Ralph Hofmeier CEO. Irma Velazquez MSc COO.

20  Download (0)

Full text

(1)
(2)

(3)

FUNCIONAMIENTO DEL MÓDULO DE ENERGÍA

(4)

ESTRUCTURA

1.

Interruptor

2.

Salida de vapor

3.

Entrada de vapor

1

2

3

(5)

RENDIMIENTO

310.0 221.4 151.0 61.0 29.0 116.1 86.1 57.0 22.3 10.9 5.2 1 10 100 1,000 500 1,500 2,500 3,500 4,500 5,500 6,500 7,500 8,500 9,500 Pel kW Steam kg/h 5 3 2 1,5 Input pressure in bar(Pa)

(6)

(7)

EL MÓDULO DE ENERGÍA ENVA

§ 

Garantiza bajos costos de producción de energía a lo largo de la

vida de utilizacion.

§ 

Se enciende como un bypass y no causa ningún problema a los

procesos de producción existentes.

§

   Se puede integrar en los diseños de las plantas existentes.

§

   Aumenta la eficiencia de los recursos y reduce la huella de CO

2

.

§

   Muestra un ROI atractivo que suele ser menor de 3 años.

(8)

(9)

POSIBILIDADES

PROCESO SIN MÓDULO

 

Después del uso de

una cantidad

específica de vapor el restante inutilizado es expulsado a la

atmosfera por medio de chimeneas Otra alternativa, el vapor se condesa y se reutiliza en el proceso o es destruido por medio de un reductor de presión

PROCESO ENV

A

 

El Vapor no utilizado no se desperdicia y genera electricidad. La electricidad generada puede alimentar la red (Cogeneración de electricidad) Se genera energía en lugar de desperdiciar el vapor

VENT

AJAS

 

Reducción del abastecimiento externo de electricidad La conservación de energía y reducción de costos de energía en beneficio del negocios y el beneficio al medio ambiente. Reducción de las emisiones de CO2 y ahorro de combustibles fósiles Ahorro de energía primaria

(10)

Steam generator

Process Valves

Steam User

Three-way Valve Steam vent control

HD

Steam vent control

Three-way Valve Process Valves ND Condenser

Tank with Pump

EM AND CONDENSATION

EFFICIENCY IMPROVEMENT:

ü  Reduction of external energy procurement

ü  Generation of electric energy to feed into the grid

ü  Reduction of CO2 emission

ü  Pressure and temperature reduction

WITHOUT ENERGY MODULE

WITH ENERGY MODULE

Control Valve Steam dryer G p t bar °C Electricity

(11)

EM AND LET OFF STEAM

EFFICIENCY IMPROVEMENT:

ü  Reduction of external energy procurement

ü  Generation of electric energy to feed into the

grid

WITHOUT ENERGY MODULE

WITH ENERGY MODULE

Steam generator

Process Valves

Steam user

Three-way Valve Steam vent control

HD

Steam vent control

Three-way Valve Process Valves ND Control Valve Steam dryer G p t bar °C Electricity

(12)

Steam generator Process Valves . Steam User HD

Steam vent control

Three-way Valve Process Valves ND Reducing Valves Process Valves Control Valve Steam dryer G p t bar °C Electricity Check Valve

EM AND PRESSURE REDUCTION

EFFICIENCY IMPROVEMENT:

ü  Reduction of external energy procurement

ü  Generation of electric energy to feed into the grid

WITHOUT ENERGY MODULE

(13)

CAMPOS DE APLICACIÓN

INDUSTRIAS

§

Química

§

Alimentación y bebidas

§

industria farmacéutica

§

Industria / Las fábricas de papel

para trabajar madera

§

Fundiciones / Acero

§

industria del aluminio

§

Los productores de energía

independientes

§

Petroquimica / Refinerías

APLICACIONES

§

La condensación del vapor

§

Plantas de Energía a partir de

Biomasa

§

Cogeneración / CHP

§

Plantas de incineración de

residuos

§

Presión-reducingstation

§

Centrales térmicas solares

(14)

(15)

El ENVA puede ser utilizado en:

En una instalación municipal

En una fábrica de ladrillos de arena de

cal

En una fábrica de ladrillos

En una planta de energía de biomasa

Cocinas

La producción es de entre 63.000 y 637.000

kWh al año y en el ahorro de 40 a 407

(16)

MUNICIPAL UTILITY, LÜNEN

Technical Data:

Application: Back pressure system in series with

condenser

Input pressure: ~3.0 bar (abs) at 133 °C

Outlet pressure: 1.3 bar (abs) at 107 °C

Steam mass flow: ~500 kg/h saturated steam

Electrical output: ~11 kW

Electricity produced: ~88,000 kWh/a

CO2 saving: ~ 60 t/a

In co-operation with the Ardagh glassworks, "Stadtwerke Lünen" (municipal utility) use waste gas heat from the glass production for several purposes. The initial gas temperature of 460 °C is cooled down to 230 °C in a waste heat recovery steam generator (WRSG). On a high-pressure pipe the steam from the WRSG is then used by a steam motor to produce electrical energy. From that high-pressure pipe, a medium- and a low-high-pressure pipe supply the production plant with steam.

The Energy Module is integrated in the medium-pressure system in parallel to other facilities relevant for the production cycle. Only steam which is not required for other purposes is fed into the Energy Module with a pressure of about 3 bar at 133 °C.

(17)

SAND-LIME BRICK FACTORY

Technical Data:

Application: Expansion of steam for preheater

Input pressure: ~3.0 bar (abs) at 134 °C

Outlet pressure: 1.3 bar (abs) at 107 °C

Steam mass flow: ~1,400 kg/h saturated steam

Electrical output: ~18 kW

Electricity produced: ~63,000 kWh/a

CO2 saving: ~ 40 t/a

Set to work: April 2010

At the sand-lime brick factory in Höltinghausen, autoclaves are used for hydrothermal hardening of calcareous sandstone. The autoclaves are filled with steam and kept under a steam pressure of up to 16 bar for up to 8 hours, depending on the composition of the mixture. When the hardening process is completed the steam is supplied to other autoclaves. The remainder of the steam, which still has exergic energy, is reduced by means of the Energy Module from a pressure of 4 bar to a lower

pressure; at the same time electrical energy is produced. The expanded steam is used in a preheater for production of processed condensate and fresh water.

(18)

BRICKWORKS (SWITZERLAND)

Technical Data:

Application: Heat recovery and steam production

Input pressure: 4.0 bar (abs) at 144 °C

Outlet pressure: 1.2 bar (abs) at 105 °C

Steam mass flow: ~600 kg/h saturated steam

Electrical output: ~9 kW

Electricity produced: ~72,000 kWh/a

CO2 saving: ~46 t/a

Set to work: June 2011

In a kiln the bricks are baked and hardened. Thermo-oil is used for heat recovery. It is heated with the hot gas from the kiln and is then transported through pipes to sites where heat is required for

production purposes. Among others, waste heat is used for production of steam which is the fed into the Energy Module to produce electrical energy. The expanded steam with a temperature of

approximately 105 °C is used in a heat condenser for heating purposes.

(19)

BIOMASS POWER PLANT

Technical Data:

Application: Back pressure plant in series with a

condenser

Input pressure: 1.5 bar (abs) at 111 °C

Outlet pressure: 0.5 bar (abs) at 81 °C

Steam mass flow: ~5,000 kg/h saturated steam

Electrical output: ~75 kW

Electricity produced: ~637,000 kWh/a

CO2 saving: ~407 t/a

Set to work: October 2011

The biomass power plant is operated with biogenous solid fuels such as residuals from

wood-working or forest wood unsuitable as timber or lumber. Steam overheated in the waste heat boiler is supplied to a condensing turbine for production of electricity. The Energy Module is assembled between turbine and vaccum condenser so that the increased pressure difference of the remaining steam can be used for production of additional electrical energy. The condensate is processed and pumped back into the boiler.

(20)

COKERY

Technical Data:

Application: Pressure reducing station

Input pressure: 3.3 bar (abs) at 137 °C

Outlet pressure: 1.3 bar (abs) bei 107 °C

Steam mass flow: ~3,000 kg/h saturated steam

Electrical output: ~65 kW

Electricity produced: ~382,000 kWh/a

CO2 saving: ~244 t/a

Set to work: Sept. 2012

At the cokery, process steam is filtered by means of steam washers. For protection of the washers the pressure of the process steam must be reduced from 3.3 bar to 1.3 bar. The Energy Module is switched in parallel to an existing pressure reducing station. It expands the steam, reduces the pressure and produces electrical energy.

Figure

Updating...

References

Related subjects :