• No se han encontrado resultados

PRÁCTICA REMOTA PÉNDULO FÍSICO AMORTIGUADO

N/A
N/A
Protected

Academic year: 2021

Share "PRÁCTICA REMOTA PÉNDULO FÍSICO AMORTIGUADO"

Copied!
5
0
0

Texto completo

(1)

PRÁCTICA REMOTA

PÉNDULO FÍSICO AMORTIGUADO 1. OBJETIVO

Estudio del comportamiento de un péndulo físico débilmente amortiguado. Determinación de la constante de amortiguamiento, γ, del periodo, T, de la frecuencia angular del movimiento, ω, y de la velocidad angular instantánea, θ.

2.- FUNDAMENTO TEÓRICO

Se denomina péndulo físico a cualquier sólido rígido capaz de oscilar en torno a un eje horizontal.

En la figura 1 se muestra un péndulo físico que puede girar verticalmente en torno a un eje horizontal que pasa por el punto O. En la posición de equilibrio el Centro de Masas (C. M) está situado en la vertical que pasa por O; cuando se gira un ángulo θ con respecto al equilibrio como aparece en la figura, el peso (mg) y un momento de amortiguamiento (γvD), junto con la reacción (R) en el punto de apoyo (barra horizontal) forman pares de fuerzas que provocarán un giro en torno al eje que generará un movimiento oscilatorio.

Figura 1.- Péndulo Físico

(2)

siendo “IO” el Momento de Inercia respecto al eje de rotación, “D” el diámetro del eje y

“γ” la constante de amortiguamiento.

La ecuación (2) no tiene una solución sencilla a menos que se haga la aproximación:

senθ≅θ, tanto más correcta cuanto más pequeñas sean las oscilaciones.

En tal situación, la ecuación del movimiento quedará expresada como:

0 θ ω dt dθ 2 dt θ d 2 0 2 2 = + β + (3)

Siendo ωo la frecuencia natural de oscilación y β el parámetro de amortiguamiento.

O 0 I mgL = ω y O 2 I 4 γD β =

La solución a la ecuación diferencial va a tener una componente que nos define el amortiguamiento, ( e t)

0 −β

θ , y una componente que nos indica que el movimiento es

periódico (sen ωt): ) t ( sen e t 0 ω θ = θ −β (4)

siendo “θ0” la amplitud inicial y “ω" la frecuencia del movimiento, 2 0 2 0 1 ω β − ω = ω

Como se puede observar en la figura 2, el movimiento es oscilatorio amortiguado, con la amplitud disminuyendo a medida que avanza el tiempo.

Time (s) 0 1 2 3 4 5 6 A n gu lar P os it ion ( rad ) -0,6 -0,4 -0,2 0,0 0,2 0,4 0,6

(3)

3.- EXPERIMENTACIÓN

La práctica a realizar consiste en el estudio de las oscilaciones de una barra rectangular, que jugará el papel de péndulo físico. Para ello se separará la regla un ángulo θ0

de su posición de equilibrio dejándola a continuación en libertad.

El sistema dispone de un sensor de rotación con el que se medirá el ángulo en función del tiempo, θ(t).

Entre en la página Web del departamento http://goya.eis.uva.es, elija la opción “Laboratorio Remoto” y seleccione la aplicación “Péndulo Físico Amortiguado”. Introduzca el

nombre de usuario y la contraseña que les han facilitado.

Lea con detenimiento la página de bienvenida y seleccione en el menú de la

izquierda de la página la opción “Péndulo Real”. Entrará así en una nueva ventana en la que

podrá realizar la experiencia.

Pulse en la flecha, , situada en la esquina izquierda del registro, introduzca el valor del ángulo desde donde el péndulo va a oscilar (utilicen sólo ángulos menores de 50o) y pulse “Iniciar”. En este momento el sistema comenzará la adquisición de datos a la vez que

el péndulo se va desplazando hasta alcanzar el valor del ángulo que se le ha indicado, para seguidamente ser liberado comenzando las oscilaciones.

Una vez que el péndulo haya cesado su movimiento pulsen “Parar” para que el

sistema deje de registrar datos. Para realizar posteriormente el análisis del movimiento será necesario que en el experimento se hayan registrado como mínimo 5 oscilaciones.

Si desea repetir de nuevo el experimento siga los pasos indicados en los párrafos anteriores.

En la esquina superior derecha de la página se puede acceder a los resultados (los datos registrados son la posición angular (rad) y el tiempo (s)). Guarde estos datos en un fichero con extensión *.txt.

Abra este fichero en una Hoja de Cálculo (ej. Excel), importando los datos a partir del fichero anterior y realice la representación Posición Angular = f (Tiempo). Obtendrá

el mismo gráfico que visualizaron in situ al realizar la experiencia.

Debe tener en cuenta la siguiente indicación: el tiempo comienza a registrarse en

cuanto el péndulo se pone en movimiento para alcanzar el ángulo que se le ha indicado. Pero el tiempo real que debe utilizar es el que se registra cuando el péndulo se libera,

cumpliéndose en ese momento θ(t =0)=θo. Es decir, se deben eliminar aquellos datos

(4)

t I 4 D o t 0 O 2 e e γ − β − =θ θ = Θ (5)

siendo Θ el valor de la amplitud (posición máxima o mínima) en cada periodo de oscilación (ver figura 3).

Figura 3.- Valores de las Amplitudes máximas para cada Periodo de oscilación

Será pues necesario obtener los valores de Θ y los correspondientes de t. Si se utiliza la hoja de cálculo Excel esto puede hacerse fácilmente, ya que representando los datos experimentales θ=f(t), al situar el cursor en un punto se obtienen directamente sus coordenadas {x,y} (en este caso, {t, θ}).

Si se toman logaritmos neperianos en la expresión (5), obtendremos:

t I 4 γD θ ln Θ ln O 2 o− = (6)

Esto indica que lnΘes linealmente proporcional al tiempo (t), con una constante de proporcionalidad igual a O 2 I 4 γD

− (que es justamente la pendiente de la recta lnΘ = f(t) y cuyo valor absoluto coincide con β ).

(5)

3.2 Cálculo de la frecuencia de vibración, ω.

El valor de la frecuencia de vibración se puede conocer a partir de la medida directa del periodo, T, en la representación θ=f(t)

T 2π =

ω (7)

A partir de los valores calculados “γ” y “ω” y de la amplitud inicial “θo”, utilizando la

ecuación del movimiento (4) y dando diferentes valores a t (tiempo), obtengan los valores correspondientes a las diferentes amplitudes.

Representen conjuntamente los datos experimentales, θ=f(t), y los obtenidos a

partir de los valores calculados . Discutan si existen diferencias significativas entre ambos.

3.3 Cálculo de la velocidad angular instantánea

Para calcular la velocidad angular instantánea y con objeto de minimizar los errores experimentales se procederá como se describe a continuación. Utilizando únicamente 1 de cada 10 valores experimentales (θo,t), (θ10, t), (θ20,t),…. Se calculará la diferencia entre los

valores consecutivos de las posiciones y de los tiempos θ10(n+1)-θ10n y t10(n+1)-t10n, con n = 0,

1, 2,…para obtener la velocidad como:

t . ∆ θ ∆ = θ (8)

Representen la posición en función de la velocidad angular, θ=f(θ). Analicen y discutan la forma de la gráfica, relacionándola con el hecho de estar estudiando un movimiento amortiguado.

Datos

: considere el péndulo como una barra rectangular de masa, m= 40.4 g y

dimensiones las de la figura, siendo el espesor despreciable y la distancia entre los orificios de 9 mm.

Referencias

Documento similar

Cedulario se inicia a mediados del siglo XVIL, por sus propias cédulas puede advertirse que no estaba totalmente conquistada la Nueva Gali- cia, ya que a fines del siglo xvn y en

El nuevo Decreto reforzaba el poder militar al asumir el Comandante General del Reino Tserclaes de Tilly todos los poderes –militar, político, económico y gubernativo–; ampliaba

quiero también a Liseo porque en mi alma hay lugar para amar a cuantos veo... tiene mi gusto sujeto, 320 sin que pueda la razón,.. ni mande

The part I assessment is coordinated involving all MSCs and led by the RMS who prepares a draft assessment report, sends the request for information (RFI) with considerations,

La complejidad de las redes y diagramas que se han analizado es atribuible casi por entero al número de nodos —y, por tanto, de proposiciones— que tienen estas redes y diagramas.

d) que haya «identidad de órgano» (con identidad de Sala y Sección); e) que haya alteridad, es decir, que las sentencias aportadas sean de persona distinta a la recurrente, e) que

Ciaurriz quien, durante su primer arlo de estancia en Loyola 40 , catalogó sus fondos siguiendo la división previa a la que nos hemos referido; y si esta labor fue de

información que el individuo puede procesar por su sistema nervioso, y los factores relacionados van a influir en las habilidades y destrezas sociales, que pondrá al uso al