),andchromaffinvesiclesmovement(CVM)fromareservepool (RP).Tetradsareformedbyvoltage-dependentCa2+channels(1,VDCCs),cytosolic
Ca2+buffers(2,CCB),theendoplasmicreticulum(3,ER)andthemitochondrialpool1
(MIT1)locatednearbytheplasmalemma(4).Thistetrad(redline)isresponsiblefor generatingandshapingtheHCMDtransients(10–100M),nearby subplasmalem-malexocytoticsites,totriggerfastcatecholaminereleasefromtheIRP,thatcan bemonitoredatthesingle-vesiclelevelasamperometricspikes(AS)withacarbon fibremicroelectrode(5).TheLCMD(<1M)islocatedatcytosolicsitesawayfrom theplasmalemma,andfacilitatetheCa2+-dependentCVM.CrosstalkbetweenHCMD
andLCMDisneededtosecurethesupplyofnewvesiclestothesecretorymachinery underdifferentstimulationratesofchromaffincells(seetextforfurtherdetails).
synapseofthesplanchnicnerve andchromaffincells[1].Direct membranedepolarisationoractionpotentialsfiredbythe inter-actionofacetylcholinewithnicotinicreceptorsonthesurfaceof chromaffincells[117]islikelytheprimarystimulusthatinduces the[Ca2+]
c transient,thustriggeringthedischargeofadrenaline
and noradrenalineintothe circulation[38].Ca2+ entrythrough
thevarioussubtypesofVDCCsistheprimarydeterminantforthe extentandshapeoftheinitial[Ca2+]
ctransient.However,cytosolic
calciumbuffers,Ca2+sequestrationorreleasefromthecytoplasmic
organelles,andplasmalemmalCa2+extrussionhaveaprominent
roleinthefinetuningoftheCa2+signal.Ontheotherhand,correct
Ca2+signallingiscriticaltowarranttheadaptationoftheentire
organismtoastressresponsewhichdeterminesitssurvival.We willemphasisehereourpresentintegrativeviewofthebiophysics ofCa2+redistribution,whichistheultimateregulatorofthe
exo-cytoticresponse(Fig.2).
EssentialtotheunderstandingofCa2+functioninchromaffin
cellsistheconceptthatorganellesandcytosoliccalciumbuffers shape [Ca2+]
c transients atdifferentcelllocations,theso-called
HCMDs,thatdonotnecessarily crosstalk.Severalkindsofthese HCMDshavebeendescribed indifferentcellsystemsand given evocative names, such as sparks, puffs, sparklets and syntillas
[172,173]. Syntillasare brieffocal [Ca2+]
c transients elicited by
localisedERCa2+releaseviaRyRchannels,firstreportedin
neuro-hypophysialterminalsatmagnocellularneurons[174].Thesefocal Ca2+transientswerelateronfoundinmousechromaffincells[175]
and,paradoxically,theyseemtoblockspontaneousexocytosisin thesecells[176].BecauseCICRispresentinbovinechromaffincells, itcouldbeofinteresttoinvestigatewhethertheCa2+wavethat
extendsfromsubplasmalemmalsitestotheinnercytosolfollowing a100msdepolarisingpulseandCICRactivation[22],iscomposed ofelementarysyntillas.Wehaverecentlyfoundthatnanomolar concentrationsofthewinegrapepolyphenolresveratrolcausesER Ca2+releaseinbovinechromaffincellsand,atthesametime,it
blocksthequantalcatecholaminereleaseresponse[177].Itwould beinterestingtoclarifywhethertheseeffectsofresveratrol are
linkedtotheproductionofCa2+syntillas.Itseemshoweverthat
thepresenceand functionalrole forCa2+syntillasare seriously
questionedandcontroversial.Infact,caffeineorryanodinedonot augment[Ca2+]
c and neuropeptide release atneurohypophysial
terminals[178,179].
The rate of Ca2+ fluxes between different chromaffin cell
compartments have been estimated using more or less direct approaches,andundertemperatureconditions(i.e.room tempera-ture)thatmightaffecttheactivityofsomeCa2+transporters.Even
withtheselimitations,puttingtogethertheestimatesofthe dif-ferentfluxesallowsforseveralinterestingpredictions[109].For instance,fora15-mdiameterbovinechromaffincell,arateofCa2+
entryof700molLcells−1s−1canbecomputedfromthemeasured
Ca2+inwardcurrent[180].Asimilarvalue(400molLcells−1s−1)
wasestimatedby measuring45Ca2+ uptake intoK+ depolarised
bovinechromaffincells[181].Ca2+entrywouldbefocusedatthe
channelslocationandthendiffusethroughthesurroundingcytosol. RegardingprogressionoftheCa2+wavegeneratedbyCa2+entry
throughplasmamembraneCa2+channels,bindingtocytosolic
cal-ciumbuffersisamostimportantdeterminant.Thecytosolofbovine chromaffincellshasaCa2+bindingcapacityof∼4mmol/L cells.
Thecytosoliccalciumbuffersarescarcelymobileandhavealow Ca2+affinity(K
D∼100M)withanactivitycoefficientof∼1/40
[128,180].Thetwo-dimensionaldiffusioncoefficientis∼40m2/s
and showsinhomogeneitiesat thenuclearenvelopeand atthe plasmamembrane[53].BriefopeningsofVDCCsgenerateHCMDs nearthechannelmouththatcanbedetectedinCa2+imaging
mea-surements[182].TheseHCMDscanreachconcentrationsashighas 10–100M[7,182]BecauseofrapiddiffusionofCa2+towardsthe
surroundingcytosol,theHCMDsarehighlyrestrictedintimeand space[7,183].Thepresenceofmobilecalciumbuffersaccelerates diffusionandopposesthedevelopmentofHCMDs[180,184–186]; for example, at concentrations of 50M, fura-2 increases the apparentrateofCa2+diffusionfourtimes[180].
Ca2+enteringthecellredistributesamongthedifferentcell
com-partments.Theincreaseof[Ca2+]
cactivatestheSERCAandtheER
avidlytakesupCa2+fromthecytosol.Forexample,during
stimula-tionofbovinechromaffincells[22,109,128]andratchromaffincells
[187],themaximalCa2+uptakebytheERrangesbetween40and
80molLcells−1s−1.Atrest,therateofCa2+exchangebetweenER
andcytosolatsteadystateis2–3molLcells−1s−1.ThenetCa2+
influxuponmaximalstimulationwithcaffeineorInsP3-producing
agonistsis10–20timesfaster[22].
Concerningmitochondria,itisnotoriousthattheCa2+activity
coefficient(freeCa2+/bound calcium)in thematrix isvery low,
in the 1/1000 range [109,126]. Mitochondriaare very effective intheclearingof[Ca2+]
c transients,althoughdrasticdifferences
have been reported between bovine and rat chromaffin cells. For instance, in experiments with photorelease of caged Ca2+
in bovinechromaffin cells, ratesof [Ca2+]
M increase as highas
4800molLcells−1s−1,atsaturating[Ca2+]
c(200M),werefound
[128]. Incontrast, inrat chromaffincells, mitochondrial uptake
rates are150–300 fold slowerbut at [Ca2+]
c of only0.2–2M,
werefound[187].Thesedifferences areconsistentwith depen-denceoftherateofuptakethroughtheuniporteronthesecond powerof[Ca2+]
c[123,124,130,188].Usingmitochondria-targeted
aequorin to specifically monitor [Ca2+]
M, we found that
mito-chondria took up about 1100molLcells−1s−1 upon maximal
stimulationofCa2+entryintobovinechromaffincellsdepolarised
withK+[109,124,130];thisvalueiscomparablewiththerateof
Ca2+entrythroughVDCCs.ThemaximalrateofCa2+releasefrom
mitochondriatroughthemNCXat37◦Cinbovinechromaffincells isabout800molLcells−1s−1.Regardingthekineticsofthis
mito-chondrialCa2+efflux,thedependenceon[Ca2+]
Misexponential
andK50approaches200M[109].Transportthroughtheuniporter
completelydepolarised,theuniportermayallowCa2+exitfromthe
matrixinasortofmitochondrialCICRmechanism[124].
Ca2+extrusionfromthecelltotheextracellularmediumisdue
tojointoperationofbothCa2+-ATPaseandNCX.Thejointactionof
bothtransportsystemshasbeenestimatedtodecrease[Ca2+]
ctoa
maximalrateof20molLcells−1s−1,inratchromaffincellsat27◦C
[127,187].At37◦Ctheratecanbecloseto100molLcells−1s−1
[109].
Ateachandeverymomentthe[Ca2+]
c isdefinedbytherate
ofCa2+ redistributionintochromaffin cellcompartmentswhich
inturndependsonfluxesbetweentheextracellularmedium,the cytosol,cytosoliccalciumbuffersandorganelles.Atrest,asteady state withCa2+ exchange rates below 10molLcells−1s−1 and
[Ca2+]
c near0.1Mis established;[Ca2+]M issimilar to[Ca2+]c
while [Ca2+]
ER is much higher, reaching 500–1000M.
Conse-quently,thereareenormouselectrochemicalgradientsfavouring Ca2+diffusiontothecytosolfromboth,theERandtheextracellular
mediumwheretheCa2+concentrationisabove1mM.
Atlow-frequencystimulationwithactionpotentials,therateof Ca2+diffusionthroughthecytosolandbindingbytheendogenous
Ca2+buffersarethemaindeterminantsofthe[Ca2+]
csignal[7,183].
Under these conditions, global [Ca2+]
c goes up to about 1M
andCa2+clearanceisprimarilyachievedthroughthehigh-affinity
Ca2+-ATPaseandSERCA.Uponstrongstimulation(high-frequency
actionpotentialsorprolongeddepolarisation),global[Ca2+]
cmay
approach 10M, a concentrationhigh enough toactivate Ca2+
uptakethroughthemitochondrialuniporter.Underthese condi-tions, mostoftheCa2+ thatenterschromaffin cellsis takenup
bymitochondria[109,127,130,187].Forexample, mitochondria-targetedaequorinrevealedthat90%oftheCa2+thatentersabovine
chromaffincell stimulatedwitha 10-sK+ pulseistaken upby
mitochondria.Later,whenthestimulationceases,theCa2+
accu-mulatedinmitochondriaisreleasedbacktothecytosolduringa periodofsecondsorevenminutes[109].TheCa2+accumulatedin
mitochondriastimulatesrespirationuntilCa2+extrusionfromthe
mitochondrialmatrixiscomplete[109].Itcanbespeculatedthat theextraenergyprovidedinthiswaymaybeusedforclearingthe Ca2+loadandrestoringCa2+homeostasisaftertheactivityperiod.
In bovine chromaffin cells, the opening of VDCCs gener-ates HCMDs of about 0.3m diameter and 10M [Ca2+]
c
[99,182,189–191]. Building of HCMDs may be favoured by
co-localisationofVDCCclustersandchromaffinvesicles[31,192,193]. Evanescentmicroscopyhasshownfast(t1/2∼100ms)andlocalised
(∼350nm)HCMDsbeneaththeplasmamembraneofstimulated chromaffincells[194].TheseHCMDsselectivelytriggertherelease ofvesiclesdockedwithin300nm,indicatingthatsomevesiclesare dockedbutnot primed.Itis interestingthatHCMDsreducethe distancebetweendocked vesiclesandCa2+entrysites,
suggest-ingaroleforstimulation-dependentfacilitationofexocytosisin chromaffincells[193,194].
Mitochondria located nearby VDCCs at subplasmalem-mal sites can sense HCMDs during physiological stimulation
[109,127,130,187,195].Through measurementsof aequorin
con-sumptionuponrepeatedstimulationofbovinechromaffincells, thecumulativehistoryofCa2+uptakemaybetraced.Usingthis
approach, two pools ofmitochondria withdifferentsubcellular distributionwereevidenced.PoolM1,locatednearbyexocytotic sites,accumulates[Ca2+]
catarateof2000molLcells−1s−1,while
poolM2locatedatinnercytosolicareastakesupCa2+atamuch
lowerrate,12molLcells−1s−1[109,130].Theseratesarereached
atconcentrationsof20and2M[Ca2+]
c respectively,whichare
coincidentwiththeconcentrationsreachedatsubplasmalemmal sitesandthecellcoreduringcellstimulation.TheM1poolwould tunethemitochondrialfunctiontomatchthelocalenergyneeds forexocytosisandCa2+redistributionwhereastheM2pool,located
atthebulkcytosol,couldservetoredistributeCa2+andcanalize
ittowardsinnercytosolicregionstoserveothercellfunctions,i.e. transport ofnewsecretory vesiclestoplasmalemmalexocytotic sites.
ERCa2+fluxescouldalsocontributetotheregulationofHCMDs
formedduringcell stimulation.For instance,underK+
depolar-isation of bovinechromaffin cells transfected withER-targeted aequorin,reductionsof60–100M[Ca2+]
ERareobserved(about
10–15%ofthetotalERCa2+content)[22],suggestingCa2+-induced
Ca2+release. Althoughthedecreaseof [Ca2+]
ER mayseem quite
small,itcouldcorrespondtolargereleaseatcertainsubcellularER locationscompensatedbystronguptakeinothers.CICRsitesseem toco-localisewithplasmalemmalVDCCsandtheM1mitochondrial pool.Thus,complexfunctionaltetradsincludingVDCCs,cytosolic calciumbuffers,themitochondrialuniporterandtheRyRare essen-tialfortheefficaciousregulationofadequatelocal[Ca2+]
ctransients
tocontroltherateandextentofexocytoticcatecholaminerelease (Fig.2).
6. Relationshipbetweencalciumandtheexo–endocytotic responses
A few studies have addressedthe question of the quantita-tiverelationshipbetweenCa2+andtheexo–endocytoticresponses
triggered bychromaffincell stimulation.Oneapproach consists inthedialysisofbovinechromaffincellswithsolutions contain-ingknown[Ca2+] toelicitsecretion,measuredasanincreaseof
membranecapacitance(Cm)[32].Alsocaffeineisusedto aug-ment[Ca2+]
c andmeasureCm[196].Bothapproacheslead to
a[Ca2+]
c-exocytosisrelationshipthatscaledtoapowerfunction
withanexponentof3.Stillotherstudiesusevoltagesteps(square depolarisingpulses)toboostCa2+influx(Q
Ca)andexocytosis;they
foundaQCa/Cmrelationshipthatfittedapowerfunctionwithan
exponentof1.5[197,198].Thereareadditionalstudiesinbovine chromaffincellsstimulatedwithsingleortrainsofdepolarising pulses[199]oractionpotentialwaveformtrainsaswellas100ms depolarisingpulses[132].Thelongerdepolarisingpulsesproduced
QCa/Cmrelationshipsthatfittedtopowerfunctionsof1.2–2.In
linewiththeseconclusionsistheobservationinratchromaffin cellsstimulatedwithsingledepolarisingpulsesofincreasinglength (10–150ms),showingalinearQCa/Cmrelationship[200].Flash
photolysisofcagedCa2+hasalsobeenusedtostudythekinetic
componentsofafastexocytoticburst[201].Depolarisingpulsesare knowntobemuchlessefficientthanCa2+photoreleaseintriggering
exocytosis[202,203].
Otherstudies have used action potentialwaveforms to cor-relatethestimulationfrequencyinbovinechromaffincellswith amperometricspikesecretioninratchromaffincells[192]orwith capacitance increase in bovine chromaffin cells [204]. In addi-tion, depolarisingpulses have been used in transgenicmice to study the role of exocytotic proteins on the kinetics of Cm
[203].Ontheotherhand,astudycomparingdepolarisingpulses
ofincreasinglengthwithacetylcholine-typeactionpotentialsin voltage-clampedbovinechromaffincells,foundlessCa2+entryand
sloweractivationof[Ca2+]
ctransientswithfasterdelayeddecay.
WithactionpotentialsalinearrelationshipisfoundbetweenQCa
andstimulusduration,capacitanceincreaseandstimulusduration andQCaandcapacitanceincrease.Theserelationshipsare
nonlin-ear withdepolarising pulses.Furthermore,capacitance increase responseselicitedbyactionpotentialtrainsarefollowedbylittle slowendocytosis,whilethoseinducedbydepolarisingpulsesare followedbyapronouncedendocytosis,particularlyatthelonger pulses[205].
Controversy exists over the manner in which membrane retrieval during endocytosis is affected by Ca2+. For instance,
chromaffincells[204,206].TheexistenceofthesetwoCa2+sensors
isconsistentwiththefactthatCa2+andBa2+supportexcessive
membraneretrievalinbovinechromaffincells[207].Incontrast, apreviousstudyinthesamecells showedthatrapid endocyto-siswassupportedbyCa2+butnotbySr2+orBa2+[208].Arecent
studyshowsalinearcorrelationbetweenendocytosisandQCa in
voltage-clampedbovinechromaffincells[209].
ItisinterestingthatCa2+-dependentendocytosistriggeredby
singlelongdepolarisingpulses involtage-clampedbovine chro-maffincellsseemstobecoupledtoL-typeVDCCs,whereasN-or PQ-type of calciumchannelsseem toplay littlerole [210,211]. Lackof co-localisationbetween VDCC subtypesand clathrinor dynamin suggests a functional, rather than physical coupling betweenL-type calciumchannels and theendocytotic machin-ery.Inbovinechromaffincells,L-typecalciumchannelsundergo aCa2+-dependentinactivationslowerthanN-orPQ-typeof
cal-ciumchannels[136,212].Itisthereforeplausiblethataslowerbut moresustainedCa2+entrythroughslowlyinactivatingL-type
cal-ciumchannels,ratherthanthroughhigherbutfast-inactivating N-andPQ-typeofcalciumchannels,isarequirementtotrigger endo-cytosisefficiently,atleastinbovinechromaffincells[211].This Ca2+-dependentendocytoticresponseisenhancedbysphingosine
dialysis,thatseemstoplayapermissiveroleforendocytosisby act-ingonanendocytoticpathwaydifferenttothoseofdynamin-and calmodulin-signallingpathways[209].
7. Conclusionsandperspectives
Anumberofstudieshaveclarifiedtheroleofseveralfamiliesof ionchannelsandtransportersinshapingthe[Ca2+]
c signalsand
theexo–endocytoticresponsesoccurringduringchromaffincell stimulation.Fromthe1970s onwardsmostofthestudieswere performedinreadyavailablebovinechromaffincells.Duringthe lasttwodecades,however,chromaffincells fromratshavealso been thoroughlyused. It is surprising, however, that only few studies onCa2+ handling in mouse chromaffin cells have been
performed.Transgenic mice lacking or over-expressinga given proteinhaveextensivelybeenusedtoclarifymolecular mecha-nismsof thesecretory machinery. It would bevery interesting tousechromaffincellsasmodelstoidentifyalterations ofCa2+
homeostatic mechanisms and the release of catecholamines in mousemodelsofdisease.Forinstance,intransgenicmousemodels ofAlzheimer’sdisease,amyotrophiclateralsclerosis,Parkinson’s disease and other neurodegenerative diseases, the expectation is that highand low Ca2+ microdomains maydifferently affect
pre- and exocytotic steps,which could bea peripheralmarker of a brain synaptic dysfunction. There is increasing concern on the involvement of Ca2+ dyshomeostasis in these diseases
[213–216].
WhetherthelargeCa2+concentrationsinchromaffinvesicles
playafunctionotherthanthemerepackingofcatecholaminesuch asforinstance,contributingtoregulationofthelaststepsof exo-cytosis,requiresfurtherclarification.Wealsoknowlittleonthe roleofCa2+fluxesinthechromaffincellnucleus,althoughtheyare
likelyinvolvedinthecontrolofgeneexpression.Itwouldbeniceto know,forexample,whethersuchnuclearCa2+signallingisinvolved
intheexpressionoftheenzymesofcatecholaminesynthesisand degradation.
Effortsshouldalsobedonetoextrapolatethenumerousdata obtained in cultures of chromaffin cells to more physiological preparationssuchasadrenalslicesoreventheintactadrenal,using electricalstimulationofthesympatheticcholinergicnerve termi-nalsthatinnervatechromaffincellstoregulatesecretion.Attempts toestablishorganotypicculturesofadrenalslicesshouldalsobe pursued,asthiscouldfacilitatechronictreatmentstostudynovel
aspectsofcatecholaminesynthesis,storageandreleaseandonthe roleofCa2+signallingunderthesemorephysiologicalconditions
ofpreservationoftissuestructure.
Acknowledgements
Theworkoftheauthor’slaboratorieshasbeensupportedby the following institutions.To AGG: (1) SAF2010-21795, Minis-terio de Ciencia eInnovación (MCINN);(2) RETICS RD06/0009, InstitutodeSaludCarlosIII(MICINN);(3)S-SAL-0275-2006, Comu-nidadAutónomadeMadrid;(4)NDG07/9yNDG09/8,AgenciaLaín Entralgo,ComunidadAutónomadeMadrid,Spain.(5)Fundación TeófiloHernando.ToJGS:grantsfromtheEU-ERA-Netprogramme, theSpanishMinisteriodeCienciaeInnovación(MICINN; SAF2008-03175-E and BFU2010-17379), the Instituto de SaludCarlos III (RD06/0010/0000)andtheJuntadeCastillayLeón(gr175).
References
[1]W.Feldberg,B.Mintz,Diewirkungvonazetylcholinaufdienebennieren, Arch.Exp.Pathol.Pharmakol.168(1932)287–291.
[2]W.W.Douglas,R.P.Rubin,Theroleofcalciuminthesecretoryresponseofthe adrenalmedullatoacetylcholine,J.Physiol.159(1961)40–57.
[3]W.W.Douglas,A.M.Poisner,Onthemodeofactionofacetylcholineinevoking adrenalmedullarysecretion:increaseduptakeofcalciumduringthe secre-toryresponse,J.Physiol.162(1962)385–392.
[4]W.W.Douglas,Stimulus–secretioncoupling:theconceptandcluesfrom chro-maffinandothercells,Br.J.Pharmacol.34(1968)451–474.
[5] O.Shimomura,Thediscoveryofaequorinandgreenfluorescentprotein,J. Microsc.217(2005)1–15.
[6]R.Rizzuto,M.Brini,T.Pozzan,Intracellulartargetingofthephotoprotein aequorin:anewapproachformeasuring,inlivingcells,Ca2+concentrationsin
definedcellularcompartments,Cytotechnology11(Suppl.1)(1993)S44–S46. [7] E.Neher,VesiclepoolsandCa2+microdomains:newtoolsforunderstanding
theirrolesinneurotransmitterrelease,Neuron20(1998)389–399. [8]R.D.Burgoyne,A.Morgan,Secretorygranuleexocytosis,Physiol.Rev.83
(2003)581–632.
[9] A.G.Garcia,A.M.Garcia-De-Diego,L.Gandia,R.Borges,J.Garcia-Sancho, Cal-ciumsignalingandexocytosisinadrenalchromaffincells,Physiol.Rev.86 (2006)1093–1131.
[10] J.Garcia-Sancho,A.Verkhratsky,Cytoplasmicorganellesdetermine com-plexityandspecificityofcalciumsignallinginadrenalchromaffincells,Acta Physiol.(Oxf.)192(2008)263–271.
[11]A.M.deDiego,L.Gandia,A.G.Garcia,Aphysiologicalviewofthecentraland peripheralmechanismsthatregulatethereleaseofcatecholaminesatthe adrenalmedulla,ActaPhysiol.(Oxf.)192(2008)287–301.
[12]B.M.Olivera,G.P.Miljanich,J.Ramachandran,M.E.Adams,Calciumchannel diversityandneurotransmitterrelease:theomega-conotoxinsand omega-agatoxins,Annu.Rev.Biochem.63(1994)823–867.
[13]E.Garcia-Palomero,I.Cuchillo-Ibanez,A.G.Garcia,J.Renart,A.Albillos,C. Montiel,GreaterdiversitythanpreviouslythoughtofchromaffincellCa2+
channels,derivedfrommRNAidentificationstudies,FEBSLett.481(2000) 235–239.
[14]M.J.Berridge,Inositoltrisphosphateandcalciumsignaling,Ann.N.Y.Acad. Sci.766(1995)31–43.
[15]J.W.Putney,Thephysiologicalfunctionofstore-operatedcalciumentry, Neu-rochem.Res.36(2011)1157–1165.
[16]J.W.PutneyJr.,Capacitativecalciumentryrevisited,CellCalcium11(1990) 611–624.
[17]I.M.Manjarres,M.T.Alonso,J.Garcia-Sancho,Calciumentry-calciumrefilling (CECR)couplingbetweenstore-operatedCa(2+)entryandsarco/endoplasmic reticulumCa(2+)-ATPase,CellCalcium49(2011)153–161.
[18]I.M. Manjarres,A. Rodriguez-Garcia, M.T. Alonso, J. Garcia-Sancho, The sarco/endoplasmicreticulumCa(2+)ATPase(SERCA)isthethirdelementin capacitativecalciumentry,CellCalcium47(2010)412–418.
[19]R.Penner,G.Matthews,E.Neher,Regulationofcalciuminfluxbysecond messengersinratmastcells,Nature334(1988)499–504.
[20]A.F.Fomina,E.S.Levitan,ThreephasesofTRH-inducedfacilitationof exocy-tosisbysinglelactotrophs,J.Neurosci.15(1995)4982–4991.
[21] Y.X.Li,S.S.Stojilkovic,J.Keizer,J.Rinzel,Sensingandrefillingcalciumstores inanexcitablecell,Biophys.J.72(1997)1080–1091.
[22]M.T.Alonso,M.J.Barrero,P.Michelena,E.Carnicero,I.Cuchillo,A.G.Garcia, J.Garcia-Sancho,M.Montero,J.Alvarez,Ca2+-inducedCa2+releasein
chro-maffincellsseenfrominsidetheERwithtargetedaequorin,J.CellBiol.144 (1999)241–254.
[23]I.M.Robinson,T.R.Cheek,R.D.Burgoyne,Ca2+influxinducedbythe
Ca(2+)-ATPaseinhibitors2,5-di-(t-butyl)-1,4-benzohydroquinoneandthapsigargin inbovineadrenalchromaffincells,Biochem.J.288(Pt2)(1992)457–463. [24]T.R.Cheek,A.Morgan,A.J.O’Sullivan,R.B.Moreton,M.J.Berridge,R.D.