• No se han encontrado resultados

Determinación del rango de una matriz a partir de sus menores

N/A
N/A
Protected

Academic year: 2020

Share "Determinación del rango de una matriz a partir de sus menores"

Copied!
26
0
0

Texto completo

(1)

Unidad 3: DETERMINANTES.

1. Definición de Determinante para matrices cuadradas de orden 2 y

de orden 3.

Un determinante es un número que se le asocia a toda matriz cuadrada.

Determinante de una matriz cuadrada de orden 2:

21 12 22 11 22 21

12 11

a a a a a

a a a

⋅ − ⋅

= El es producto de los elementos que están en la diagonal principal menos el producto de los elementos que están en la diagonal secundaria.

Ejemplos: a)

10 28 18 7 4 6 3 6 7

4 3

− = − = ⋅ − ⋅

= b) 2 12 3 1 12 ( 2) 3 1 2

1

3 = = + =

− −

c) 2 12 4 ( 6) 24 24 0

12 6

4 2

= + − = − ⋅ − ⋅ − = −

d)

12 4

3 4

3 2

− = ⋅ − ⋅

=a a a

a a

Determinante de una matriz cuadrada de orden 3. Regla de Sarrus:

Los términos están formados por productos de tres elementos de la matriz, siguiendo esta regla:

4 4 4 4 4

4 8

4 4 4 4 4

4 7

6 4 4 4 4

4 8

4 4 4 4

4 7

6 delante

-11 32 23 33 21 12 31 22 13 delante

31 23 12 13 32 21 33 22 11 33 32 31

23 22 21

13 12 11

a a a a a a a a a a a a a a a a a a a a a

a a a

a a a

− −

− +

+ =

+

Ejemplos:

a)

( )

( )

168 173

5 0 9 140 24 5 0

0 1 2 3 1 3 4 7 5 4 3 2 5 1 1 0 7 3 0 1 4

3 7 1

5 2 3

− = − = + − − − + =

= ⋅ ⋅ − − ⋅ ⋅ − ⋅ ⋅ − ⋅ ⋅ − + ⋅ ⋅ + ⋅ ⋅ = −

b)

( )

7 7 4 3 5 4 5 3

1 4 3 ) 1 ( 1 1 ) 1 ( ) 5 ( 1 1 4 ) 5 ( ) 1 ( 1 1 3 1

1

1 1 1

5 4 3

+ − = − + − + + − =

= ⋅ ⋅ − ⋅ − ⋅ − ⋅ − ⋅ − − ⋅ ⋅ + − ⋅ − ⋅ + ⋅ − ⋅ = −

− −

a a a

a a

(2)

Observaciones:

* Un determinante es un número.

* Los determinantes se escriben entre barras para diferenciarlos de las matrices. * Sólo tienen determinante las matrices cuadradas.

* Las matrices que no son cuadradas no tienen determinante.

* Cuando se desarrolla un determinante, en cada uno de los sumandos interviene un elemento de cada fila y un elemento de cada columna.

2. Propiedades de los determinantes.

Las siguientes propiedades se verifican para determinantes de cualquier orden, aunque en los ejemplo sólo vamos a trabajar con determinantes de orden 3.

Cuando nos referimos a líneas de un determinante nos estamos refiriendo tanto a filas como a columnas.

1.- El determinante de una matriz coincide con el determinante de su transpuesta:

t

A A =

Es decir, si en un determinante cambiamos las filas por columnas el determinante no varía:

Veamos la propiedad para determinantes de orden 2:

t

t

A A a

a a a a

a a a A

a a a a a a

a a A

= →       

⋅ − ⋅ = =

⋅ − ⋅ = =

12 21 22 11 22 12

21 11

21 12 22 11 22 21

12 11

2.- Si una matriz cuadrada tiene una fila o columna formada por ceros, su determinante es cero.

Vemos un ejemplo:

0 8 0 1 6 0 2 9 0 7 9 0 1 7 6 0 8 0 2

8 6 9

0 0 0

7 1

2 0 0 0 0 0 0

= ⋅ ⋅ − ⋅ ⋅ − ⋅ ⋅ − ⋅ ⋅ + ⋅ ⋅ + ⋅ ⋅ =

= =

= =

=

=8 678 678 678 678 678

7 6

(3)

3.- Si se permutan dos líneas paralelas entre sí el determinante cambia de signo.

Vemos un ejemplo:

13 10 23 1 9 0 2 21 0

1 3 2

1 0 1

7 1 3

= − = − − − + + =

Permutamos las dos primeras filas:

13 23 10 0 21 2 0 9 1

1 3 2

7 1 3

1 0 1

− = − = − − − + + =

Justificación: En el desarrollo se obtienen los mismos sumandos pero con distinto signo. 4.- Si una matriz cuadrada tiene dos líneas paralelas iguales, el determinante es cero.

Vemos un ejemplo:

0 3 63 7 7 63 3 3 63 ) 7 ( 7 63 3

1 3 1

7 1 3

7 1 3

= − − + − + = − − − − − + = −

Justificación: Si la matriz A tiene dos líneas iguales, al permutarlas se vuelve a obtener la matriz A, pero el determinante cambia de signo:

0 0

2

0→ ⋅ = → = =

+ → −

= A A A A A

A

5.- Si multiplicamos por un mismo número todos los elementos de una línea (fila o columna) de una matriz cuadrada, su determinante queda multiplicado por ese mismo número.

Vemos un ejemplo:

2 56 58 6 45 7 5 42 9 6 45 ) 7 ( 5 42 9

3 3 1

5 1 2

7 1 3

(4)

Multiplicamos por k, por ejemplo, la tercera columna:

(

)

(

)

k k

k k

k k

k k k k k k

2 56 58

6 45 7 5 42 9 6 45 ) 7 ( 5 42 9

3 3 1

5 1 2

7 1 3

= − =

= − − + − + = − − − − − + = −

Se obtienen los mismos sumandos multiplicados por k, por tanto se puede sacar factor común.

Justificación: como en todos los sumandos interviene un elemento de cada fila y cada columna, en todos los sumandos aparece un elemento multiplicado por k, y por tanto todos los sumandos aparecen multiplicados por k.

6.- Si un determinante tiene dos filas o columnas proporcionales el determinante vale cero:

En el siguiente determinante son proporcionales la primera y la tercera fila, vemos que es cero usando las dos propiedades anteriores.

0 0

7 1 3

5 1 2

7 1 3

7 3

5 1 2

7 1 3

4 5

= ⋅ = −

− ⋅ = −

k k

k k k

P P

7.- Si en un determinante una línea (fila o columna) está descompuesta en sumas, podemos descomponer el determinante en suma de determinantes:

33 32 31

13 12 11

33 32 31

13 12 11

33 32

31

13 12

11

a a a

f d b

a a a

a a a

e c a

a a a

a a

a

f e d c b a

a a

a

+ =

+ +

+

8.- Si a una línea le sumamos otra línea paralela multiplicada por una constante, el determinante no varía:

Vemos un ejemplo:

2 58 56 42 5 9 45 6 7 42 ) 5 ( 9 45 6 7

7 1 3

5 1 2

3 3 1

− = − = − + − + + − = − − − − + + − = −

(5)

2 112 110 96 50 60 16 96 ) 50 ( 0 0 60 16

16 10 0

5 1 2

3 3 1

− = − = − + + − = − − − − + + − = −

El valor del determinante no ha variado. Veamos esta propiedad con “letras”

Sea el determinante:

i h g

f e d

c b a

, a la 1ª fila le sumamos la segunda multiplicada por k,

es decir: f1 → f1+kf2, vemos que el determinante no varía:

i h g

f e d

c b a

i h g

f e d

kf ke kd

i h g

f e d

c b a

i h

g

f e

d

kf c ke b kd a

P

= +

= + +

+ 64 74 4 84

ales proporcion filas dos

cero a igual es

7

9.- Si un determinante tiene una línea (fila o columna) que es combinación lineal de otras líneas paralelas, el determinante es cero, y también recíprocamente si el determinante de una matriz es cero entonces una fila (y una columna) es combinación lineal de las demás.

Supongamos que la tercera fila es combinación lineal de la primera y segunda fila:

2 1

3 k f m f

f = ⋅ + ⋅

0 0 0 tercera la y segunda la

ales proporcion son filas dos

escero tercera

la y primera la

ales proporcion son filas dos

escero

7

= + = +

= + +

+

4 4 8 4

4 7 6 4 4 8 4

4 7 6

mf me md

f e d

c b a

kc kb ka

f e d

c b a

mf kc me kb md ka

f e

d

c b

a

P

Veamos un ejemplo de la implicación contraria:

Calculamos 14 6 6 24 1 21 36 36 0

7 1 6

1 2 3

2 1 1

= − = + + − − − = −

− =

A , entonces:

Una fila debe ser combinación lineal de las restantes, en efecto observamos que 2

1

3 3f f

f = +

(6)

El determinante de una matriz cuadrada es un detector de combinaciones lineales en las filas y columnas de la matriz. Si el determinante es cero forzosamente a una fila (y una columna) que es combinación lineal del resto.

10.- Si en un determinante sustituimos una línea (fila o columna) por una combinación lineal de ella misma y de una línea paralela, el determinante queda multiplicado por el coeficiente de la línea que sustituimos.

i h g f e d c b

a En este determinante vamos a sustituir la 2ª fila por 2

1 5

3f + f , es decir: f2 →3f1+5f2

Obtenemos el determinante:

i h g f e d c b a i h g f e d c b a i h g c b a c b a i h g f c e b d a c b a P ⋅ = + = + + + = 5 5 5 5 3 3 3 5 3 5 3 5 3 ndo multiplica fuera sacar podemos lo f 2ª la a multiplica 5 ales proporcion filas dos 0 7 4 4 3 4 4 2 1 4 43 4 42 1

11.- El determinante de un producto de dos matrices es igual al producto de sus determinantes: 43 42 1 3 2 1 tes determinan dos de producto un es matrices dos de producto un de te determinan el es B A B

A⋅ = ⋅

Vemos un ejemplo:

Sean las matrices:

          − = 7 1 3 5 1 2 3 3 1

A y

          = 1 3 2 1 0 1 7 1 3 B ,

Para calcular AB , primero hacemos el producto de matrices y después calculamos el determinante,           − =           + + + + + + + + + + + + − + − + + − =           ⋅          − = ⋅ 29 24 24 20 17 17 1 8 6 7 1 21 21 3 14 1 9 5 1 14 15 2 10 1 6 3 3 7 9 1 6 3 3 1 3 2 1 0 1 7 1 3 7 1 3 5 1 2 3 3 1 B A

{ 2880 3944 6798 6824 26

(7)

Calculamos AB , para ello calculamos los determinantes por separado y después multiplicamos los resultados:

2

7 1 3

5 1 2

3 3 1

− = −

=

A , según se vio al explicar la propiedad 8.

13

1 3 2

1 0 1

7 1 3

= =

B , según se vio al explicar la propiedad 3.

Por tanto: AB =−2⋅13=−26.

Luego hemos comprobado con un ejemplo, que para matrices cuadradas, se verifica la igualdad: AB = AB

Análogamente si A, B, C,…H son matrices cuadradas de orden n:

4 4 4

4 3

4 4 4

4 2

1 K

4 4 3 4

4 2

1 K

tes determinan los de Producto producto

del te Determinan

H C

B A H C B

A⋅ ⋅ ⋅ ⋅ = ⋅ ⋅ ⋅ ⋅ .

El determinante de un producto de matrices cuadradas es el producto de los determinantes.

¿Si A es una matriz cuadrada, qué relación existe entre A y An ?

Usamos la propiedad anterior:

n factores

n

n

A A A

A A A A A A

A = ⋅ ⋅ ⋅ ⋅ = ⋅ ⋅ ⋅ ⋅ =

44448 4

4 4

4 7

6

K

K An = A n

¿Qué relación existe entre el determinante de una matriz cuadrada y el determinante de su matriz inversa?

Sea A una matriz cuadrada de orden n, sea A−1 su matriz inversa: →

= ⋅

→ −

n

I A

A 1 tomando determinantes: 1

1

1 = =

⋅ →

− ⋅

n

A A

I A A

43 42

1 .

Hemos visto anteriormente que el determinante de un producto de matrices cuadradas es el producto de los determinantes, por tanto: ⋅ −1 = ⋅ −1

A A A

A y que el

determinante de la matriz unidad es 1.

(8)

Ejemplos:

si

3 1

3→ 1 =

= A

A , si

5 1

5→ 1 =−

= A

B , si

2 3 3

2→ 1 =−

= A

C

3. Menor complementario y adjunto de un elemento.

Submatriz de una matriz.

Sea A una matriz cualquiera, una submatriz de A, es una matriz que se forma a partir de los elementos de A, suprimiendo filas y columnas:

Ejemplos: Sea

    

 

    

 

− − −

=

9 1 8

8 7 0

4 3 2

2 5 1 A

No es una submatriz    

 

− −

4 2

5 1

, ya que no se puede obtener de A tachando filas y columnas:

    

 

    

 

− −

9 1 8

8 7 0

4 3 2

2 5 1

En cambio si es una submatriz    

 

− −

3 2

5 1

ya que se obtiene al suprimir: f3, f4 y c3

    

 

    

 

− − −

9 1 8

8 7 0

4 3 2

2 5 1

Menor de una matriz.

Sea A una matriz cualquiera, un menor de A, es un determinante de una submatriz matriz cuadrada de A.

En la matriz anterior:

Los siguientes menores, son algunos menores de orden 2: 3

2 5 1 −

,

4 2

2 1 −

, 4 3

2 5

,

9 8

4 2 − −

,

9 8

2 1 − −

,…

Los siguientes menores, son todos los menores de orden 3 de A:

8 7 0

4 3 2

2 5 1

− −

,

9 1 8

4 3 2

2 5 1

− − −

,

9 1 8

8 7 0

2 5 1

− − −

,

9 1 8

8 7 0

4 3 2

(9)

Menor complementario de un elemento de una matriz cuadrada.

Sea A una matriz cuadrada, el menor complementario del elemento aij, es el menor que resulta al suprimir la fila i y la columna j:

Es decir se calcula el determinante de la submatriz que resulta al suprimir la fila y la columna donde se encuentra el elemento:

Ejemplos: Sea

  

 

  

 

− − =

2 6 9

7 8 5

3 4 1

A

El menor de a11 =−1 es:

2 6

7 8 −

ya que en la matriz hay que

tachar la primera fila y la primera columna.

 

  

 

− −

2 6 9

7 8 5

3 4 1

El menor de a23 =7 es:

6 9

4 1 −

ya que en la matriz hay que

tachar la segunda fila y la tercera columna.

2

6

9

7

8

5

3

4

1

El menor de a22 =−8 es:

2 9

3 1 −

ya que en la matriz hay que

tachar la segunda fila y la segunda columna.

2

6

9

7

8

5

3

4

1

Sea 

  

 

=

3 2

5 1 B

El adjunto de b21 =2 es 5, ya que en la matriz hay que tachar la segunda

fila y la primera columna. 

  

 −

3 2

5 1

El adjunto de b22 =3 es -1, ya que en la matriz hay que tachar la

segunda fila y la segunda columna. 

 

 −

3 2

5 1

Adjunto de un elemento de una matriz cuadrada.

Sea A una matriz cuadrada, se llama adjunto del elemento a a su menor ij

(10)

Ejemplos:

Sea

  

 

  

 − =

7 1 3

4 1 2

0 4 1

A .

12

A es el adjunto del elemento

( )

1

(

14 12

)

2

7 3

4 2 1

4 12 1 2

12 = → = − ⋅ =− ⋅ − =−

+ A

a ,

el menor 7 3

4 2

se obtiene al suprimir en A f1 cy 2.

31

A es el adjunto del elemento

( )

1

(

16 0

)

16

4 1

0 4 1

3 31 1 3

31 = → = − ⋅ =+ ⋅ − =

+ A

a ,

el menor 4 1

0 4

se obtiene al suprimir en A f3 cy 1.

Sea 

  

 −

=

6 4

7 2 B

21

B es el adjunto del elemento b21 =4→B21 =

( )

−11+2 ⋅7=−7, que se obtiene al suprimir en B f2 cy 1 y multiplicar por -1.

22

B es el adjunto del elemento 22 =6→ 22 =

( )

−12 2 ⋅(−2)=+1⋅

( )

−2 =−2 +

B

b , que se

obtiene al suprimir en B f2 cy 2 y multiplicar por +1.

Sea

    

 

    

 −

=

5 6 4 0

2 2 6 4

7 0 2 4

11 3 7 3 C

34

C es el adjunto del elemento:

( )

1

(

36 36 0 0 0 168

)

168 6

4 0

0 2 4

3 7 3

1 2 34 3 4

34 =− ⋅ − + − − − =+

− ⋅

− = →

= +

C

c .

(11)

4. Desarrollo de un determinante por los elementos de una línea.

Vamos a estudiar una nueva propiedad de los determinantes, que nos será muy útil cuando se trate de calcular determinantes de orden mayor que 3.

12.- Un determinante se puede calcular multiplicando los elementos de una línea (fila o columna) por sus adjuntos y después sumando los resultados.

Ejemplos:

Sea el determinante:

1 0 2

4 3 2

3 2 1 − =

A .

Primero vamos a calcular A usando la Regla de Sarrus, y posteriormente desarrollando por adjuntos en la 2ª fila, por último desarrollaremos por adjuntos en la 3ª columna.

Primero usamos la regla de Sarrus:

9 25 16 4 18 16 3

1 0 2

4 3 2

3 2 1

− = − = − − + − = −

= A

9 16 25 16 21 4

) 4 ( 4 ) 7 ( 3 2 2 0 2

2 1 4 1 2

3 1 3 1 0

3 2 2 1 0 2

4 3 2

3 2

1 Cadaelementodela2ªfilasemultiplicapor su adjunto

4 7

6 1 2

− = + − = + − − =

− − − + ⋅ − = −

⋅ − −

⋅ + ⋅

− = −

=

− = −

= − − = =

4 4 4 4 4 4

4 8

4 4 4 4 4 4

4 7

6

43 42 1 43

42 1 3

2 1

A

Desarrollamos por último por adjuntos en la 3ª columna:

( ) ( ) ( )

9 16 25 7 16 18

7 1 4 4 6 3 3 2

2 1 1 0 2

2 1 4 0 2

3 2 3 1 0 2

4 3 2

3 2 1

adjunto su por multiplica se columna 3ª la de elemento cada

7 4 3 4

6 − = + − = − + − =

= − + − − − = −

⋅ + −

⋅ − ⋅

+ = −

=

− = − − = −

= −

=

4 4 4 4 4 4

4 8

4 4 4 4 4 4

4 7

6

43 42 1

43

42 1 3

2 1

A

(12)

9 1 0 1

9 6 7 3

7 4 0 4

4 3 0

7 −

Tenemos que desarrollar por adjuntos, ¿Qué línea escogemos? La que

tenga más ceros, ya que así nos evitamos operaciones, veámoslo:

La línea del determinante que tiene más ceros es la 2ª columna, por tanto desarrollamos por adjuntos en la 2ª columna:

9 1 1

7 4 4

4 3 7 7 0

9 1 1

7 4 4

4 3 7 7 0

0

9 1 0 1

9 6 7 3

7 4 0 4

4 3 0 7

42 22

12

− ⋅ − = ⋅ + −

⋅ − ⋅ + ⋅ − = −

A A

A

Por ello, sólo hay que calcular un determinante de orden 3:

(

)

(

252 16 21 16 49 108

)

7

(

360 70

)

7 290 2030 7

108 49 16 21 16 252 7 9 1 1

7 4 4

4 3 7 7 9 1 0 1

9 6 7 3

7 4 0 4

4 3 0 7

− = ⋅ − = − ⋅ − = + − − − + ⋅ −

= + − − − + ⋅ − = −

⋅ − = −

2 0 0 2

5 2 3 0

4 1 4 1

3 1 1 3

− −

Primero nos fijamos en la línea que tiene mas ceros: es la 4ª fila.

El determinante lo vamos a hacer de dos formas:

1ª forma: desarrollando por adjuntos en la 4ª fila, recuerda:

(

) (

)

(

) (

)

0

28

2

28

2

5

33

2

25

53

2

2

9

3

24

2

20

8

9

12

24

5

2

2

3

0

1

4

1

1

1

3

2

5

2

3

4

1

4

3

1

1

2

2

0

0

2

5

2

3

0

4

1

4

1

3

1

1

3

=

+

=

=

+

=

+

+

+

+

+

=

+

=

(13)

2ª forma: vamos a hacer “ceros en la última fila”

Para hacer ceros en la última fila operamos con columnas:

0 0 0 2

5 2 3 0

3 1 4 1

0 1 1 3

2 0 0 2

5 2 3 0

4 1 4 1

3 1 1 3

1 4

4 −

= − → −

c c c

Hemos conseguido un nuevo cero en la 4ªfila, desarrollamos por adjuntos en esa fila, tendremos que calcular sólo un determinante de orden 3.

(

5 9 6 20

)

2

(

20 20

)

0 2

5 2 3

3 1 4

0 1 1 2

0 0 0 2

5 2 3 0

3 1 4 1

0 1 1 3

= + − − = + − − − ⋅ − = −

− ⋅ − = −

Importante:

Hasta ahora hemos hecho ceros:

1º) Para resolver sistemas de ecuaciones lineales. 2º) Para calcular el rango de una matriz.

3º) Para facilitar el cálculo de determinantes.

Éste último caso, es diferente de los dos anteriores, tenemos que tener en cuenta estas indicaciones:

* tenemos que tener en cuenta: la Propiedad 10.- Si en un determinante sustituimos una línea (fila o columna) por una combinación lineal de ella misma y de una línea paralela, el determinante queda multiplicado por el coeficiente de la línea que sustituimos.

* Nos interesan filas con ceros y con unos.

* Para hacer ceros en columnas opero con filas y para hacer ceros en filas trabajo con columnas.

* Si deseo, por comodidad hacer ceros siempre en columna, como lo hemos hecho hasta ahora, basta tener en cuenta la Propiedad 1: t

A

(14)

8 2 7 1

11 6 1 5

3 6 0 2

9 1 4 7

Vamos a hacer ceros en la 2ª columna, lo vamos hacer de dos formas:

1ª forma dejamos fija la 1ª fila y operamos con ella para hacer ceros en las demás:

8 2 7 1

11 6 1 5

3 6 0 2

9 1 4 7

fija

hacemos ceros

Para hacer cero “1”: f3 →−4f3 + f1, pero por la propiedad 10, al multiplicar la fila 3ª por (-4), el determinante ha quedado multiplicado por (-4), por tanto para que el determinante no varíe debemos dividirlo por (-4)

8 2 7 1

35 23 0

13

3 6 0 2

9 1 4 7

4 1 4

8 2 7 1

11 6 1 5

3 6 0 2

9 1 4 7

1 3 3

− − −

⋅ − = + − → −

f f f

8 2 7 1

35 23 0 13

3 6 0 2

9 1 4 7

4 1

− − −

⋅ −

Para hacer cero el “7” usando la primera fila: 1

4 4 4f 7f

f →− + , como he multiplicado por (-4) la fila que sustituyo, el determinante lo tengo que dividir por (-4)

=

− − − −

⋅ − ⋅ − =

+ − → −

− − −

⋅ −

31 1 0 53

35 23 0 13

3 6 0 2

9 1 4 7

4 1 4 1

7 4 8

2 7 1

35 23 0 13

3 6 0 2

9 1 4 7

4 1

1 4

4 f f

f

Desarrollando por adjuntos en la 2ª columna, recordamos la regla de los signos:

(

)

(

)

(

6512

)

1628

4 1 12626 6114

4 1

2418 70

3657 11130

39 1426 4

1 31

1 53

35 23 13

3 6 2 ) 4 ( 16

1

= −

⋅ − = −

= +

− +

− + −

− = −

(15)

2ª forma dejamos fija la 3ª fila, que es donde tenemos el “1” y operamos con ella para hacer ceros en las demás:

fija

hacemos ceros

8 2 7 1

11 6 1 5

3 6 0 2

9 1 4 7

Para hacer cero “4”: f1f14 f3 como la fila que hemos sustituido

( )

f1 no la hemos multiplicado por ningún número el determinante no varía:

8

2

7

1

11

6

1

5

3

6

0

2

35

23

0

13

4

8

2

7

1

11

6

1

5

3

6

0

2

9

1

4

7

1 1 3

=

f

f

f

Para hacer cero “7”, f4 → f4 −7 f3, como la fila que hemos sustituido

( )

f4 no la hemos multiplicado por ningún número el determinante no varía:

69 40 0 36

11 6

1 5

3 6 0 2

35 23 0 13

7 8

2 7 1

11 6

1 5

3 6 0 2

35 23 0 13

3 4

4 − − −

− − −

=

− → −

− − −

f f f

Ahora desarrollamos por adjuntos en la 3ª columna, recordando la regla de los signos:

(

)

(

10666 12294

)

1

(

1628

)

1628

1

3174 1560 7560 2484 2800 5382 1

69 40 36

3 6 2

35 23 13

1

69 40 0 36

11 6 1 5

3 6 0 2

35 23 0 13

= −

− = −

− =

− − − + + −

= − − −

− − − ⋅ − =

− − −

− − −

En resumen:

Si hacemos la sustitución fnafn +bfm, tenemos que dividir por a el determinante.

(16)

Ejemplo:

6 0 1 5

12 3 5 1

27 8 7 4

2 2 5

3 − Nos interesa una línea que tenga ceros y unos, elegimos la fila cuarta, tendremos que hacer ceros en esta fila, nosotros estamos acostumbrados a hacer ceros en columna, para ello vamos a calcular el determinante de la matriz transpuesta ya que: t

A A =

=

− − −

− −

=

− →

− → −

= −

0 18 15 32

0 3 8 2

1 5 7 5

0 24 31 28

6 5

6 12 27 2

0 3 8 2

1 5 7 5

5 1 4 3

6 0 1 5

12 3 5 1

27 8 7 4

2 2 5 3

2 4 4

2 1 1

f f f

f f f

Desarrollamos por adjuntos en la cuarta columna, teniendo en cuenta la regla de los signos:

18 15 32

3 8 2

24 31 28 1 0 18 15 32

0 3 8 2

1 5 7 5

0 24 31 28

− −

− − ⋅

+ =

− − −

− −

Podemos sacar factor común “3” en la tercera columna y factor común “2” en la primera:

(

672 120 496 1024 210 186

) (

61354 1354

)

0 6

6 15 16

1 8 1

8 31 14

3

2 = − + − + + − = − =

− −

− − ⋅

⋅ =

Observaciones:

1º) El determinante de una matriz diagonal es el producto de los elementos que están en la diagonal principal.

Si la matriz es cuadrada de orden 2: ab

b a b a

= ⋅ − ⋅

= 0 0

0 0

Si la matriz es cuadrada de orden 3:

abc c

b a

= 0 0

0 0

0 0

(17)

Si la matriz es cuadrada de orden 4:

d c b a d c b a

0 0

0 0

0 0

0 0 0

0 0

0

0 0 0

0 0 0

= Hemos desarrollado por adjuntos en la 1ª fila, como

abcd d

c b a bcd d

c b

= →

=

0 0 0

0 0

0

0 0 0

0 0 0

0 0

0 0

0 0

y así sucesivamente:

abcde

e d c b a

=

0 0 0 0

0 0

0 0

0 0 0

0

0 0 0 0

0 0 0 0

2º) Sea I la matriz unidad de orden n, su determinante vale 1, n In =1.

1 1 0

0 1

2 = =

I , 1

1 0 0

0 1 0

0 0 1

3 = =

I , 1

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

4 = =

I ,…

ya que se son matrices diagonales.

5. Cálculo de la matriz inversa.

Sea A una matriz cuadrada de orden n, con determinante no nulo

(

A ≠0

)

, entonces la matriz A tiene inversa y viene dada por la fórmula: Adj A t

A

A−1 = 1 ( ) .

Representamos por Adj( A) a la matriz que resulta al sustituir en A cada elemento por su adjunto.

Si A es una matriz cuadrada de orden 2 con determinante no nulo:

t

A A

A A A A a

a a a

A 

  

 

⋅ = →

   

 

= −

22 21

12 11 1

22 21

12

11 1

(18)

t

A A A

A A A

A A A A A a

a a

a a a

a a a A

  

 

  

 

⋅ = →

  

 

  

 

= −

33 32 31

23 22 21

13 12 11 1

33 32 31

23 22 21

13 12 11

1

Si el determinante de una matriz cuadrada es cero, entonces la matriz no tiene inversa

Ejemplos

Dada 

  

 −

=

3 2

4 1

A , calcular A . −1

Primero se calcula A, ya que si A =0 entonces la matriz no tiene inversa.

→ ≠ − = − − = −

= 3 8 11 0

3 2

4 1

A la matriz A tiene inversa.

Calculamos la matriz adjunta: Adj( A) 3

11 =+

A A12 =−2 4

21 =−

A A22 =+(−1)=−1

   

 

− −

− =

   

 

− −

− =

1 2

4 3 )

( 1

4 2 3 )

(A Adj A t

Adj

Por tanto

  

  −

=

   

 

− −

− ⋅

− = =

11 1 11 2

11 4 11 3 1

2 4 3 11 1 ) ( 1

1 t

A Adj A

A que es la inversa de A

Podemos comprobar si efectivamente es la inversa para ello calculamos ⋅ −1 A

A , nos tiene que salir la matriz unidad de orden 2: 

    

= 1 0

0 1 2

I .

      =     

   =   

 

  

 

+ +

+ − +

=     

  − ⋅    

  = ⋅ −

1 0

0 1

11 11 0

0 11 11

11 3 11

8 11

6 11

6

11 4 11

4 11

8 11

3

11 1 11 2

11 4 11 3

3 2

4 1 1 A A

Dada

  

 

  

 

− −

− − =

3 5 2

3 0 1

1 1 1

A calculamos A . −1

Antes que nada calculamos el determinante: 5 6 3 15 1 0

3 5 2

3 0 1

1 1 1

≠ − = − + + + = − −

− −

(19)

15 3 5

3 0

11=+ =−

A

(

3 6

)

9

3 2

3 1

12 =− + =− − − − − = A 5 5 2 0 1

13 =−

− − + = A

(

)

8 5 3 3 5 1 1 21 − = = + − = − − − − = A 5 2 3 3 2 1 1 22 − = − − = − − − + =

A

(

5 2

)

3

5 2

1 1

23 =− − =− − − − = A 3 3 0 1 1

31 =−

− − + =

A

( )

3 1 2

3 1

1 1

32 =− − =− − − = A 1 0 1 1 1

13 =−

− − + =

A

Por tanto la matriz

          − − − − − − − − − = →           − − − − − − − − − = 1 3 5 2 5 9 3 8 15 ) ( 1 2 3 3 5 8 5 9 15 )

(A Adj A t Adj

Aplicando la fórmula de la inversa:

          =           − − − − − − − − − ⋅ − = = − 1 3 5 2 5 9 3 8 15 1 3 5 2 5 9 3 8 15 1 1 ) ( 1 1 t A Adj A A

Comprobamos que efectivamente es la inversa, para ello calculamos ⋅ −1 A A           =           − + − − + − − + − + − + − + − − − − − − − =           ⋅           − − − − − 1 0 0 0 1 0 0 0 1 3 10 6 9 25 16 15 45 30 3 3 9 8 15 15 1 2 3 3 5 8 5 9 15 1 3 5 2 5 9 3 8 15 3 5 2 3 0 1 1 1 1

6. Cálculo del rango de una matriz usando determinantes.

En esta pregunta vamos a dar otro procedimiento para el cálculo del rango de una matriz, lo vamos hacer usando determinantes.

Recordamos que el rango de una matriz es el número de filas o columnas linealmente independientes, es decir que no son combinación lineal.

Antes que nada, recordamos la propiedad 9 de los determinantes:

9.- Si un determinante tiene una línea (fila o columna) que es combinación lineal de otras líneas paralelas, el determinante es cero, y también recíprocamente si el determinante de una matriz es cero entonces una fila (y una columna) es combinación lineal de las demás.

(20)

El determinante de una matriz cuadrada es un detector de combinaciones lineales en las filas y columnas de la matriz. Si el determinante es cero forzosamente una fila (y una columna) del determinante es combinación lineal del resto.

Siendo A una matriz cuadrada:

Si A =0↔

Una fila (y una columna) es combinación del resto, las filas y las columnas del determinante son linealmente dependientes.

Si A ≠0↔

No existen combinaciones lineales entre las filas (y las columna) de A, las filas y las columnas del determinante son linealmente independientes.

Observación importante:

Si en una matriz un menor es distinto de cero, entonces las filas y columnas de la matriz que forman el menor son linealmente independientes.

Ejemplos:                 55 54 53 52 51 45 44 43 42 41 35 34 33 32 31 25 24 23 22 21 15 14 13 12 11 a a a a a a a a a a a a a a a a a a a a a a a a

a Si 0

33 32 23 22 a a a a , entonces:

* f2 y f3 son linealmente independientes. * c2 y c3 son linealmente independientes. Por tanto: rg(A)≥2, como máximo rg(A)=5

                55 54 53 52 51 45 44 43 42 41 35 34 33 32 31 25 24 23 22 21 15 14 13 12 11 a a a a a a a a a a a a a a a a a a a a a a a a

a Si 0

44 41 34 31 a a a a , entonces:

* f3 y f4 son linealmente independientes. * c1 y c4 son linealmente independientes. Por tanto: rg(A)≥2, como máximo rg(A)=5

                55 54 53 52 51 45 44 43 42 41 35 34 33 32 31 25 24 23 22 21 15 14 13 12 11 a a a a a a a a a a a a a a a a a a a a a a a a a

Si 0

54 53 52 44 43 42 34 33 32 ≠ a a a a a a a a a

* f3, f4 y f5 son linealmente independientes. * c2 ,c3 y c4 son linealmente independientes. Por tanto: rg(A)≥3, como máximo rg(A)=5

                55 54 53 52 51 45 44 43 42 41 35 34 33 32 31 25 24 23 22 21 15 14 13 12 11 a a a a a a a a a a a a a a a a a a a a a a a a a

Si 0

55 54 53 51 45 44 43 41 35 34 33 31 25 24 23 21 ≠ a a a a a a a a a a a a a a a a

(21)

     

 

     

 

55 54 53 52 51

45 44 43 42 41

35 34 33 32 31

25 24 23 22 21

15 14 13 12 11

a a a a a

a a a a a

a a a a a

a a a a a

a a a a a

Si 0

55 54 53 52 51

45 44 43 42 41

35 34 33 32 31

25 24 23 22 21

15 14 13 12 11

a a a a a

a a a a a

a a a a a

a a a a a

a a a a a

Todas las fila son linealmente independientes y todas las columnas también, aseguramos que rg(A)=5

Es falso que si un menor es cero, las filas y columnas de la matriz que forman el menor sean combinación lineal.

Ejemplo: 

  

 

− =

1 0 0 0 3

1 0 0 0 1 A





1

0

0

0

3

1

0

0

0

1

0

0 3

0 1

= sólo podemos deducir que las dos filas del menor

(

1 0

)

y

(

3 0

)

son combinación lineal una de otra. No podemos deducir nada sobre las filas de la matriz, es decir sobre:

(

1 0 0 0 1

)

y

(

3 0 0 0 −1

)

.

Vemos algunos resultados que nos servirán para calcular el rango de una matriz usando determinantes:

1º) Sea

  

 

  

  =

34 33 32 31

24 23 22 21

14 13 12 11

a a a a

a a a a

a a a a A

Si todos los menores de 2º orden que pueda hacer con la 2ª fila orlando al elemento a11 son todos nulos, entonces la 2ª fila es combinación lineal de la primera y la podemos suprimir para calcular el rango.

  

 

  

 

34 33 32 31

24 23 22 21

14 13 12 11

a a a a

a a a a

a a a a

  

 

  

 

34 33 32 31

24 23 22 21

14 13 12 11

a a a a

a a a a

a a a a

  

 

  

 

34 33 32 31

24 23 22 21

14 13 12 11

a a a a

a a a a

a a a a

0 22 21

12

11 =

a a

a a

y además 0

23 21

13

11 =

a a

a a

y además 0

24 21

14

11 =

a a

a a

En este caso f2 es combinación lineal de f1 .

(22)

Si 0,ó 0,ó 0 1 y 2 son indep ( ) 2 24

21 14 11 23

21 13 11 22

21 12

11

A rg f

f a

a a a a

a a a a

a a a

Supongamos que 0

22 21

12

11

a a

a a

y todos los menores de tercer orden que podemos hacer orlando con la 3ª fila son todos nulos, entonces f es combinación lineal de 3 f1 y f2.

34 33 32 31

24 23 22 21

14 13 12 11

a

a

a

a

a

a

a

a

a

a

a

a

34 33 32 31

24 23 22 21

14 13 12 11

a

a

a

a

a

a

a

a

a

a

a

a

0

33 32 31

23 22 21

13 12 11

= a a a

a a a

a a a

y además 0

34 32 31

24 22 21

14 12 11

= a a a

a a a

a a a

En este caso f es combinación lineal de 3 f1 y f2, y como f1 y f2 son independientes,

ya que 0

22 21

12

11

a a

a a

2 )

( =

rg A

  

 

  

 

34 33 32 31

24 23 22 21

14 13 12 11

a a a a

a a a a

a a a a

Comb. lineal de f1 y f2 Independientes

2 )

( =

rg A

Para calcular el rango usando menores:

* Seleccionar un menor de orden 2 no nulo (si esto no es posible rg(A)=1, y ya hemos acabado)

* Calcular los menores de orden 3 que se pueden formar orlando el menor anterior con los elementos de una fila, se pueden dar dos casos:

- Encuentro un menor de orden 3 no nulo. (rg(A)≥3) En este caso se pasa a orlar con los elementos de otra fila y calcular los menores de orden 4.

- Todos los menores de orden 3 que se forman al orlar el menor de orden 2 con los elementos de la fila son nulos, entonces la fila es combinación lineal de las filas que forman el menor y por tanto la podemos suprimir, pasamos a orlar el menor de orden 2 con los elementos de otra fila.

(23)

Ejemplos:

1) Calcular usando menores el rango de la matriz

    

 

    

 

− − − −

=

6 5 4 11 3

0 1 2 1 3

3 2 1 5 0

2 1 0 3 1 A

Primero buscamos un menor de orden 2 no nulo:

    

 

    

 

− − − − −

6 5 4 11 3

0 1 2 1 3

3 2 1 5 0

2 1 0 3 1

→ ≠ − = −

0 5 5 0

3 1

Las dos primeras filas son independientes→rg(A)≥2

Orlamos el menor con los elementos de la 3ª fila, lo hacemos ordenadamente:

6

5

4

11

3

0

1

2

1

3

3

2

1

5

0

2

1

0

3

1

0 1 9 10

2 1 3

1 5 0

0 3 1

= − − = − − − −

, como sale igual a

cero orlamos con la 3ª fila y 4ª columna:

    

 

    

 

− − − − −

6 5 4 11 3

0 1 2 1 3

3 2 1 5 0

2 1 0 3 1

0 20 20 2 15 18 5

1 1 3

2 5 0

1 3 1

= − = − + − = − − − −

, como

sale igual a cero seguimos orlando con la 3ª fila y 5ª columna:

    

 

    

 

− − − − −

6 5 4 11 3

0 1 2 1 3

3 2 1 5 0

2 1 0 3 1

0 3 30 27

0 1 3

3 5 0

2 3 1

= − + − = −

− −

, también sale igual a

cero. Como todos los posibles menores que puedo formar al orlar el menor con los elementos de la 3ª fila son todos nulos esto me indica que la fila 3ª es combinación lineal de las filas que forman el menor es decir de las dos primeras filas.

(24)

6

5

4

11

3

0

1

2

1

3

3

2

1

5

0

2

1

0

3

1

Es c.l. de la 1ªf y 2ªf

0 11 9 20

4 11 3

1 5 0

0 3 1

= + + − = −

, como sale

igual a cero seguimos orlando con la 4ª fila y 4ª columna:

6

5

4

11

3

0

1

2

1

3

3

2

1

5

0

2

1

0

3

1

Es c.l. de

la 1ªf y 2ªf

0 40 40 22 15 18 25

5 11 3

2 5 0

1 3 1

= − = + − + − = −

,

como sale igual a cero seguimos orlando con la 4ª fila y 5ª columna:

6

5

4

11

3

0

1

2

1

3

3

2

1

5

0

2

1

0

3

1

Es c.l. de la 1ªf y 2ªf

0 60 60 33 30 27 30

6 11 3

3 5 0

2 3 1

= − = + − + − = −

,

también sale igual a cero. Como todos los posibles menores que puedo formar al orlar el menor con los elementos de la 4ª fila son todos nulos esto me indica que la fila 4ª también es combinación lineal de las filas que forman el menor es decir de las dos primeras filas.

    

 

    

 

− − − −

6 5 4 11 3

0 1 2 1 3

3 2 1 5 0

2 1 0 3 1

Es c.l. de la 1ªf y 2ªf

Es c.l. de la 1ªf y 2ªf

Las dos primeras filas son independientes ya que contienen un menor de orden 2 no nulo.

3

f es comb. lineal de f1 y f2. 4

f es comb. lineal de f1 y f2.

Como rg( A)=número de filas linealmente independientes, entonces rg(A)=2

2) Calcular el rango de

    

 

    

 

=

0 0 1 1

1 0 0 0

0 2 1 1

1 0 0 1 C

Primero partimos de un menor de orden 2 distinto de cero:

    

 

    

 

0 0 1 1

1 0 0 0

0 2 1 1

1 0 0

1 =

−1 1 0 1

0 1

(25)

0

0

1

1

1

0

0

0

0

2

1

1

1

0

0

1

0

0 0 0

2 1 1

0 0 1

=

− , seguimos orlando con la 3ª fila y 4ª columna:

0

0

1

1

1

0

0

0

0

2

1

1

1

0

0

1

= −

1 0 0

0 1 1

1 0 1

Desarrollando por adjuntos en la tercera fila:

( )

− =− ≠ → +

= − ⋅ +

= 1 1 1 0

1 1

0 1

1 las tres primeras filas son

linealmente independientes ya que se puede formar un menor de orden 3 no nulo, →rg(A)≥3, orlamos este menor de orden 3 con la 4ª fila.

    

 

    

 

0 0 1 1

1 0 0 0

0 2 1 1

1 0 0 1

= −

0 0 1 1

1 0 0 0

0 2 1 1

1 0 0 1

Desarrollamos por adjuntos en la tercera

fila =− ⋅ − =

0 1 1

2 1 1

0 0 1

1 Desarrollamos por adjuntos en la

primera fila

( )

1

( )

2 2 0

0 1

2 1 1

1⋅ + ⋅ − =− ⋅ − = ≠

− =

Como tenemos un menor de orden 4 no nulo, esto me indica que las filas que forman el menor son independientes, por tanto rg(A)=4.

Calcular el rango de

  

 

  

 

− −

− − −

=

3 2 10 1 5

1 0 2 3 1

1 1 4 2 2

C

Seleccionamos un menor de orden dos no nulo:

  

 

  

 

− −

− − −

3 2 10 1 5

1 0 2 3 1

1 1 4 2

2 − =6+2=8≠0→ 3

1 2 2

como el menor es distinto de cero, las dos primeras filas son linealmente independientes →rg(C)≥2.

(26)

  

 

  

 

− −

− − −

3 2 10 1 5

1 0 2 3 1

1 1 4 2 2

0 20 4 60 20 4 60

10 1 5

2 3 1

4 2 2

= + + − − − = −

, como sale

igual a cero seguimos orlando con la 3ª fila y 4ª columna:

  

 

  

 

− −

− − −

3 2 10 1 5

1 0 2 3 1

1 1 4 2 2

0 16 16 4 15 1 12

2 1 5

0 3 1

1 2 2

= − = + − − = −

, como sale

igual a cero seguimos orlando con la 3ª fila y 5ª columna:

  

 

  

 

− −

− − −

3 2 10 1 5

1 0 2 3 1

1 1 4 2 2

0 26 26 6 2 15 10 1 18

3 1 5

1 3 1

1 2 2

= − = − − + + + − = − −

− − −

,

como sale igual a cero, y no podemos seguir orlando, deducimos que la fila 3ª es combinación lineal de las dos primeras: f es combinación lineal de 3 f1 y f2.

Por tanto:

  

 

  

 

− −

− − −

3 2 10 1 5

1 0 2 3 1

1 1 4 2 2

f3 es comb. lineal de f1 y f2

f1 y f2 son

independientes.

Como el rango es el número de filas o columnas linealmente independientes, concluimos: rg(C)=2

Una vez realizados los ejercicios anteriores, podemos afirmar:

El rango de una matriz es el orden del menor de mayor orden no nulo.

Referencias

Documento similar

"No porque las dos, que vinieron de Valencia, no merecieran ese favor, pues eran entrambas de tan grande espíritu […] La razón porque no vió Coronas para ellas, sería

Habiendo organizado un movimiento revolucionario en Valencia a principios de 1929 y persistido en las reuniones conspirativo-constitucionalistas desde entonces —cierto que a aquellas

Esta uni- dad académica de investigación de la Pontificia Universidad Javeriana se ha preocupado principalmente por el hecho de que esta frontera se esté convir- tiendo cada vez más

Como vimos, el proceso de democratización se define como un tipo de transición política caracterizado por una gran conflictualidad entre una lógica de apertura del sistema

Al considerar conjuntamente el número de asociaciones en las actividades (Tabla 11), en los motivos de realización (elección, obligatoriedad) se observa que la interacción

La campaña ha consistido en la revisión del etiquetado e instrucciones de uso de todos los ter- mómetros digitales comunicados, así como de la documentación técnica adicional de

ciones en las preferencias de los alumnos por diferentes Estos datos tomados globalmente nos indican que los estrategias de la enseñanza de las Ciencias en función de

Desde esa concepción, el Derecho es considerado como algo que puede ser completamente objetivado y observado sin ningún tipo de parti- cipación (puede ser casi «fotografiado»).