• No se han encontrado resultados

Calcium dynamics in the secretory granules of neuroendocrine cells

N/A
N/A
Protected

Academic year: 2020

Share "Calcium dynamics in the secretory granules of neuroendocrine cells"

Copied!
8
0
0

Texto completo

(1)

and sharing with colleagues.

Other uses, including reproduction and distribution, or selling or

licensing copies, or posting to personal, institutional or third party

websites are prohibited.

In most cases authors are permitted to post their version of the

article (e.g. in Word or Tex form) to their personal website or

institutional repository. Authors requiring further information

regarding Elsevier’s archiving and manuscript policies are

encouraged to visit:

(2)

ContentslistsavailableatSciVerseScienceDirect

Cell

Calcium

jo u r n al h om ep a g e :w w w . e l s e v i e r . c o m / l o c a t e / c e c a

Calcium

dynamics

in

the

secretory

granules

of

neuroendocrine

cells

Javier

Álvarez

InstitutodeBiologíayGenéticaMolecular(IBGM),DepartamentodeBioquímicayBiologíaMolecularyFisiología,FacultaddeMedicina,UniversidaddeValladolidandConsejo SuperiordeInvestigacionesCientíficas(CSIC),RamónyCajal,7,E-47005Valladolid,Spain

a

r

t

i

c

l

e

i

n

f

o

Articlehistory:

Received28September2011 Receivedinrevisedform 22November2011 Accepted4December2011

Available online 30 December 2011

Keywords:

Ca2+

Secretorygranules Neuroendocrine Chromaffin

Inositoltrisphosphatereceptor Ryanodinereceptor

Ca2+-ATPase

a

b

s

t

r

a

c

t

CellularCa2+signalingresultsfromacomplexinterplayamongavarietyofCa2+fluxesgoingacrossthe plasmamembraneandacrossthemembranesofseveralorganelles,togetherwiththebufferingeffectof largenumbersofCa2+-bindingsitesdistributedalongthecellarchitecture.Endoplasmicandsarcoplasmic reticulum,mitochondriaandevennucleushaveallbeeninvolvedincellularCa2+signaling,andthe mechanismsforCa2+uptakeandreleasefromtheseorganellesarewellknown.Inneuroendocrinecells, thesecretorygranulesalsoconstituteaveryimportantCa2+-storingorganelle,andthepossibleroleof thestoredCa2+asatriggerforsecretionhasattractedconsiderableattention.However,thispossibilityis frequentlyoverlooked,andthemainreasonforthatisthatthereisstillconsiderableuncertaintyonthe mainquestionsrelatedwithgranularCa2+dynamics,e.g.,thefreegranular[Ca2+],thephysicalstateof thestoredCa2+orthemechanismsforCa2+accumulationandreleasefromthegranules.Thisreviewwill giveacriticaloverviewofthepresentstateofknowledgeandthemainconflictingpointsonsecretory granuleCa2+homeostasisinneuroendocrinecells.

© 2011 Elsevier Ltd. All rights reserved.

1. Introduction

Ca2+isanintracellularsecondmessengerabletofulfilla

vari-ety of different functions in all cell types with no exception, bothexcitableandnon-excitablecells.Letusjustmentionmuscle contraction,neurotransmittersecretion,fertilization,proliferation, development,learning,memoryorcelldeath[1].Thisversatility canonlybeachievedthankstoaveryprecisecontrolofits concen-trationatthesubcellularlevel.Infact,activationoftheseprocesses usuallytakesplaceasaconsequenceoftransientincreasesinthe cytosolic[Ca2+] inspecificsubcellularlocations,whichare

vari-abledepending onthe process. These hot spots or local[Ca2+]

microdomainshaveacriticalimportanceinCa2+signalingandtheir

sizeanddynamicsdependsonthespatialdispositionofthe differ-entCa2+transportsystems(channels,exchangers,pumps,etc.)both

intheplasmamembraneandinintracellularorganelles.

BecauseofthestrongCa2+bufferingofthecytosol(freeCa2+

con-stitutesonly1%ofthetotalCa2+inthecytosol),diffusionofCa2+

throughthecytosolisseverelylimited,particularlyduringsmall, physiological,cellstimulations.Intracellularorganellesare there-foreessentialtogenerateorcontrollocal[Ca2+]microdomainsat

differentintracellularlocations.Thefirstorganellethatwasknown tohaveanimportantroleinCa2+homeostasiswasthe

endoplas-micreticulum(ER)[2].ThisorganellebehavesasadynamicCa2+

∗Tel.:+34983423085;fax:+34983423588.

E-mailaddress:jalvarez@ibgm.uva.es

store.ItaccumulatesCa2+initslumenthroughtheSERCApumpsup

tonearmillimolarlevels[3],andisabletoinducearapidrelease of Ca2+ tothecytosolviaseveralspecificCa2+ channelspresent

initsmembrane(InsP3andryanodinereceptors,mainly).In

addi-tion,boththeERandthesarcoplasmicreticulumofmusclecells containCa2+-bindingproteinswithhigh-capacityandlow-affinity

thatmakethetotalcalciumcontentoftheERtobeabout10-fold largerthanthefree[Ca2+]

ER.Themoreabundant,calreticulininthe

ERandcalsequestrinintheSR,haveCa2+-affinitiesof1–4mM[2],

closetothefree[Ca2+]

ER,thusfacilitatingfastbindingandrelease

ofCa2+followingthechangesinfree[Ca2+] ER.

AnotherorganellewithanimportantroleincellCa2+

homeo-stasisismitochondria,theorganelleresponsibleofaerobicenergy production in the cell. The ability of mitochondria to take up largeamountsofCa2+wasknownsincethesixties.However,the

low Ca2+-affinity of themitochondrial Ca2+uniporter(K M above

10␮M,100-foldhigherthantherestingcytosolic[Ca2+],100nM,

and10-foldhigherthantheusualpeakcytosolic[Ca2+]found

dur-ingcellstimulation,about1␮M)ledtomostresearchersinthe 1970sand1980stoexcludeasignificantroleinCa2+

homeosta-sisforthisorganelle,atleastunderphysiologicalconditions.Then, inthebeginningofthe1990s,recombinantaequorintargetedto themitochondriashowedthatmitochondrial [Ca2+] wasableto

undergorapidchangesduringcellactivation[4].Thatwasthe ori-ginofaseriesofworksbyseveralresearchgroupsdemonstrating thatmitochondriawereveryactiveplayersinthecontrolofthe globalcellCa2+homeostasis.Inparticular,becauseofthelow-Ca2+

-affinityoftheirCa2+uptakemechanism,mitochondriaareverywell

0143-4160/$–seefrontmatter© 2011 Elsevier Ltd. All rights reserved.

(3)

332 J.Álvarez/CellCalcium51 (2012) 331–337

adaptedtotakeupCa2+fromlocalhigh-Ca2+microdomains,suchas

thoseformedaftertheactivationofplasmamembraneor endoplas-micreticulumCa2+channels.Mitochondriacanthereforemodulate

importantcellularfunctionssuchasneurotransmittersecretionby actingaslocalCa2+sinks[5].

Thesubjectofthisreview,thesecretorygranules,constitutes oneofthelessknowncompartmentsintermsofCa2+dynamics.

Itiswidelyknownthattheincreaseinintracellular[Ca2+]levels

triggersexocytosisofapoolofdockedsecretoryvesiclesin neu-ronalandneuroendocrinecells.Thesevesiclesareattachedtothe plasmamembraneandarealsoveryclosetoportionsofERand mitochondria.Thus,itisgenerallyassumedthattheCa2+required

forexocytosismayenterfromtheextracellularmediumthrough severalkindsofplasmamembraneCa2+channels[6]orbereleased

fromtheendoplasmicreticulumthrougheitherinositol trisphos-phate(InsP3)orryanodinereceptors[7].Nearbymitochondriamay

alsocontributetomodulatethesizeofthelocal[Ca2+]microdomain

responsibleforvesiclefusionandsecretion.However,itishardly mentionedthatthemainCa2+-storeinsomeexcitablecellsresides

inthesecretoryvesicles. In chromaffincells, secretorygranules containabout60%ofthetotalcellularcalcium[8],andthetotal calciumconcentrationinsidethegranuleshasbeenestimatedtobe around40mM[9],muchhigherthanthatintheER(about5–10mM, see[2]).Ofcourse,anattractivepossibilitywouldbethat intra-granularcalciumcouldcontributetoitsownsecretionbybeing releasedthroughCa2+channelsplacedinthegranulemembrane.

Inthatway,Ca2+wouldbereleasedpreciselyintherightplaceto

triggersecretion.Whatisthenthereasonforthisapparent over-sight?Aswewilldiscussinthisreview,themainreasonforthat isthatthereisstilllittleandsometimescontradictoryinformation onthedynamicsofCa2+inthegranules.Thus,themainaspectsof

Ca2+homeostasisinthegranules,thatis,thefree[Ca2+]

SGandthe

mechanismsforCa2+accumulationandrelease,arestill

controver-sial.

2. Theproblemofthefreeandtotalcalciumconcentration inthesecretorygranules

Studiesinthe1980sshowedthatthetotalcalcium concentra-tioninthesecretorygranulesis40–80nmol/mgofprotein[10,11], whichconsideringaprotein/waterrelationshipinthegranulesof about0.5mg/␮l[12],impliesthatthetotalcalciumconcentration inthegranulesis20–40mM.WinklerandWesthead[9]calculated atotalof90,000Ca2+ionsforavesiclewith270nminternal

diame-ter,whichmeansaconcentrationof15mM.Studiesoftotalcalcium madebyelectronenergylossimagingspectroscopyinPC12cells showalsoclearlythatdensegranuleshaveahighcalciumcontent (>10mM),withasignalcomparabletothatobtainedintheGolgi complexandsomeregionsoftheER[13].Accordingly,inPC12cells, theacidiccalciumpoolaccountedfor170␮mol/lcellwater,which correspondstoaninternaltotalconcentrationofabout30mM[14]. Thishighcalciumcontentisnotexclusiveofchromaffingranules butinsteaditisalsofoundatsimilarorevenhighervaluesinmost typesofsecretorygranules,e.g.zymogengranulesofpancreatic acinarcells[15],smallsynapticvesiclesoftheneuromuscular junc-tion[13],insulin granules[16] andmany others(see [17]for a review).

Therefore,secretorygranulesappeartobetheorganelleswith thehighercalciumcontentofthecell.Otherorganelleswithhigh calciumcontentaretheendoplasmicreticulumandGolgi appa-ratus.Electronmicroscopytechniqueshaveshownthatthetotal calciumcontentoftheERfromdifferentcelltypesisintherangeof 5–50mM,withthehighestvaluesintheterminalcisternaeofthe sarcoplasmicreticulumandmeanvaluesof5–10mM[2,18],that is,5–10-foldlowerthaninthesecretorygranules.Thefree[Ca2+]

intheERhasbeenalsomeasuredwithlow-Ca2+-affinityaequorin

andisinthe500–800␮Mrange[7],sothattheCa2+-bound/Ca2+

-freerelationshipintheERisabout10.Inaddition,thetotalcalcium distributionintheERisheterogeneous,withstronglypositive cis-ternae(includingthenuclearenvelope)lyingintheproximityof orevenindirectcontinuitywithother,apparentlynegative cister-nae[13].Thisheterogeneitymustsurelyreflectthedistributionof theCa2+-bindingproteinsinthelumenoftheER,asmostofthe

calciumcontentoftheERisboundwithlowaffinity(Kd=1–4mM)

toseveralCa2+-bindingproteins,mainlycalreticulinintheERand

calsequestrinintheSR[2,18].TheKdforCa2+bindingofthese

pro-teinsis thereforeclosetothefree[Ca2+]in theER,assuring an

efficientbinding.

Manystudieshavetriedtoestimatethefree[Ca2+]inthe

secre-torygranules.BulendaandGratzl[10]andHaighetal.[8],using null-pointtitrationtechniques,foundvaluesof24␮Mand5.6␮M, respectively, in isolated acidic chromaffin vesicles. In mast cell granules, studieswithfluorescent dyes showeda resting intra-luminalfree [Ca2+]of 25M[19].Inthe-celllineMIN6,data

obtainedwithtargetedaequorinindicatedafree[Ca2+]inthe

vesi-clesaround 50M[20].These values contrastwiththe1.4M [Ca2+]valueobtainedbyMahapatraetal.[21]inPC12chromaffin

granules,usingalsotargetedaequorin.Thediscrepancymay prob-ablybeduetothehigherCa2+-affinityoftheaequorintypeused

inthelaststudy.Becauseaequorinisconsumedfasterinhigh-Ca2+

environments,high-Ca2+-affinityaequorinisrapidlyconsumedin

thoseregionsandfinallytendstoreflectonlythebehaviorofminor compartmentswithlow[Ca2+][22].Usinganaequorinwithlower

Ca2+-affinityandcorrectingfortheeffectofacidicpHonaequorin

luminescence,wehavereportedfree[Ca2+]valuesof50–100M

inchromaffingranules[23]and20–40␮MinPC12andINS1cells

[24].Weshouldnotealsothatthesmallsizeofsomeofthe vesi-clesposessomerestrictionstothepossiblevaluesoffreegranular [Ca2+].Letusjustmentionthatforasmallsynapticvesicle,with

adiameterof50nm,25␮M[Ca2+]wouldbeobtainedwithonly1

Ca2+ion,andevenforalargedensecorevesicleof200nm

diame-ter,just2–3Ca2+ionspervesiclewouldrepresent1M[Ca2+](that

wouldgivefiguresof100–300freeCa2+ionspervesicle).

Inconclusion,thefree[Ca2+]inseveraltypesofsecretory

gran-ulesappearstorangebetween20and100␮M.Thesevaluesare significantlylower,nearlybyoneorderofmagnitude,thanthefree [Ca2+]intheendoplasmicreticulum,whichisabout500M[3,25].

Giventhatthetotalcalciumcontentislargerinthevesiclesthan intheERalsobynearlyoneorderofmagnitudeintermsof con-centration,thismeansthattheCa2+bound/Ca2+freerelationship

ismuchhigher(almosttwoordersofmagnitude)inthevesicles thanintheER,fromvaluesof10–20intheERtonearly1000inthe vesicles.ThequestiontheniswhereallthoseCa2+-bindingsites

are.Itisgenerallyassumedthatthelargecalciumstoring capac-ityofthesecretorygranulesismainlyduetothepresenceofhigh concentrations(about2mM)oftheproteinschromograninAand Bandsecretogranin[26].Inbovinechromaffincells,chromogranin Aconstitutesabout90%oftheseCa2+-bindingproteins(1.8mM),

anditisabletobind55molofCa2+permolofprotein,withaK dof

4mM[26].TheCa2+-bindingcapacityoftheseproteinsistherefore

verylargeandcouldstoreupto100mMtotalcalcium.However, theaffinityistoolowifweconsiderthatthefree[Ca2+]

SGremains

below100␮M.Infact,evenconsideringafreegranular[Ca2+]of

100␮M,bindingtoaproteinwithaKdof4mMwouldhardlyfill

2.5%oftheavailablebindingsites.Inourcase,thisbindingwould explain2.5mMofthestoredcalcium,thatis,lessthan10%ofthe calciumpresentinthegranules.

HowcanthenweexplainthelargeCa2+-storingcapacityofthe

granules?There areseveralalternatives: (i)theCa2+ affinity of

theseCa2+-bindingproteinscouldbedifferentintheconditionsof

(4)

and 125–300mM ATP; (ii)early studiesdescribed a significant numberofhigheraffinityCa2+-bindingsitesinvesiclematrix

pro-teins,thatwouldbeabletobindupto180nmolCa2+/mgprotein

withaffinitiesinthe100–300␮MrangedependingonthepHand ionicconditions[27,28];and(iii)partofthecalciumcouldalsobe boundtoothervesiclecomponents,suchasnucleotidesorlipids. Regardingthenucleotides,theyarepresentathighconcentrations andcanbindCa2+withaK

dinthe100–300␮Mrangedepending

onthepHandionicconditions[27].However,catecholaminesand ATPhavebeenshowntointeractattheconcentrationsfoundin thegranulesforminghighlynon-idealsolutionsthatconsiderably reduceosmoticpressure[29].Giventhatthisinteractiondoesnot requirecalcium,andthatmostofvesicleATPandcatecholamines appeartobeinvolvedintheseinteractions,probablyonlyasmall partofthetotalATPisavailabletobindCa2+inthevesicles.

Afinalpointregardstheavailabilityofthestoredcalciumfor exchangefromthebindingsites.IntheERandSR,theCa2+bound

tocalreticulinorcalsequestrinisinfastequilibriumwiththefree Ca2+,anditisthereforereadilyavailableforreleasefromthe

bind-ingsiteswhentheluminalfree[Ca2+]isreduced.Inthatway,when

theCa2+-channelsintheERorSR(e.g.,InsP

3orryanodine

recep-tors)areactivated,allthestoredCa2+cancontributetotherelease

intothecytosol.Inthecaseofthesecretorygranules,somereports suggestthatatleastpartofthestoredcalciumisrelatively immo-bileorexchangesveryslowlywiththefreeCa2+pool.Clementeand

Meldolesi[15]foundthatzymogengranuleshaveaveryslowrate of45Caaccumulationandreleasecomparedwithotherorganelles,

suggestingthatthestoredCa2+couldplaymainlyastructuralrole

inthe architectureoftheorganelle. Similarly, 45Ca flux

experi-mentsperformedinPC12cellsshowedthatthegranuleCa2+pool

wasextraordinarilystableinperiodsofhoursinEGTA-containing medium,andveryslowtolabel[14],concludingthatthestored Ca2+wouldonlyservetokeepgranulecomponentstogetherand

tobedischargedtotheextracellularspacebyexocytosis.The ques-tionthenreliesinthenatureandthephysicalstateofthecontents ofthegranule.Evidencefromseveraltechniquesindicatesthatno importantfractionofthesmallmoleculesofthegranuleisinan immobilizedorprecipitatedform(see[9]forareview).However, complexesbetweenATPand catecholaminesandperhaps other componentsmustnecessarilyexisttoexplaintheosmotic prop-ertiesofthegranule[29].Inaddition,chromograninshavebeen showntoaggregateorformtetramersinaCa2+-dependentway

[28,30,31].Thesecomplexescouldperhapstrapinastableform

someofthestoredcalcium.

Asaconclusion,Ca2+ionsinthesecretorygranulescanbein

threedifferentstates:(i)astable,slowlyexchangingpoolwhich maybeimportantforthestructureofthegranularcomponents;(ii) apoolboundtochromograninsorothergranularcomponentswith anaffinityclosetothefree[Ca2+]

SG,readilyavailableforexchange

and whosesize maydependon[Ca2+]

c variationsor other

cel-lularconditions;and (iii)thefreeCa2+pool.Therelativesizeof

thesepoolsmaydependonthetypeofgranuleandthecellular conditions.

3. MechanismsofCa2+accumulationinthesecretory granules

Ifthefree[Ca2+]

SGisinthe20–100␮Mrange,thereshouldbe

inthemembraneofthesecretorygranulesactivemechanismsto accumulatethisioninthematrix,giventhatitsconcentrationin thecytosolisnearly1000-foldlower.Severalcandidateshavebeen proposedforthisrole(seethecartooninFig.1).

Krieger-BrauerandGratzl[32]foundevidenceforthepresence ofa2Na+/1Ca2+exchangeinthemembraneofthesecretory

gran-ulesofbovinechromaffincells.ThesystemwaspH-independent

andhadhighaffinityforCa2+(0.28M[33]),sothatitwasstill

partiallyactiveat100nMextragranular[Ca2+],althoughtherate

increasedathigher concentrations.HaighandPhillips [34] pro-posedthatNa+/Ca2+exchangecouldbecoupledtotheH+pumpvia

aNa+/H+exchange,buttheratesofuptaketheyfoundinchromaffin

granuleghostswereveryslow.Thecapacityofthissystemto accu-mulateCa2+inthevesiclesdependsonthemagnitudeoftheNa+

gradient.Theintragranular[Na+]wasestimatedbyKriegler-Brauer

andGratzl[32,33]about50mM.Haighetal.[8]foundalsothatthe sumoftheintragranular[Na+]and[K+]was50–60mM,theactual

amountofeachonedependingoftheisolationprocedure.Inany case,thismeansthatthe[Na+]gradientbetweenthegranulematrix

andthecytosolisnolargerthan3-fold.Thus,withastoichiometry of2Na+/1Ca2+,thissystemwouldnotbeabletoaccumulateCa2+

morethan10-foldinsidethegranules,muchlessthantheexisting gradient.Infact,witha[Ca2+]gradientof1000-fold,thissystem

wouldmainlyworkreleasingCa2+fromthevesiclesinexchange

for Na+. It has been actually proposedthat Na+/Ca2+ exchange

maymediate theincreasein intravesicular[Na+] thatcoincides

withthe onset ofsecretion inneurohypophysial nerve endings

[35].

ThepresenceofaCa2+/H+antiporthasbeenreportedin

synap-ticvesiclesofbraincortex[36].CombinedwiththeH+-ATPaseand

assumingastoichiometryof1Ca2+/2H+,thissystemwouldbeable

toaccumulateCa2+nearly1000-foldintothevesicles.However,that

transportsystemshowedverylowCa2+affinityforCa2+entry,

start-ingtobeactiveatcytosolic[Ca2+]around100M.Thus,underthese

conditionsitcouldnotbeinvolvedinphysiologicalCa2+uptakeinto

thevesicles,althoughitmayperhapsmediateCa2+-releasefromthe

vesiclesfollowingchangesinthe[H+]gradient.Infact,the

disrup-tionofthevesicularpHgradientinducesasignificantleakofCa2+

fromthevesicles[37,38].

Thelastpossibilityisa directATP-dependentmechanism for Ca2+accumulation,thatis,aCa2+-ATPase.Thesarco-endoplasmic

reticulumCa2+-ATPase(SERCA)inhibitor2,5-diterbutyl

benzohy-droquinone (BHQ) hasbeen shown to inhibit Ca2+ uptake into

isolated synapticvesicles [39].In platelets, theacidicCa2+ pool

wascontrolledbothbyaCa2+/H+exchangeandbyaBHQ-sensitive

SERCA3[40,41].Similarly,loadingwithCa2+ofdense-coreinsulin

storagegranulesofmousepancreatic␤-cellswassensitivetoboth SERCAinhibitorsBHQandthapsigargin[42].Morerecently,using aequorintomonitorintragranular[Ca2+]wehavealsodescribed

bothinchromaffincellsandinthecelllinesPC12andINS1[23,24], that Ca2+ uptakeby thesecretory granuleswasATP-dependent

and fullysensitivetothapsigarginand BHQ(seeFig.1).Onthe otherhand,in the␤-celllineMIN6,Ca2+uptake wasshownto

beATP-dependentbutinsensitivetothapsigargin[20],suggesting theinvolvementofadifferenttypeofCa2+-ATPase,thesecretory

pathwayCa2+-ATPaseorATP2C1,whichisalsopresentintheGolgi

apparatustogetherwiththeSERCA[43].

Recentdataobtainedfromproteomicstudiesofthesecretory granulesinseveralcelltypesprovidenewimportantinformation onthispoint,thoughdonotclarifyit.Arecentproteomicstudyin thesecretorygranulesofchromaffincellshasidentified371 dis-tinctsolubleproteinsand384distinctmembraneproteins[44]. However,amongthem,theonlymembraneproteinableto accu-mulatecalciuminthevesicles wasasodium/potassium/calcium exchanger.Previousstudiesinpancreaticzymogengranules[45]

(371 proteinsidentified)andcorticotropesdense-core secretory granules[46](150proteinsidentified)hadnotidentifiedany pro-tein relatedwithCa2+accumulation.Instead,aproteomicstudy

thatidentified270proteinsinsecretoryvesiclesfrominsulinoma NIT-1cellsshowedthepresenceofSERCA2inthemembraneofthe vesicles[47],but anotherstudyintheinsulin-secretingcellline INS-1Ethatidentified150vesicularproteinsfailedtofindanyCa2+

(5)

334 J.Álvarez/CellCalcium51 (2012) 331–337

Fig.1.MechanismsofCa2+accumulationinthegranules.Tracescorrespondto[Ca2+]

SGmeasurementsmadewithchromaffincellsexpressingaequorintargetedtothe

secretorygranules(modifiedfromRef.[23]).PanelAshowstheincreasein[Ca2+]

SGthatoccursuponreadditionofCa2+1mMtotheextracellularmediuminCa2+-depleted

cells,anditsinhibitionbythapsigargin.PanelsBandCshowthattheSERCAinhibitors2,5-diterbutylbenzohydroquinone(BHQ)andcyclopiazonicacid(CPA)bothreversibly inhibitCa2+uptakebythegranuleswhenaddedafterrefillingofthegranuleswithCa2+(atthepointmarkedbytheredrectangleinpanelA).Thecartoonresumesthe

possiblemechanismsforCa2+accumulationinthegranules:Ca2+pumps,eitherSERCAorsecretorypathwayCa2+-ATPase(SPCA),Na+/Ca2+exchangecoupledwithNa+/H+

exchange,andCa2+/H+exchange.TheexchangerswouldbeenergizedbytheH+gradientcreatedbytheH+-ATPase.Ca2+insidethegranulesisrepresentedinthreepossible

forms,stronglybound(red),boundandreadilyreleasable(blue)andfree(green).

4. MechanismsofCa2+releasefromthesecretorygranules

If theCa2+ stored in thegranules hastobe releasedduring

cellstimulationtocooperatewithCa2+comingfromothersources

intriggering vesiclefusionand secretion, thegranules needto

haveCa2+transportsystemsthatareabletoopenoractivate

dur-ingcell stimulation(seethecartoonin Fig.2).Thefirstsystem tobeproposedforthatrole inchromaffincellswastheinositol 1,4,5-trisphosphatereceptor(InsP3R).Thepresenceof InsP3Rin

secretory granules hasbeena highly conflictingpoint over the

Fig.2.MechanismsofCa2+releasefromthegranules.Tracescorrespondto[Ca2+]

SGmeasurementsmadewithchromaffincellsexpressingaequorintargetedtothesecretory

granules(modifiedfromRef.[23]).PanelsAandBshowtheCa2+releasefromthegranulesinducedbyhistamine(viaInsP

3production)andbycaffeine(RyRactivator).Panel

Cshowstheeffectofthenaturalagonistacethylcholine,andpanelDshowstheCa2+releaseinduceddirectlybyInsP

3inpermeabilizedcells.Thecartoonresumesthepossible

mechanismsforCa2+releasefromthegranules:threeCa2+channels(InsP

3,ryanodineandNAADPreceptors),and2exchangers,Na+/Ca2+exchangerandH+/Ca2+exchanger,

(6)

last20years.In1990,YooandAlbanesi[49]reportedthat inosi-tol1,4,5-trisphosphate(InsP3)releasedCa2+fromchromaffincells

secretoryvesicles.Immunocytochemicallocalization ofallthree typesofInsP3Rinseriallysectionedbovinechromaffincellsshowed

thatthesecretorygranulescontainedabout60%oftheInsP3Rinthe

cell[50],andadditionalevidenceforthepresenceofInsP3Rinthe

granuleswasthefindingthatbothchromograninAandBinteract withInsP3Randmodulateitsactivity[26,51–54].Morerecently,

usingtargetedaequorintomeasure[Ca2+]inthesecretorygranules

ofchromaffincellsandtheneurosecretorycelllinesPC12andINS1

[23,24],wehaveshownthatInsP3andInsP3-releasingagonistscan

releaseCa2+fromthegranularcompartment(seeFig.2).

InsP3Rhavebeenalsodetectedinothertypesofsecretory

gran-ules. Isolated zymogen granules werefound to release Ca2+ in

thepresenceofInsP3 [55],althoughthesameauthorshavealso

reportedthat inintact cellsmostof theCa2+ releasedbyInsP 3

comesfrom theER [56]. In mast cell granules [19] and mucin granulesofgobletcells[57],InsP3inducedperiodicoscillationsof

luminal[Ca2+]bycouplingCa2+releasewiththeactivityofaCa2+

-dependentK+channelinthegranules.Finally,InsP

3Rhavebeen

alsolocalizedinthesecretorygranulesofinsulin-secreting␤-cells andsomatostatin-secretingcells[58–60],andalsoindense-core vesiclesofastrocytes[61].

However,thereisalsoalargebodyofevidenceagainstthe pres-enceofInsP3Rinsecretorygranules.Inchromaffincells,Endoetal.

[62]foundthatInsP3R-2waspresentintheERbutnotinthe

secre-torygranules.Inratinsulinomacells,InsP3wasfoundtorelease

Ca2+fromthemicrosomalfractionbutnotfromthesecretory

gran-ules[63].Ravazzolaetal.[64]foundthatantibodiesagainstInsP3R

cross-reactedwithinsulin,andthatcouldbeasourceforartifactsin immunostaining(seealso[65]).Measuringtheextragranular[Ca2+]

withaphogrin–aequorinchimera,Poulietal.[66]foundno dif-ferenceamongtheCa2+transientsinthegranulemembraneand

inthebulkcytosolafterinsulin-secretingMIN6or phaeochromo-cytomaPC12cellsstimulation,indicatingthatnosignificantlocal Ca2+releasetakesplaceinthesecells.Similarly,usingatargeted

aequorintomonitorgranule[Ca2+],noeffectofInsP

3wasobserved

inMIN6cells[20].Regardingzymogengranules,InsP3Rwerenot

foundusinghighlypuregranulepreparations[67]andtheabsence ofzymogengranulesdidnotmodifythecytosolicCa2+transientsin

ratparotidacinarcells[68].Finally,inplatelets,InsP3Rarepresent

inthedensetubularsystem(theequivalentoftheER)butnotin theacidicgranules[41].

Thereisalsoevidenceforthepresenceofryanodinereceptors insecretorygranules.TheryanodinereceptoractivatorcyclicADP ribose(cADPR)hasbeenreportedtoreleaseCa2+fromzymogen

granules[55,69].BothcADPRandcaffeinereleasedalsoCa2+from

thesecretory granulesof insulin-secretingMIN6cells [20],and caffeine,butnotcADPR,releasedCa2+fromsecretorygranulesin

chromaffincells [23].ThelackofeffectofcADPRmayreflectan insensitivitytothisagonistoftheryanodinereceptorsinthesecells, ascADPRwasalsounabletoreleaseCa2+fromtheERinchromaffin

cells[7].Thenovelagonistnicotinicacidadenine dinucleotidephos-phate(NAADP)wasalsoeffectivetorelease Ca2+fromzymogen

granules[69],plateletacidic stores[41],insulin-secretingMIN6 cells[70]andtheacidicCa2+storesofPC12cells[71].Theidentityof

theNAADPreceptorisstillunknown.Itwasinitiallyassociatedwith theryanodinereceptor,althoughotheralternativeshaverecently appeared(twoporechannels,TPCsorTPCNs,see[72]).

Whatdoproteomicstudiestellusonthispoint?Noneofthe proteomicstudiesmadeuptodatehasdetectedthepresenceof InsP3Rinthesecretorygranulesofchromaffin[44],insulin[47,48],

zymogen[45] orcorticotrope granules[46].Instead,thelargest study[44]foundinchromaffingranulesthepresenceofryanodine receptorstogetherwithseveraltypesofCa2+channels

(voltage-dependentand transient receptor potential). However, noneof

theseproteinsweredetectedintheotherstudies.Ofcourse,if gran-ular[Ca2+]isnearly1000-foldhigherthaninthecytosol,atleast

somemechanismtoaccumulateCa2+inthegranulesmustexist.

Thismeansthatthesensitivityofthesestudiesmaynotbestill enoughtodetectproteinsatverylowconcentrations,andfurther improvement ofthistechnique mayprovidein thefuture more usefulinformation.

5. Conclusion

Inneuroendocrinecells,thesecretorygranulesconstituteone of thelargestCa2+ storesand its totalcalcium concentrationis

evenhigherthanthatintheER.GiventhatCa2+isthekeysignal

thattriggerssecretionofgranulecontents,thepossiblefunctional roleofthecalciumstoredinthegranuleshasattracted consider-ableattentionformorethanthirtyyears.Theavailableevidence suggestsmoreoverthatintragranularCa2+isimportantfor

secre-tion[37,73–75].However,inspiteoftheeffortsofmanyresearch

groups,mostofthekeyquestionsrelatedwithgranuleCa2+

homeo-stasis,e.g.,thefreegranular[Ca2+],thephysicalstateofthestored

Ca2+orthemechanismsforCa2+accumulationandreleasefromthe

granules,remainobscure.Furtherworkwillbenecessarytoclarify alltheseuncertainties.Besidesthebiochemicalandphysiological approaches,thenewproteomictechniqueslookpromising,butthe dataobtaineduptodateonproteinsrelatedtoCa2+dynamicsis

stillscarceandtoovariableamongsecretorygranulesofdifferent celltypes.

Acknowledgments

ThisworkwassupportedbygrantsfromMinisterio de Edu-caciónyCiencia(BFU2008-01871)andfromJuntadeCastillayLeón (GR105).

References

[1]M.J.Berridge,P.Lipp,M.D.Bootman,Theversatilityanduniversalityofcalcium signalling,Nat.Rev.1(2000)11–21.

[2]T.Pozzan,R.Rizzuto,P.Volpe,J.Meldolesi,Molecularandcellularphysiology ofintracellularcalciumstores,Physiol.Rev.74(1994)595–636.

[3]M.Montero,M.J.Barrero,J.Alvarez,[Ca2+]microdomainscontrol

agonist-inducedCa2+releaseinintactHeLacells,FASEBJ.11(1997)881–885.

[4]R.Rizzuto,A.W.Simpson,M.Brini,T.Pozzan,Rapidchangesofmitochondrial Ca2+revealedbyspecificallytargetedrecombinantaequorin,Nature358(1992)

325–327.

[5]M.Montero,M.T.Alonso,E.Carnicero,I.Cuchillo-Iba ˜nez,A.Albillos,A.G.Garcia, J.Garcia-Sancho,J.Alvarez,Chromaffin-cellstimulationtriggersfastmillimolar mitochondrialCa2+transientsthatmodulatesecretion,Nat.CellBiol.2(2000)

57–61.

[6]A.G.García,A.M.GarcíadeDiego,L.Gandía,R.Borges,J.García-Sancho,Calcium signalingandexocytosisinadrenalchromaffincells,Physiol.Rev.86(2006) 1093–1131.

[7]M.T.Alonso,M.J.Barrero,P.Michelena,E.Carnicero,I.Cuchillo,A.G.García,J. García-Sancho,M.Montero,J.Alvarez,Ca2+-inducedCa2+releaseinchromaffin

cellsseenfrominsidetheERwithtargetedaequorin,J.CellBiol.144(1999) 241–254.

[8]J.R.Haigh,R.Parris,J.H.Phillips,Freeconcentrationsofsodium,potassiumand calciuminchromaffingranules,Biochem.J.259(1989)485–491.

[9]H.Winkler,E.Westhead,Themolecularorganizationofadrenalchromaffin granules,Neuroscience5(1980)1803–1823.

[10]D.Bulenda,M.Gratzl,MatrixfreeCa2+inisolatedchromaffinvesicles,

Biochem-istry24(1985)7760–7765.

[11]H.Krieger-Brauer,M.Gratzl,InfluxofCa2+intoisolatedsecretoryvesicles

fromadrenalmedulla.InfluenceofexternalK+andNa+,FEBSLett.133(1981)

244–246.

[12] R.G.Johnson,A.Scarpa,Ionpermeabilityofisolatedchromaffingranules,J.Gen. Physiol.68(1976)601–631.

[13]R.Pezzati,M.Bossi,P.Podini,J.Meldolesi,F.Grohovaz,High-resolutioncalcium mappingofthe endoplasmicreticulum-Golgi-exocytic membranesystem. Electronenergylossimaginganalysisofquickfrozen-freezedriedPC12cells, Mol.Biol.Cell8(1997)1501–1512.

[14]C.Fasolato,M.Zottini,E.Clementi,D.Zacchetti,J.Meldolesi,T.Pozzan, Intra-cellularCa2+poolsinPC12cells.Threeintracellularpoolsaredistinguishedby

theirturnoverandmechanismsofCa2+accumulation,storage,andrelease,J.

(7)

336 J.Álvarez/CellCalcium51 (2012) 331–337

[15]F.Clemente,J.Meldolesi,Calciumandpancreaticsecretion-dynamicsof sub-cellularcalciumpoolsinrestingandstimulatedacinarcells,Br.J.Pharmacol. 55(1975)369–379.

[16]J.C.Hutton,E.J.Penn,M.Peshavaria,Low-molecular-weightconstituentsof isolatedinsulin-secretorygranules.Bivalentcations,adeninenucleotidesand inorganicphosphate,Biochem.J.210(1983)297–305.

[17]G.Nicaise,K.Maggio,S.Thirion,M.Horoyan,E.Keicher,Thecalciumloadingof secretorygranules.Apossiblekeyeventinstimulus-secretioncoupling,Biol. Cell75(1992)89–99.

[18] J.Meldolesi,T.Pozzan,TheendoplasmicreticulumCa2+store:aviewfromthe

lumen,TrendsBiochem.Sci.23(1998)10–14.

[19] I.Quesada,W.C.Chin,J.Steed,P.Campos-Bedolla,P.Verdugo,Mousemastcell secretorygranulescanfunctionasintracellularionicoscillators,Biophys.J.80 (2001)2133–2139.

[20]K.J.Mitchell,P.Pinton,A.Varadi,C.Tacchetti,E.K.Ainscow,T.Pozzan,R.Rizzuto, G.A.Rutter,DensecoresecretoryvesiclesrevealedasadynamicCa2+storein

neuroendocrinecellswithavesicle-associatedmembraneproteinaequorin chimaera,J.CellBiol.155(2001)41–51.

[21]N.R.Mahapatra,M.Mahata,P.P.Hazra,P.M.McDonough,D.T.O’Connor,S.K. Mahata,Adynamicpoolofcalciumincatecholaminestoragevesicles: explo-rationinlivingcellsbyanovelvesicle-targetedchromograninA/aequorin chimericphotoprotein,J.Biol.Chem.279(2004)51107–51121.

[22]M.Montero,J.Alvarez,W.J.Scheenen,R.Rizzuto,J.Meldolesi,T.Pozzan,Ca2+

homeostasisintheendoplasmicreticulum:coexistenceofhighandlow[Ca2+]

subcompartmentsinintactHeLacells,J.CellBiol.139(1997)601–611. [23]J.SantoDomingo,L.Vay,M.Camacho,E.Hernández-SanMiguel,R.I.Fonteriz,

C.D.Lobatón,M.Montero,A.Moreno,J.Alvarez,Calciumdynamicsinbovine adrenalmedullachromaffincellsecretorygranules,Eur.J.Neurosci.28(2008) 1265–1274.

[24]J.SantoDomingo,R.I.Fonteriz,C.D.Lobatón,M.Montero,A.Moreno,J.Alvarez, Ca2+dynamicsinthesecretoryvesiclesofneurosecretoryPC12andINS1cells,

Cell.Mol.Neurobiol.30(2010)1267–1274.

[25]J.Alvarez,M.Montero,Measuring[Ca2+]intheendoplasmicreticulumwith

aequorin,CellCalcium32(2002)251–260.

[26]S.H. Yoo, Secretory granules in inositol 1,4,5-trisphosphate-dependent Ca2+signalinginthecytoplasmofneuroendocrinecells,FASEBJ. 24(2010)

653–664.

[27]F.U.Reiffen,M.Gratzl,Ca2+bindingtochromaffinvesiclematrixproteins:effect

ofpH,Mg2+,andionicstrength,Biochemistry25(1986)4402–4406.

[28] J.S.Videen,M.S.Mezger,Y.M.Chang,D.T.O’Connor,Calciumandcatecholamine interactionswithadrenalchromogranins.Comparisonofdrivingforcesin bind-ingandaggregation,J.Biol.Chem.267(1992)3066–3073.

[29]W.N.Kopell,E.W.Westhead,OsmoticpressuresofsolutionsofATPand cate-cholaminesrelatingtostorageinchromaffingranules,J.Biol.Chem.267(1982) 5707–5710.

[30]S.H. Yoo, M.S. Lewis, Effects of pH and Ca2+ on monomer–dimer and

monomer–tetramerequilibriaofchromograninA,J.Biol.Chem.267(1992) 11236–11241.

[31] S.H.Yoo,M.S.Lewis,EffectsofpHandCa2+onheterodimerandheterotetramer

formationbychromograninAandchromograninB,J.Biol.Chem.271(1996) 17041–17046.

[32] H.Krieger-Brauer,M.Gratzl,UptakeofCa2+byisolatedsecretoryvesiclesfrom

adrenalmedulla,Biochim.Biophys.Acta691(1982)61–70.

[33]H.Krieger-Brauer,M.Gratzl,EffectsofmonovalentanddivalentcationsonCa2+

fluxesacrosschromaffinsecretorymembranevesicles,J.Neurochem.41(1983) 1269–1276.

[34]J.R.Haigh,J.H.Phillips,Indirectcouplingofcalciumtransportinchromaffin granuleghoststotheprotonpump,Neuroreport4(1993)571–574. [35]S.Thirion,J.D.Troadec,N.B.Pivovarova,S.Pagnotta,S.B.Andrews,R.D.Leapman,

G.Nicaise,Stimulus-secretioncouplinginneurohypophysialnerveendings: a role for intravesicular sodium?Proc. Natl. Acad.Sci. U.S.A.96 (1999) 3206–3210.

[36]P.P.Goncalves,S.M.Meireles,P.Neves,M.G.Vale,DistinctionbetweenCa2+

pumpandCa2+/H+antiportactivitiesinsynapticvesiclesofsheepbraincortex,

Neurochem.Int.37(2000)387–396.

[37]C.L.Haynes,L.A.Buhler,R.M.Wightman,VesicularCa2+-inducedsecretion

pro-motedbyintracellularpH-gradientdisruption,Biophys.Chem.123(2006) 20–24.

[38]M.Camacho,J.D.Machado,J.Alvarez,R.Borges,Intravesicularcalciumrelease mediatesthemotionandexocytosisofsecretoryorganelles,J.Biol.Chem.283 (2008)22383–22389.

[39]P.Fossier,M.F.Diebler,J.P.Mothet,M.Israel,L.Tauc,G.Baux,Controlofthe calciumconcentrationinvolvedinacetylcholinereleaseanditsfacilitation:an additionalroleforsynapticvesicles?Neuroscience85(1998)85–91. [40]J.J.López,C.Camello-Almaraz,J.A.Pariente,G.Salido,J.A.Rosado,Ca2+

accu-mulationintoacidicorganellesmediatedbyCa2+-andvacuolarH+-ATPasesin

humanplatelets,Biochem.J.390(2005)243–252.

[41]J.A.Rosado,AcidicCa2+storesinplatelets,CellCalcium50(2011)168–174.

[42]J.G.Duman,L.Chen,A.E.Palmer,B.Hille,Contributionsofintracellular com-partmentstocalciumdynamics:implicatinganacidicstore,Traffic7(2006) 859–872.

[43]P.Pinton, T.Pozzan,R.Rizzuto,TheGolgiapparatusisan inositol 1,4,5-trisphosphate-sensitiveCa2+store,withfunctionalpropertiesdistinctfrom

thoseoftheendoplasmicreticulum,EMBOJ.17(1998)5298–5308. [44] J.L.Wegrzyn,S.J.Bark,L.Funkelstein,C.Mosier,A.Yap,P.Kazemi-Esfarjani,

A.R. LaSpada,C.Sigurdson,D.T. O’Connor,V.Hook,Proteomicsofdense

coresecretoryvesiclesrevealdistinctproteincategoriesforsecretionof neu-roeffectorsfor cell–cellcommunication,J. Proteome Res.9(2010) 5002– 5024.

[45]M.J.Rindler,C.F.Xu,I.Gumper,N.N.Smith,T.A.Neubert,Proteomic analy-sisofpancreaticzymogengranules:identificationofnewgranuleproteins,J. ProteomeRes.6(2007)2978–2992.

[46]D.J.Gauthier,J.A.Sobota,F.Ferraro,R.E.Mains,C.Lazure,Flow cytometry-assistedpurificationandproteomicanalysisofthecorticotropesdense-core secretorygranules,Proteomics8(2008)3848–3861.

[47] H.S.Lee,J.Jeong,K.-J.Lee,Characterizationofvesiclessecretedfrominsulinoma NIT-1cells,J.ProteomeRes.8(2009)2851–2862.

[48] Y.Brunner,Y.Coute,M.Iezzi,M.Foti,M.Fukuda,D.F.Hochstrasser,C.B. Woll-heim,J.-C.Sanchez,Proteomicsanalysisofinsulinsecretorygranules,Mol.Cell. Proteomics6(2007)1007–1017.

[49]S.H. Yoo, J.P. Albanesi, Inositol1,4,5-trisphosphate-triggered Ca2+ release

frombovineadrenalmedullarysecretoryvesicles,J.Biol.Chem.265(1990) 13446–13448.

[50] Y.H.Huh,J.A.Yoo,S.J.Bahk,S.H.Yoo,Distributionprofileofinositol 1,4,5-trisphosphatereceptorisoformsinadrenalchromaffincells,FEBSLett.579 (2005)2597–2603.

[51] S.H.Yoo,Y.S.Oh,M.K.Kang,Y.H.Huh,S.H.So,H.S.Park,H.Y.Park,Localization ofThreetypesoftheinositol1,4,5-trisphosphatereceptor/Ca2+channelinthe

secretorygranulesandcouplingwiththeCa2+storageproteinschromogranins

AandB,J.Biol.Chem.276(2001)45806–45812.

[52]E.C.Thrower,H.Y.Park,S.H.So,S.H.Yoo,B.E.Ehrlich,Activationoftheinositol 1,4,5-trisphosphatereceptorbythecalciumstorageproteinchromograninA, J.Biol.Chem.277(2002)15801–15806.

[53]S.H.Yoo,CouplingoftheIP3receptor/Ca2+channelwithCa2+storage

pro-teinschromograninsAandBinsecretorygranules,TrendsNeurosci.23(2000) 424–428.

[54]S.H.Yoo,Y.H.Huh,Y.S.Hur,Inositol1,4,5-trisphosphatereceptorinchromaffin secretorygranulesanditsrelationtochromogranins,Cell.Mol.Neurobiol.30 (2010)1155–1161.

[55]O.V.Gerasimenko,J.V.Gerasimenko,P.V.Belan,O.H.Petersen,Inositol trispho-sphateandcyclicADP-ribose-mediatedreleaseofCa2+fromsingleisolated

pancreaticzymogengranules,Cell84(1996)473–480.

[56]O.V.Gerasimenko,J.V.Gerasimenko,R.Rizzuto,M.Treiman,A.V.Tepikin,O.H. Petersen,Thedistributionoftheendoplasmicreticuluminlivingpancreatic acinarcells,CellCalcium32(2002)261–268.

[57] T.Nguyen,W.C.Chin,P.Verdugo,RoleofCa2+/K+ionexchangeinintracellular

storageandreleaseofCa2+,Nature395(1998)908–912.

[58]O.Blondel,M.M.Moody,A.M.Depaoli,A.H.Sharp,C.A.Ross,H.Swift,G.I.Bell, Localizationofinositoltrisphosphatereceptorsubtype3toinsulinand somato-statinsecretorygranulesandregulationofexpressioninisletsandinsulinoma cells,Proc.Natl.Acad.Sci.U.S.A.91(1994)7777–7781.

[59]O.Blondel,G.I.Bell,S.Seino,Inositol1,4,5-trisphosphatereceptors,secretory granulesandsecretioninendocrineandneuroendocrinecells,TrendsNeurosci. 18(1995)157–161.

[60] L.Xie,M.Zhang,W.Zhou,Z.Wu,J.Ding,L.Chen,T.Xu,ExtracellularATP stim-ulatesexocytosisvialocalizedCa2+releasefromacidicstoresinratpancreatic ␤-cells,Traffic7(2006)429–439.

[61] Y.S.Hur,K.D.Kim,S.H.Paek,S.H.Yoo,Evidencefortheexistenceofsecretory granule(dense-core vesicle)-based inositol 1,4,5-trisphosphate-dependent Ca2+signalingsysteminastrocytes,PLoSONE5(2010)1–13.

[62]Y.Endo,K.Harada,N.Fujishiro,H.Funahashi,S.Shioda,G.D.Prestwich,K. Mikoshiba,M.Inoue,Organellescontaininginositoltrisphosphatereceptor type2inadrenalmedullarycells,J.Physiol.Sci.56(2006)415–423. [63]M.Prentki,T.J. Biden,D. Janjic, R.F. Irvine,M.J. Berridge, C.B.Wollheim,

RapidmobilizationofCa2+fromratinsulinomamicrosomesby

inositol-1,4,5-trisphosphate,Nature309(1984)562–564.

[64]M.Ravazzola,P.A.Halban,L.Orci,Inositol1,4,5-trisphosphatereceptorsubtype 3inpancreaticisletcellsecretorygranulesrevisited,Proc.Natl.Acad.Sci.U.S.A. 93(1996)2745–2748.

[65] J.Meldolesi,T.Pozzan,IP3receptorsandsecretorygranules,TrendsNeurosci.

18(1995)340–341.

[66]A.E.Pouli,N.Karagenc,C. Wasmeier,J.C.Hutton,N.Bright,S.Arden,J.G. Schofield,G.A.Rutter,Aphogrin–aequorinchimaeratoimagefreeCa2+inthe

vicinityofsecretorygranules,Biochem.J.330(1998)1399–1404.

[67]D.I.Yule,S.A.Ernst,H.Ohnishi,R.J.H.Wojcikiewicz,Evidencethatzymogen granulesarenotaphysiologicallyrelevantcalciumpool.Definingthe distribu-tionofinositol1,4,5-trisphosphatereceptorsinpancreaticacinarcells,J.Biol. Chem.272(1997)9093–9098.

[68]A.Nezu,A.Tanimura,T.Morita,K.Irie,T.Yajima,Y.Tojyo,Evidencethat zymo-gengranulesdonotfunctionasanintracellularCa2+storeforthegeneration

oftheCa2+signalinratparotidacinarcells,Biochem.J.363(2002)59–66.

[69]J.V. Gerasimenko, M. Sherwood, A.V. Tepikin, O.H. Petersen, O.V. Gerasimenko, NAADP, cADPR and IP3all release

Ca2+fromtheendoplasmicreticulumandanacidicstoreinthesecretorygranule

area,J.CellSci.119(2006)226–238.

[70]K.J.Mitchell,F.A.Lai,G.A.Rutter,RyanodinereceptortypeIandnicotinicacid adeninedinucleotidephosphatereceptorsmediateCa2+releasefrom

insulin-containingvesiclesinlivingpancreaticbeta-cells(MIN6),J.Biol.Chem.278 (2003)11057–11064.

(8)

[72]P.J.Calcraft,M.Ruas,Z.Pan,X.Cheng,A.Arredouani,X.Hao,J.Tang,K.Rietdorf, L.Teboul,K.T.Chuang,P.Lin,R.Xiao,C.Wang,Y.Zhu,Y.Lin,C.N.Wyatt,J. Par-rington,J.Ma,A.M.Evans,A.Galione,M.X.Zhu,NAADPmobilizescalciumfrom acidicorganellesthroughtwo-porechannels,Nature459(2009)596–600. [73]W.J.Scheenen,C.B.Wollheim,T.Pozzan,C.Fasolato,Ca2+depletionfrom

gran-ulesinhibitsexocytosis.Astudywithinsulin-secretingcells,J.Biol.Chem.273 (1998)19002–19008.

[74]M.L.Mundorf,K.P.Troyer,S.E.Hochstetler,J.A.Near,R.M.Wightman, Vesic-ularCa2+participatesinthecatalysisofexocytosis,J.Biol.Chem.275(2000)

9136–9142.

Figure

Fig. 1. Mechanisms of Ca 2+ accumulation in the granules. Traces correspond to [Ca 2+ ]

Referencias

Documento similar

In the preparation of this report, the Venice Commission has relied on the comments of its rapporteurs; its recently adopted Report on Respect for Democracy, Human Rights and the Rule

Although some public journalism schools aim for greater social diversity in their student selection, as in the case of the Institute of Journalism of Bordeaux, it should be

In the “big picture” perspective of the recent years that we have described in Brazil, Spain, Portugal and Puerto Rico there are some similarities and important differences,

For instance, the best overall accuracy of bagging in Breast with 20% noise is achieved using a 10% sampling ratio: The test error goes from 4.1% when no noise is injected to 3.5%

In particular, different versions of the training set for the base learners can be used, as in bagging (bootstrap sampling of training data), class-switching (noise injection in

Keywords: Metal mining conflicts, political ecology, politics of scale, environmental justice movement, social multi-criteria evaluation, consultations, Latin

For instance, (i) in finite unified theories the universality predicts that the lightest supersymmetric particle is a charged particle, namely the superpartner of the τ -lepton,

Given the much higher efficiencies for solar H 2 -generation from water achieved at tandem PEC/PV devices ( > 10% solar-to-H 2 energy efficiency under simulated sunlight) compared