• No se han encontrado resultados

Models of hepatoprotective activity assessment

N/A
N/A
Protected

Academic year: 2020

Share "Models of hepatoprotective activity assessment"

Copied!
7
0
0

Texto completo

(1)

www.elsevier.es/rmuanl

REVIEW

ARTICLE

Models

of

hepatoprotective

activity

assessment

C.

Delgado-Montemayor

a

,

P.

Cordero-Pérez

b

,

R.

Salazar-Aranda

a

,

N.

Waksman-Minsky

a,∗

aDepartmentofAnalyticalChemistry,MedicalSchool,AutonomousUniversityofNuevoLeon,Monterrey,Mexico

bLiverUnitatthe‘‘Dr.JoséE.González’’UniversityHospitaloftheAutonomousUniversityofNuevoLeon,

Monterrey,Mexico

Received16January2015;accepted30October2015 Availableonline23April2016

KEYWORDS

Hepatoprotection; Invitromodels; Invivomodels; Exvivomodels; Liver;

Hepatocuration

Abstract Liverdiseasesareamajorhealthproblemworldwide,makingitnecessarytodevelop newmoleculesthathelpcounteractorpreventsuchdiseases.Onaccountofthisfact, inves-tigations aimingto obtainnatural and/or syntheticcompounds possessing hepatoprotective activityhavebeenundertaken.Thedevelopmentofnewdrugsconsistsofavarietyofsteps, rangingfromthediscoveryofthepharmacologicaleffectsincellularandanimalmodels,to finallydemonstratetheir efficacyandsafetyinhumans.Differentmodelsfor assessmentof thehepatoprotectiveactivityinvitro,exvivoandinvivocanbefoundinmedicalliterature. Thepurposeofthisreviewistoshowthefeatures,mainadvantagesanddisadvantagesofeach ofthemodels,thehepatotoxicagentsmostcommonlyused(CCl4,acetaminophen,ethanol,d

-galactosamine,t-BuOOH,thioacetamide)aswellasthebiochemicalparametersusefultoassess liverdamageinthedifferentmodels.

©2016UniversidadAut´onomadeNuevoLe´on.PublishedbyMassonDoymaM´exicoS.A.Thisis anopenaccessarticleundertheCCBY-NC-NDlicense(http://creativecommons.org/licenses/ by-nc-nd/4.0/).

Abbreviations:DNA,deoxyribonucleicacid;ALT,alanine amino-transferase; RNA, ribonucleic acid; AST, aspartate aminotrans-ferase;CCl3, trichloromethylradical;CCl4,carbontetrachloride;

ALP,alkalinephosphatase;GGT,gamma-glutamyl-transpeptidase; GSH, reduced glutathione; GSSG, glutathione disulfide; NF-␬B, nuclearfactorkappabeta;LDH,lactatedeshydrogenase;NADPH, nicotinamideadenine dinucleotidephosphate;NAPQUI, n-acetyl-benzoquinoneimine; WHO, World Health Organization; PCTS, precision-cuttissueslices;t-BuOOH,tert-Butylhydroperoxide.

Correspondingauthorat:DepartamentoQuímicaAnalítica,

Fac-ultaddeMedicinaUANL,Av.MaderoyAguirrePeque˜noS/N,Col. MitrasCentro,CP.64460Monterrey,NuevoLeón,Mexico.

E-mailaddress:nwaksman@gmail.com(N.Waksman-Minsky).

Introduction

The liver is a key organ. It regulates different functions in the body, such as metabolism, secretion, storage and detoxifying.Liverdamageisusuallyassociatedwiththe dis-tortionofsomeofthesefunctions.Theliveriscontinuously exposed to an elevated amount of toxic agents, because theportalveinsuppliesbloodtothisorganafterintestinal absorption.1,2

TheWorld HealthOrganization (WHO)determined that around 2.4 million deaths yearlyare linkedto some liver disease,andthataround800thousandofthesedeathsare attributabletocirrhosis.3Ontheotherhand,

epidemiologi-calstudiesconductedbytheNationalInstituteofStatistics

http://dx.doi.org/10.1016/j.rmu.2015.10.002

(2)

Oxidative stress

Oxidative damage in DNA and proteins

ATP

ROS

H2O2

HO• •

O2 –

↑ Lipid peroxidation

Figure1 Mechanismofliverdamageduetooxidativestress.

and Geography (INEGI by its Spanish acronym) indicate that in 2013 in Mexico, over 600 thousand deaths were recorded.Themaincauseswerediabetesmellitus(14.25%), followedbyischemicheartdiseases(12.63%), cerebrovascu-lardiseases(5.29%)andliverdiseases(4.79%).Despitethe advancesinmodernmedicineandthedevelopmentofnew hepatoprotectivedrugs,4---6theincidenceofhepaticdiseases

has not decreased or stopped; onthe contrary, statistics suggestthatthesecontinuetoincrease.7,8

Metabolism or biotransformation of hepatotoxicagents is a detoxifying process where molecules are surgically modifiedintolesstoxicshapesbydifferentenzymatic sys-tems.Thesemodificationscangeneratemetabolicproducts withvaryingdegreesofpharmacologicalactivityorinactive metabolites. Therearedifferent typesof metabolic reac-tions:phase1reactionsareusuallyoxidations,reductionsor hydrolysis(modifyingthestructureofthereactive group); phase2 reactions arethose inwhich the drugconjugates withglucuronicacid,sulfates,acetates,methylgroups, glu-tathioneoraminoacids,generallytoincreaseitssolubility andbeexcreted.Theliver’sabilitytobeabletocarryout thedifferentoxidativemetabolisms isassociatedwiththe highcytochromeP450cellcontent.9

Duetothehighmetabolitebiotransformationrate,free radicals can be generated continuously. Most hepatotoxic substances, mainly damage the liverbecause of the gen-eratedoxidativestress;oxygenreactive speciesinduced a riseinlipidperoxidation,areductionofATPandoxidative damageintheDNAandproteins(Fig.1).10---13

Protecting the liver from the harmful effects of hepatotoxins-whichmaybeingested-orcounteractingthe alterationsintheantirradicaldefensemechanisms,isvery important; the agents capable of doing this are called hepatoprotective.14

For this reason, researches have been developed in the search of natural and/or synthetic compounds withhepatoprotective activity.8 The development of new

pharmaceuticalsconsistsof avariety ofsteps, goingfrom thediscoveryofpharmacologicalsideeffectsincellularand

animal models, to finally prove its efficacy and safety in humanbeings.1

In vivo and well as ex vivo test models are used to evaluate hepatoprotective activity. These systems mea-sure the ability of the drug to prevent or cure hepatic toxicity(inducedbydifferenthepatotoxins)incellular cul-tures,organsorinexperimentalanimals(rats,mice,etc.) respectively.1

Evaluation

models

Nearlyeveryacute andchronic liverinjury can be exper-imentally induced; necrosis, steatosis, hepatic injuries, cirrhosisandcholestasis.Thesecanallbegeneratedin dif-ferentmodelsofliverdamage.

Theobjectiveofhepatoprotectivemodelsisforthe com-pounds, fractions or extracts being tested to counteract oravoidthedamagegeneratedbyhepatotoxins.The mag-nitude of the hepatoprotective effect can be measured throughbiochemical makers, survival rate or histology of theliver.

Testmethodsmaybeinvitro,exvivoorinvivo(Table1); andeach oneofthemcan beevaluatedtoseeifthe sub-stanceishepatoprotectiveorhepatocurative,dependingon ifthehepatoprotectiveagentisadministeredbeforeorafter thehepatotoxin.

Invitromodels

Freshhepatocytes,primaryhepatocyteculturesand immor-talizedcelllinesareusedtomeasurethehepatoprotective effect.Itispossibletoestablishactionmechanismsinthese models. These models represent the best option for the screeningandselectionofpotentialhepatoprotective com-poundsanditispossibletoestablishactionmechanismsat acellularandmolecularlevel.15,16

Primary hepatocytecultureshave thecharacteristic of maintainingnormalmetabolicliverproperties,butitisnot possibletomaintainthemforalongtime.Ontheotherhand, celllines maintaintheir properties stablefor a long time andcanbecryopreserved,butimmortalizedorcarcinogenic linesmaydifferinbiochemicalandmetabolicaspectsfrom normalcells.1

In order to evaluate protection, parameters like transaminase liberation, cell multiplication, morphology, macromolecular synthesis, oxygen consumption, etc., are measured.17,18

Advantagesofinvitromodelsare:Theyarequicktests (between2---3testingdays),theyrequiresmallamountsof thetest substances (milligramrange)and the experimen-talconditionsmaybestrictlycontrolled;differentsamples maybeanalyzedinthesametest,theyarecheaptestsand thereis littlevariability; therefore theyareconsidered a reproducibletest. Inthecase ofprimaryculturesor fresh hepatocytes,theyrequirefewexperimentalanimalsin com-parisontoinvivomodels.

(3)

Table1 Modelsofevaluationsofhepatoprotectiveactivity.

Model Examples Advantages Disadvatages

Invitro *Freshhepatocytes *Primaryhepatocyte culture

*Immortalizedcelllines (HepG2,HUH7,HepRG)

*Quickandcheaptests *Requiresfewsamples *Highcontrolof variables;reproducible *Cananalysesvarious samplesinthesametest

*Duetoalackofcomplexitypresent intheorganofbiologicalsystem, resultsshouldbeinterpretedwith caution.

*Samplesdonotundergoany biotransformationprocess

Exvivo *Preciselivercuts

*Isolatedperfusedliver

*Resembletheinvivo environment

*Decreasethenumber ofanimalsexperimented on

*Ahumantissuemodel canbedeveloped

*Lowoxygenationrateinthe internalcells

*Lowcutviability(1---10días) *Therearesignificantdifferencesin sizeandfuctionbetweenhumanand murinetissue.

Invivo *Murinemodel *Widelyused

*Thereisagreater correlationwithwhat happensinhumans *Allbiochemicaland histologicalparameters canbemeasured

*Requiresalargenumberofanimals toexperimenton

*Interindividualvariationexists *Alargersimplesizeisrequired *Largeandexpensiveexperiments

beverified within vivosystems. Isolatedcells as well as celllineshavean elevatedcelldifferentiationratedueto thelossofnaturalenvironment.Thesubstancestested do notgo throughthe absorption anddistribution processes, whichoccursintheorganism.Thereislittletono cell-to-cellinteraction and thereis no complexity proper of the organ.19---21

Exvivomodels

Precisioncutliverslices(PCLS)areanexvivotissueculture which imitates multicellular characteristics of in vivo

organs.Cellularinteractionand spatialdisposition remain intactinthismodel,withthepossibilityofperforming mor-phologicalstudies. Liver slices have the characteristic of functionallymaintainingmetabolizingenzymesandbiliary canaliculus21; theyhave proven tobe avalid ex vivo

sys-temtostudymetabolismandliverdamageandfunctionas abridgebetweeninvivosystemsandcellcultures.22

Isolated perfused livers represent a model combining

in vitro characteristics under in vivo circumstances. The

firstmodelwasdevelopedinporcineliversandlaterthe liv-ersofsmalleranimals(rats,miceandrabbits).Thismodel preservesthetridimensionalstructureaswellasthe cell-to-cellinteractionswiththepossibilityofcollectingbileinreal time.Ifbloodisusedasaperfusorliquid,thenhemodynamic parametersmaybestudied.23

Advantages of ex vivo models: they resemble in vivo

atmospheres,arelowcost,reproduciblemodels.InPCLSthe numberofexperimentalanimalsisreduced,alsothemodel canbedevelopedwithhumanorgans.

Disadvantagesof exvivomodels:in PCLSthe bileflow andfunctionalparameters,suchasportalflow,cannotbe analyzed.1 There is poor diffusion of oxygen nutrients to

themoreinternalcells,andevenwiththedevelopmentof new means of culture, the viabilityof the slicesremains short (8---10 Days).22 In small labs, because of space and

budget,thebestoptionisthedevelopmentofperfusedrat liver;however,therearesignificantdifferencesinthesize, functionandgeometryofthemurinelivercomparedtothe human.1

Invivomodel

This model hasbeen widely used;through thismodel we areabletodeterminetheprotectionmechanism.The dam-ageproducedinexperimentalanimalsduetoknowndosage administration of different hepatotoxins and the magni-tude of the damage and/or protection is determined by the differentbiochemicaland metabolic markers,as well ashistopathologicaldeterminations.

Advantagesofinvivomodels:isthemodelwiththe high-estdegreeofcorrelationwithwhatoccursinhumansandall biochemicalandhistopathologicalparameterscanbe mea-sured.Theyletustakeintoaccountthepossibleeffectsof theimmuneandcentralnervoussystemsinthedevelopment ofhepaticdiseases.24

(4)

Hepatotoxic

agents

and

their

action

mechanisms

Themoleculesresponsibleforliverdamagearecalled hep-atotoxins; nowadays it is possible to imitate any formof natural-originhepaticdiseasewithdifferentchemical sub-stancesandpharmaceuticals.

Hepatotoxinsmaybeclassifiedasintrinsiciftheagent’s behavior is predictable; there is a period of constant latencybetweenexposureandliverdamagedevelopment, or theinjury is dose-dependent(i.e. carbontetrachloride

{CCl4},thioacetamide, acetaminophen, ethanol). Another

classification is idiosyncratic, if the agents are not pre-dictable,butgenerateliverdamageinjustasmallportion of exposed individuals, the injury is not related to the dosage, it occurs after a variable latent period and it is notreproducible in experimentalanimals (i.e. halothane, sulfonamides,isoniazid).26,27

Carbontetrachloride(CCl4)

CCl4toxicitydependsondosageandthedurationof

expo-sure.Inlowdose,effectslikelossofCa2+homeostasis,lipid

peroxidation, andrelease of cytokinesare produced, and apoptotic events may be generated, followed by cellular regeneration.Inhighdoses,orifthereisalongerexposure, theeffectsaremoresevereandthedamageoccursduring alongerperiodof time,the patientmay developfibrosis, cirrhosis,orevencancer.5,28,29

CCl4ismetabolizedbythecytochromeP450dependentof

monooxygenases,mainlythroughtheCYP2E1isoforminthe endoplasmicreticulumandmitochondria.16 Hepatotoxicity

isproducedbytheformationofthetrichloromethylradical (CCl3), which is highly reactive. These radicals may

satu-ratetheorganism’santioxidantdefensesystem,reactwith proteins, attack unsaturated fatty acids, generating lipid peroxidation,reducetheamountofcytochromeP450,which leadstoafunctionalfailurewiththeconsequentloweringof proteinandaccumulationoftriglycerides(fattyliver),and alterwaterandelectrolyteequilibriumwithanincreaseof hepaticenzymesinplasma.30

Lipidperoxidationleadstoacascadeofreactions,such asthe destruction of membrane lipids, the generationof endogenoustoxicsubstances,whichoriginatemorehepatic complications and functional anomalies. For this reason, lipidperoxidationisconsideredacriticalfactorinthe patho-genesisofliverinjuriesinducedbyCCl4.15Theinhibitionof

the radical CCl3 generation is a key point in the

protec-tion against the damage generated. Because of this, this modeliswidelyusedfortheevaluationofpharmaceuticals andnaturalproductswithhepatoprotectiveandantioxidant activity.31,32

Acetaminophen

It is an analgesic antipyretic analgesic. In high doses, it producesacuteliverdamage,causingnecrosisofthe hepa-tocytes.Itisawidelyusedexperimentalmodelofclinical importanceasanexampleofdrug-inducedliverdamage.16

At therapeutic doses, it is mainly metabolized to glu-curonic or sulfated and excreted derivatives, the rest metabolizes to intermediate reactives, which are elimi-natedby conjugation withglutathione. At overdoses, the excess is oxidized by the cytochrome P450 (mainly the CYP2E1 isoform)33 at N-acetyl-p-benzoquinone (NAPQI),

whichquicklyattachestoglutathione.Underexcessive con-ditionsofNAPQIandglutathionedepletion,acovalentbond ofmetabolitetoproteins,adductformation,mitochondrial dysfunctionandoxidativestressoccurs.Theresultis necro-sisorhepatocellulardeath.19,34

Ethanol

Theliveristhemostsusceptibleorgantothetoxiceffectsof ethanol.Thedamagemechanismisduetothemetabolism of ethanol by the CYP2E1 isoform of the cytochrome P450 producing oxidative stress with the generation of reactive species of oxygen and the increase of lipid per-oxidation, leading to the alteration of the compositions ofphospholipidsof thecellularmembrane.35,36 Membrane

lipid peroxidation results in the loss of its structure and integrity,elevatingserumlevelsofglutamyl-transpeptidase, amembrane-bondingenzyme.Ethanol inhibitsglutathione peroxidase;itreducestheactivityofcatalaseanddismutase superoxide.16

Thedecreaseintheactivityofantioxidantenzymes, dis-mutasesuperoxideandperoxidaseglutathioneisbelievedto comeasaresultoftheharmfuleffectsoffreeradicals pro-ducedafterexposuretoethanol,oralternatively,theycould bea directeffect of acetaldehyde, a product of ethanol oxidation.

D-Galactosamine

Thishepatotoxingeneratesasimilardamagetoviral hepati-tisregardingmorphologicandfunctionalcharacteristics.A singledosecancausehepatocellularnecrosisandfattyliver. Itinducestheexhaustionoftheuracilnucleotide, result-ing in the inhibition of RNA synthesis and consequently of proteins.37 The toxicity mechanism causes loss of the

activity of ion pumps and an increase in cellular mem-brane permeability, leading to enzyme liberation and an increasein intracellular Ca2+ concentration, whichis

con-sideredresponsibleforcellulardeath.16,36,38

Tert-Butylhydroperoxide(t-BuOOH)

Metabolized to free radicals by cytochrome P450 in hepatocytes generating lipid peroxidation, a decrease of glutathione,itreduces thepotentialof themitochondrial membraneandcellulardamage;generateddamageis simi-lartooxidativestress,whichoccursincellsandtissues.36,39

Alternatively,t-BuOOHcanbeconvertedbyglutathione peroxidaseintotetr-butylalcoholandglutathionedisulfide (GSSG).GSSGisconvertedintoreducedglutathione(GSH) bytheGSSGreductase,generatingtheoxidationofpyridine nucleotides(NAPD).Alltheseeventsalterthehomeostasis ofCa+2whichisconsideredacriticaleventtoprovide

(5)

Thioacetamide

Anorganiccompoundcontainingsulfur,originallyusedasa fungicideandcurrentlyusedforthetreatmentofleather,in labsandinthetextileandpaperindustries.29Itcaninduce

acuteandchronichepaticinjuriesandactsoverthe synthe-sisofprotein,DNA,RNAandover␥-glutamyltranspeptidase

(GGT)activity.

Thioacetamideisbio-activatedbytheCYP450and/orby themonooxigenasesystem,whichcontainsflavin, convert-ingthecompoundintosulfine(asulfoxide-typecompound) andlaterintosulfone-typecompounds.Sulfineisresponsible for generating an increase in the nucleus volume, nucle-olienlargement,anincreaseinintracellularconcentration of Ca+2, generating changes in cellular permeability and

mitochondrialdysfunction.Ontheotherhand,Sulfone-type compoundsareresponsiblefortheliberationofnitricoxide synthaseand the nuclearfactor kappa B(NF-␬B), protein

denaturalizationandlipidperoxidation.41---43

Liver

function

markers

A decisive step when biological activity models are per-formedistheanalysisoftheactivityofthetestedanalyte. Depending on the selected model and its characteristics, thesurvivalrateandthedamagedbiochemicalmarkerscan bedetermined.Due tothe widevarietyof functions per-formedbytheliver,thereisawiderangeofmarkersthrough whichweareabletodeterminethefunctionalityordamage generatedbythisorganoritscells.28 Althoughthereisno

biochemicalmarkerspecifictoliverdamage,the combina-tionof severalofthese,andknowingthecorrelation they havewiththeliver,willhelptobetterinterprettheresults ofthehepatoprotectivemodels.Markerscanbedividedinto tests related to the liver’s excretory function (bilirubin), testsrelatedtosyntheticfunction(albuminand prothrom-bintime)andtestsrelatedtotheintegrityofhepatocytes (transaminases,alkalinephosphatase,GGT).

Transaminasesoraminotransferases

Transaminasesoraminotransferasesareenzymesthat trans-fer a group of amino from an amino acid to an acid

␣-acetate. This process is an important step in the

metabolism of amino acids. The aspartate aminotrans-ferase (AST) and the alanine aminotransferase (ALT) are widely used enzymes; the increase in the liberation of thesetransaminasesislinkedtoliverdysfunction.ALT cat-alyzes the amino group transference of the L-alanine to

␣-ketoglutaratetoproducepyruvateandL-glutamate;itis

elevatedin hepaticand renaldiseases, i.e.hepatitis, cir-rhosisand mononucleosis. AST catalyzes the transference oftheaminogroupoftheL-aspartateto␣-ketoglutarateto

produceoxaloacetateandL-glutamate;theheart,liverand skeletalmuscle,areorgansrichwiththisenzymeandthe ASTliberationisproportionaltothedamagegenerated.Ina myocardialinfarctionitstartstoincreasebetween3and9h aftertheevent,reachingitspeakonthesecond day;the levelsnormalizebetweenthe fourthand thesixthday. In hepatitiscases,observedelevationsarebetween7and12

timesitsnormalconcentrations,withincreasesofupto100 times.28

Phosphatases

These enzymes belong to the hydrolases family and are known for their ability to hydrolyze a wide variety of organophosphate compounds with the formation of phos-phateionsandalcohols.Clinicallyrelevantphosphatasesare acidphosphataseandalkaline phosphatase.Alkaline phos-phatase(ALP)isproducedmainlyintheliverandbone;when there arenoosteogenic diseases, ALP elevation is gener-allylinkedtohepatobiliarydiseases. Itis morespecific in obstructivehepaticprocesses.28,44

Transpeptidase-glutamine(GGT)

This enzyme is boundto the plasmatic membrane, which catalyzes the transference of the ␥-glutamine group of a

peptide toitselforother peptides.Itis locatedmainly in hepatocytes;howeveritcanalsobefoundintheproximal renal tubules, intestinalepithelial cells and theprostate. High GGTP levels usually indicate infection in the liver, pancreaticand biliaryzones.The specificityof thetest is relativelylow,butsinceitisnotlinkedtobonediseases,it isusedtolinkhighALPlevelstoliverdamage.44

Bilirubin

Bilirubin is the most important metabolite of the heme group, found in hemoglobin, myoglobinand cytochromes. Itishighlyinsolubleinwaterinitsmostcommonisomeric form,and most ofit is transportedby albumin. The liver is responsible for eliminating bilirubin by turning it to a morehydrosolubecompound,thusallowingitselimination ofplasmaforitseventualexcretion.Itisthemostimportant test ofthehepaticmetabolicfunction;however,itis only possibletodetermineitininvivomodels.44

Totalproteins

Theliversynthetizesmostplasmaticproteins,andinmost hepaticdiseasesthelevelsarereduced.Albumin,␣-1

antit-rypsin,ceruloplasmin,and␣-fetoproteinareproteinslinked

toacuteliverdamage.

Lactatodeshydrogenase(LDH)

Lactatodeshydrogenaseisanenzymelocatedinthecellular cytoplasm. Itcatalyzes the interconversion ofthe lactate and pyruvate; LDH liberation may be interpreted as the opening of the cellularmembrane or cellular death. This enzyme is not specific to the liver and it is widely used

inin vitromodelsbecauseitis expressedinmostcellular

lines.45

AST, ALT and ALP are most commonly analyzed in all hepatoprotectivemodels,whilethequantificationoftotal proteinsandLDHaregenerallyusedasparametersofinvitro

(6)

Conclusions

Liver diseases are a major health problem, domestically and around the world; thus, it is necessary to develop newmoleculeswhichhelpcounteractorpreventthem.The discovery and development of new drugs begins with the demonstrationofthepharmacologicaleffects,tolater con-ductsafetyand efficacystudies in humanbeings. Invitro

modelsarewidelyused;theyarefast,cheap,reproducible techniques andrequirealowersample. Nevertheless, the results ought tobe reevaluated by other models.Ex vivo

models are an intermediate point between in vivo and

invitromodels,butarelessutilized.Unliketheothertwo,

in vivomodelsprovidea widerangeof information.They arewidely usedtoverify theactivity of newcompounds, although they are more expensive and go through many experimentalanimals.Hence,theyaregenerallyusedafter

aninvitroorexvivoevaluation,asastepprevioustoclinical

trials.

Conflict

of

interest

Theauthorshavenoconflictsofinteresttodeclare.

Funding

Nofinancialsupportwasprovided.

Acknowledgements

SpecialthanksgototheMexicanNationalCouncilofScience andTechnology(abbreviatedCONACYT)fortheirsupportfor thenationalscholarshipno.359832andprojectno.180997 oftheBasicScientificResearchGrant2012.

References

1.GronebergDA,Grosse-SiestrupC,FischerA.Invitromodelsto studyhepatotoxicity.ToxicolPathol.2002;30:394---9.

2.Vargas-MendozaN, Madrigal-SantillánE, Morales-GonzálezA, etal.Hepatoprotectiveeffectofsilymarin.WorldJHepatol. 2014;6:144---9,http://dx.doi.org/10.4254/wjh.v6.i3.144. 3.Organización Mundial de la Salud. OMS-cirrosis; 2014

www.who.int/en

4.Waring WS. Novel acetylcysteine regimens for treatment of paracetamol overdose. Ther Adv Drug Saf. 2012:305---15, http://dx.doi.org/10.1177/2042098612464265.

5.Zhao XY, Zeng X, Li XM, et al. Pirfenidone inhibits carbon tetrachloride- and albumin complex-induced liver fibrosis in rodentsbypreventingactivationofhepaticstellatecells.Clin ExpPharmacolPhysiol.2009;36(10):963---8,http://dx.doi.org/ 10.1111/j.1440-1681.2009.05194.x.

6.Macías-Barragán J, Sandoval-Rodríguez A, Navarro-Partida J, etal.Themultifacetedroleofpirfenidoneanditsnovel tar-gets.FibrogenesTissueRepair.2010;3:16,http://dx.doi.org/ 10.1186/1755-1536-3-16.

7.Méndez-SánchezN,VillaAR,Chavez-TapiaNC,etal.Trendsin liverdiseaseprevalenceinMexicofrom2005to2050through mortalitydata.AnnHepatol.2005;4:52---5.

8.Abdallah HM, Ezzat SM, El Dine RS, et al. Corrigendum to ‘‘Protective effect of Echinops galalensis against CCl4

-induced injury on the human hepatoma cell line (Huh7)’’

[Phytochem.Lett.6(2013)73-78].PhytochemLett.2013;6:471, http://dx.doi.org/10.1016/j.phytol.2013.06.001.

9.BhaargaviV,JyotsnaGSL,TripuranaR.Areviewon hepatopr-tectiveactivity.IntJPharmSciRes.2007;5:690---702.

10.FernandoCD,SoysaP.Totalphenolic,flavonoidcontents, in-vitro antioxidant activities and hepatoprotective effect of aqueousleafextractofAtalantiaceylanica.BMCComplement AlternMed.2014:1---8.

11.Qureshi NN, Kuchekar BS, Logade NA, et al. Antioxidant and hepatoprotective activity of Cordia macleodii leaves. SaudiPharm J: OffPubl Saudi Pharm Soc. 2009;17:299---302, http://dx.doi.org/10.1016/j.jsps.2009.10.007.

12.HiraganahalliBD,ChinampudurVC,DetheS,etal. Hepatopro-tectiveandantioxidantactivityofstandardizedherbalextracts. PharmacognMag.2012;8:116---23.

13.Tanikawa K, Torimura T. Studies on oxidative stress in liver diseases: important future trends in liver research. Med Mol Morphol. 2006;39:22---7, http://dx.doi.org/10.1007/ s00795-006-0313-z.

14.De la MorenaGS, Martínez Pérez J. Efecto hepatoprotector inducidoporel flavonoide Astilbinafrente a un modelo ani-maltratadocontetraclorurodecarbono.RevCubaPlantMed. 1999;1:36---9.

15.Ai G, Liu Q, Hua W, et al. Hepatoprotective evaluation of the total flavonoids extracted from flowers of Abelmoschus manihot(L.)Medic:invitroand invivostudies.J Ethnophar-macol. 2013;146:794---802, http://dx.doi.org/10.1016/j.jep. 2013.02.005.

16.Ahmad F, Tabassum N. Experimental models used for the study of antihepatotoxic agents. J Acute Dis. 2012;1:85---9, http://dx.doi.org/10.1016/S2221-6189(13)60021-9.

17.KumarE,SusmithaK,SwathyB,etal.Areviewonliverdisorders andscreeningmodelsofhepatoprotectiveagents.IntJAllied MedSciClinRes.2014;2:136---50.

18.KashawV,NemaA,AgarwalA.Hepatoprotectiveprospectiveof herbaldrugsandtheirvesicularcarriers---areview.IntJRes PharmBiomedSci.2011;2:360---74.

19.PatilBR,BamaneSH,KhadsareUR.Invitroprotectionof hepa-tocytes by Alocasia macrorrhiza leaf juiceagainst CCl4 and tylenol mediated hepatic injury. Int J Pharm Appl. 2011;2: 122---7.

20.Vodovotz Y, Kim P, Bagci E, et al. Inflammatory modula-tion of hepatocyte apoptosis by nitric oxide: in vivo, in vitro, and in silico studies. Curr Mol Med. 2004;4:753---62, http://dx.doi.org/10.2174/1566524043359944.

21.Olinga P, Schuppan D. Precision-cut liver slices: a tool to model the liver ex vivo. J Hepatol. 2013;58:1252---3, http://dx.doi.org/10.1016/j.jhep.2013.01.009.

22.Gandolfi JA, Wijeweera J, Brendel K. Use of precision-cut liver slices as an in vitro tool for evaluating liver func-tion. Toxicol Pathol. 1996;24(1):58---61, http://dx.doi.org/ 10.1177/019262339602400108.

23.Guillouzo A. Liver cellmodels inin vitrotoxicology.Environ HealthPerspect.1998;106.

24.Van de Bovenkamp M, Groothuis GMM, Meijer DKF, et al. Liver fibrosis in vitro: cell culture models and precision-cut liver slices. Toxicol In Vitro. 2007;21:545---57, http://dx.doi.org/10.1016/j.tiv.2006.12.009.

25.EbadollahiNatanziA,GhahremaniMH,MinaeiB,etal.An exper-imental model for study ofthe hepatoprotectiveactivity of Nasturtiumofficinale(Watercress)againstacetaminofen toxic-ityusinginsituratliversystem.EurJSciRes.2009;38:556---64. 26.Roth RA, Ganey PE. Intrinsic versus idiosyncratic drug-induced hepatotoxicity --- two villains or one? J Pharma-colExp Ther.2010;332(3):692---7, http://dx.doi.org/10.1124/ jpet.109.162651.wisdom.

(7)

MedChem.2009;16(23):3041---53,http://dx.doi.org/10.2174/ 092986709788803097.

28.RajeshA,VijayK,PraveshKS,etal.Hepatoprotectivemodels andscreeningmethods:areview.JDiscovTher.2014;2:49---56. 29.RobinS,SunilK,RanaAC,etal.Differentmodelsof hepato-toxicityabsrelatedliverdiseases:areview.IntResJPharm. 2012;3:86---95.

30.Vasanth PR, RaghuHC, VijayanP, etal. In vitroand in vivo hepatoprotective effects of the total alkaloid fraction of Hygrophila auriculata leaves. Indian J Pharmacol. 2010;42: 99---104.

31.Zhou G, Chen Y, Liu S, et al. In vitro and in vivo hepato-protective and antioxidant activity of ethanolic extract from Meconopsis integrifolia (Maxim.) Franch. J Ethnophar-macol. 2013;148:664---70, http://dx.doi.org/10.1016/j.jep. 2013.05.027.

32.Shailajan S, Joshi M, Tiwari B. Hepatoprotective activity of

Parmeliaperlata(Huds.)Ach.againstCCl4inducedliver

tox-icity in Albino Wistar rats. J Appl Pharm Sci. 2014;4:70---4, http://dx.doi.org/10.7324/JAPS.2014.40212.

33.Wang A-Y. Gentiana manshurica Kitagawa prevents acetaminophen-induced acute hepatic injury in mice via inhibiting JNK/ERK MAPK pathway. World J Gastroenterol. 2010;16:384,http://dx.doi.org/10.3748/wjg.v16.i3.384. 34.McGill MR, Sharpe MR, Williams CD, et al. The

mecha-nism underlying acetaminophen-induced hepatotoxicity in humans and mice involves mitochondrial damage and nuclearDNAfragmentation.JClinInvest.2012;122:1574---83, http://dx.doi.org/10.1172/JCI59755.

35.Jaeschke H, Gores GJ, Cederbaum AI,et al. Mechanisms of hepatotoxicity.ToxicolSci.2002;176:166---76.

36.SimeonovaR, Kondeva-BurdinaM,VitchevaV,etal. Somein vitro/invivochemically-inducedexperimentalmodelsofliver oxidative stress in rats. Biomed Res Int. 2014;2014:706302, http://dx.doi.org/10.1155/2014/706302.

37.LimHK,KimHS,ChoiHS,etal.Effectsofacetylbergeninagainst

d-galactosamine-inducedhepatotoxicityinrats.PharmacolRes.

2000;42:471---4,http://dx.doi.org/10.1006/phrs.2000.0730. 38.Raj PV, Nitesh K, Prateek J, et al. Effect of lecithin

on d-galactosamine induced hepatotoxicity through

mito-chondrial pathway involving Bcl-2 and Bax. Indian J Clin Biochem.2011;26:378---84, http://dx.doi.org/10.1007/s12291-011-0155-x.

39.Wang C,Wang J, Lin W, et al. Protective effectof hibiscus anthocyaninsagainsttert-butylhydroperoxide-inducedhepatic toxicityinrats.FoodChemToxicol.2000;38:411---6.

40.Hwang J-M, Wang C-J, Chou F-P, et al. Protective effect of baicalin on tert-butyl hydroperoxide-induced rat hepa-totoxicity. Arch Toxicol. 2005;79:102---9, http://dx.doi.org/ 10.1007/s00204-004-0588-6.

41.AkhtarT,SheikhN.Anoverviewofthioacetamide-induced hep-atotoxicity.ToxinRev.2013;32:43---6.

42.LowTY,LeowCK,Salto-TellezM,etal.Aproteomicanalysisof thioacetamide-inducedhepatotoxicityandcirrhosisinrat liv-ers.Proteomics.2004;4:3960---74, http://dx.doi.org/10.1002/ pmic.200400852.

43.Moustafa AHA, Ali EMM, Moselhey SS, et al. Effect of coriander on thioacetamide-induced hepatotoxicity in rats. ToxicolIndHealth.2012;30:621---9,http://dx.doi.org/10.1177/ 0748233712462470.

44.HenryJB,Ernard.Laboratorio,vol.20.Marbán;2007. 45.DonfackJH,FotsoGW,Ngameni B,etal.Invitro

hepatopro-tective and antioxidant activities of the crude extract and isolated compounds from Irvingia gabonensis. Asian JTradit Med.2010;5:79---88.

Figure

Figure 1 Mechanism of liver damage due to oxidative stress.
Table 1 Models of evaluations of hepatoprotective activity.

Referencias

Documento similar

Among these alternatives, essential oils (EOs) are considered as an eco-friendly and natural option.. The activity of these volatile and aromatic products has been widely

The thesis consists of three main parts, in which we have studied activity dynamics in the fruit fly Drosophila melanogaster, sleep-wake dynamics in the zebrafish Danio rerio and

braziliensis recombinant DPP3 After purification of the fusion protein rTF-LbDPP3, the enzymatic activity of this enzyme was determined and compared with the activity of the

The two SUPRAS investigated were quite similar in extraction yields and antioxidant activity, however, because of the higher concentration of ingredients used for

This work is the study of the chemical complexity and the physical conditions of the molecular gas in three galaxies with different type of activity, in our sample we have a

This effect could be explained by an increase in the concentration of carnosic acid observed in the SR extracts, which was around 10-20% greater than the

The programming language most widely used in data mining is Python, primarily because of its ver- satility and the number of libraries that are available for data processing,

thermal and high pressure processing on antioxidant activity and instrumental colour of 563 . tomato and