• No se han encontrado resultados

On an integral operator

N/A
N/A
Protected

Academic year: 2021

Share "On an integral operator"

Copied!
5
0
0

Texto completo

(1)

Contents lists available atScienceDirect

Applied Mathematics Letters

journal homepage:www.elsevier.com/locate/aml

On an integral operator

Virgil Pescar

a

, Daniel Breaz

b,∗

aDepartment of Mathematics, ‘‘Transilvania’’ University of Braşov, 500091, Braşov, Romania

bDepartment of Mathematics, ‘‘1 Decembrie 1918 ’’ University of Alba Iulia, 510009, Alba Iulia, Romania

a r t i c l e i n f o Article history:

Received 28 October 2009

Received in revised form 28 December 2009 Accepted 27 January 2010 Keywords: Analytic Integral operator Univalence Starlike

a b s t r a c t

In this paper we derive some criteria for univalence of a general integral operator for analytic functions in the open unit disk.

© 2010 Elsevier Ltd. All rights reserved.

1. Introduction

LetAbe the class of functions f

(

z

)

which are analytic in the open unit disk U

= {

z

C

: |

z

|

<

1

}

and f

(

0

) =

f0

(

0

) −

1

=

0

.

We denote bySthe subclass ofAconsisting of functions f

(

z

) ∈

Awhich are univalent inU. Miller and Mocanu [1] have considered the integral operator Mαgiven by

Mα

(

z

) =

1

α

z

Z

0

(

f

(

u

))

u−1du

α

,

z

U (1.1)

for functions f

(

z

)

belonging to the classAand for some complex numbers

α

,

α 6=

0. It is well known that Mα

(

z

) ∈

Sfor f

(

z

) ∈

S∗and

α >

0, whereSdenotes the subclass ofSconsisting of all starlike functions f

(

z

)

inU.

In this paper we consider the integral operator denoted by Jγ ,β, for

γ , β ∈

C defined by Jγ ,β

(

z

) =



1

γ

Z

z 0 u−β

(

f

(

u

))

1 γ+β−1 du



γ

,

z

U

.

(1.2)

From(1.2), for

β =

1 and

γ = α

we obtain the integral operator Mα

(

z

)

. If1γ

=

1 and

β ∈

C

− {

0

,

1

}

, from(1.2)we obtain the integral operator

Kβ

(

z

) =

Z

z 0



f

(

u

)

u



β du

,

z

U (1.3)

which is the integral operator Kim–Merkes [2]. ∗Corresponding author.

E-mail addresses:virgilpescar@unitbv.ro(V. Pescar),dbreaz@uab.ro,breazdaniel@yahoo.com(D. Breaz). 0893-9659/$ – see front matter©2010 Elsevier Ltd. All rights reserved.

(2)

From(1.2), forγ1

=

1 and

β =

1 we obtain the integral operator Alexander define by J1,1(z

) =

Z

z 0 f

(

u

)

u du

.

(1.4)

If

β =

0, from(1.2)we obtain the integral operator define by Jγ ,0(z

) =



1

γ

Z

z 0

(

f

(

u

))

γ1−1 du



γ

.

(1.5) 2. Preliminary results

To discuss our problems for univalence of integral operator Jγ ,βwe need the following lemmas.

Lemma 2.1 ([3]). Let

α

be a complex number with Re

α >

0 and f

(

z

) ∈

A. If f

(

z

)

satisfies 1

− |

z

|

2Reα Re

α

zf00

(

z

)

f0

(

z

)

1 (2.1)

for all z

U, then the function

Fα

(

z

) =



α

Z

z 0 uα−1f0

(

u

)

du



1α (2.2) is in the classS.

Lemma 2.2 (Schwarz [4]). Let f

(

z

)

be the function regular in the disk UR

= {

z

C

: |

z

|

<

R

}

with

|

f

(

z

)| <

M

,

M fixed. If f

(

z

)

has in z

=

0 one zero with multiplicity greater then m, then

|

f

(

z

)| ≤

M Rm

|

z

|

m

,

z

U

R (2.3)

the equality (in the inequality(2.3)for z

6=

0) can hold only if f

(

z

) =

eiθ M

Rmz m

,

where

θ

is constant.

Lemma 2.3 (Caratheodory [5,6]). Let f be analytic function inU, with f

(

0

) =

0. If f satisfies

Re f

(

z

) ≤

M (2.4)

for some M

>

0

,

then

(

1

− |

z

|

) |

f

(

z

)| ≤

2M

|

z

|

,

z

U

.

(2.5)

3. Main results

Theorem 3.1. Let

γ

be a complex number, Reγ1

>

0

,

f

A, f

(

z

) =

z

+

a2z2

+ · · ·

. If

Re



eiθ



zf0

(

z

)

f

(

z

)

1



|

γ |

Reγ1 4

(

1

+ |

γ | |β −

1

|

)

,

0

<

Re 1

γ

<

1 (3.1) or Re



eiθ



zf0

(

z

)

f

(

z

)

1



|

γ |

4

(

1

+ |

γ | |β −

1

|

)

,

Re 1

γ

1 (3.2)

(3)

Proof. The integral operator Jγ ,βhas the form Jγ ,β

(

z

) =

(

1

γ

Z

z 0 u1γ−1



f

(

u

)

u



γ1+β−1 du

)

γ

.

(3.3)

We consider the function g

(

z

) =

Z

z 0



f

(

u

)

u



γ1+β−1 du

.

(3.4) regular inU. We have zg00

(

z

)

g0

(

z

)

=



1

γ

+

β −

1

 

zf0

(

z

)

f

(

z

)

1



.

(3.5)

Let us consider the function

ψ(

z

) =

eiθ



zf0

(

z

)

f

(

z

)

1



,

z

U

, θ ∈

[0

,

2

π

] (3.6)

and we observe that

ψ (

0

) =

0.

By(3.1)andLemma 2.3. for Re1γ

(

0

,

1

)

we obtain

|

ψ(

z

)| ≤

|

z

| |

γ |

Re1γ

2

(

1

− |

z

|

) (

1

+ |

γ | |β −

1

|

)

,

z

U

, β ∈

C

.

(3.7)

From(3.2)andLemma 2.3, for Reγ1

[1

, ∞)

we have

|

ψ(

z

)| ≤

|

z

| |

γ |

2

(

1

− |

z

|

) (

1

+ |

γ | |β −

1

|

)

,

z

U

, β ∈

C

.

(3.8)

From(3.5)and(3.7)we get 1

− |

z

|

2Reγ1 Reγ1

zg00

(

z

)

g0

(

z

)



1

− |

z

|

2Reγ1



|

z

|

2

(

1

− |

z

|

)

,

z

U

,

Re 1

γ

(

0

,

1

) .

(3.9)

Because 1

− |

z

|

2Re1γ

1

− |

z

|

2for Re1γ

(

0

,

1

) ,

z

U, from(3.9)we have 1

− |

z

|

2Reγ1 Reγ1

zg00

(

z

)

g0

(

z

)

1 (3.10) for all z

U

,

Reγ1

(

0

,

1

)

. For Re1γ

[1

, ∞)

we have1−|z| 2Re 1γ Reγ1

1

− |

z

|

2

,

z

Uand from(3.5)and(3.8)we obtain

1

− |

z

|

2Reγ1 Reγ1

zg00

(

z

)

g0

(

z

)

1 (3.11) for all z

U, Reγ1

[1

, ∞)

.

Using(3.10)and(3.11)byLemma 2.1. it results that Jγ ,βgiven by(1.2)is in the classS. 

Corollary 3.2. Let

γ

be a complex number, Reγ1

>

0, f

A, f

(

z

) =

z

+

a2z2

+ · · ·

. If Re



eiθ



zf0

(

z

)

f

(

z

)

1



|

γ |

Reγ1 4

,

Re 1

γ

(

0

,

1

)

or Re



eiθ



zf0

(

z

)

f

(

z

)

1



|

γ |

4

,

Re 1

γ

[1

, ∞)

(4)

Proof. InTheorem 3.1. we take

β =

1

.



Corollary 3.3. Let

β ∈

C

− {

0

}

and f

A, f

(

z

) =

z

+

a2z2

+ · · ·

. If Re



eiθ



zf0

(

z

)

f

(

z

)

1



1 4

(

1

+ |

β −

1

|

)

for all z

Uand

θ ∈

[0

,

2

π

], then the integral operator Kβgiven by(1.3)is in the classS.

Proof. For

γ =

1, fromTheorem 3.1. we obtainCorollary 3.3. 

Corollary 3.4. Let

γ

be a complex number Reγ1

>

0 and f

A, f

(

z

) =

z

+

a2z2

+ · · ·

. If Re



eiθ



zf0

(

z

)

f

(

z

)

1



|

γ |

Reγ1 4

(

1

+ |

γ |)

,

Re 1

γ

(

0

,

1

)

or Re



eiθ



zf0

(

z

)

f

(

z

)

1



|

γ |

4

(

1

+ |

γ |)

,

Re 1

γ

[1

, ∞)

then the integral operator Jγ ,0given by(1.5)is in the classS.

Proof. InTheorem 3.1. we take

β =

0.  Theorem 3.5. Let

γ

be a complex number a

=

Re1

γ

>

0,

β ∈

C and f

(

z

) ∈

Awith the form f

(

z

) =

z

+

a2z2

+ · · ·

. If

zf0

(

z

)

f

(

z

)

1

(

2a

+

1

)

2a+1 2a

|

γ |

2

(

1

+ |

γ | |β −

1

|

)

(3.12)

for all z

U, then the integral operator Jγ ,βdefine by(1.2)is in the classS.

Proof. We observe that Jγ ,β

(

z

)

has the form(3.3).

Consider the function g

(

z

)

defined in formula(3.4), regular inU. We define the function p

(

z

) =

zgg000((zz))

,

z

Uand we obtain

p

(

z

) =

zg 00

(

z

)

g0

(

z

)

=



1

γ

+

β −

1

 

zf0

(

z

)

f

(

z

)

1



.

(3.13)

From(3.12)and(3.13)we have

|

p

(

z

)| ≤

(

2a

+

1

)

2a+1 2a

2 for all z

U.

The function p satisfies the condition p

(

0

) =

0 and applyingLemma 2.2we obtain

|

p

(

z

)| ≤

(

2a

+

1

)

2a+1 2a 2

|

z

|

,

z

U

.

(3.14) From(3.14)we get 1

− |

z

|

2a a

zg00

(

z

)

g0

(

z

)

(

2a

+

1

)

2a+1 2a 2 1

− |

z

|

2a



a

|

z

|

(3.15) for all z

U. Because max |z|≤1



1

− |

z

|

2a a

|

z

|



=

2

(

2a

+

1

)

2a2a+1 from(3.15)we obtain 1

− |

z

|

2a a

zg00

(

z

)

g0

(

z

)

1 (3.16) for all z

U.

(5)

From(3.16)and because g0

(

z

) =



f(z) z



1γ+β−1

, byLemma 2.1. we obtain that the integral operator Jγ ,βis in the class

S. 

Corollary 3.6. Let

γ

be a complex number, a

=

Reγ1

>

0 and f

(

z

) ∈

A, f

(

z

) =

z

+

a2z2

+ · · ·

. If

zf0

(

z

)

f

(

z

)

1

(

2a

+

1

)

2a+1 2a 2

|

γ |

for all z

U, then the integral operator Mγ given by(1.1)is in the classS.

Proof. For

β =

1, fromTheorem 3.5we obtain that Mγ

(

z

)

is in the classS.  Corollary 3.7. Let

β ∈

C

− {

0

,

1

}

and f

A, f

(

z

) =

z

+

a2z2

+ · · ·

. If

zf0

(

z

)

f

(

z

)

1

3

3 2

(

1

+ |

β −

1

|

)

for all z

U, then the integral operator Kβdefine by(1.3)belongs to classS.

Proof. We take 1

γ

=

1 inTheorem 3.5and we get Kβ

S. 

Corollary 3.8. Let the function f

(

z

) ∈

A, f

(

z

) =

z

+

a2z2

+ · · ·

. If

zf0

(

z

)

f

(

z

)

1

3

3 2

,

z

U

then, the integral operator J1,1define by(1.4)is in the classS.

Proof. InTheorem 3.5. we takeγ1

=

1 and

β =

1. 

Corollary 3.9. Let

γ

be a complex number a

=

Reγ1

>

0 and f

A, f

(

z

) =

z

+

a2z2

+

a3z3

+ · · ·

. If

zf0

(

z

)

f

(

z

)

1

(

2a

+

1

)

2 2a+1 2a

·

|

γ |

1

+ |

γ |

for all z

U, then the integral operator Jγ ,0given by(1.5)is in the classS.

Proof. For

β =

0, fromTheorem 3.5we have Jγ ,0

S. 

References

[1] S.S. Miller, P.T. Mocanu, Differential Subordinations, Theory and Applications, in: Monographs and Text Books in Pure and Applied Mathematics, vol. 255, Marcel Dekker, New York, 2000.

[2] Y.J. Kim, E.P. Merkes, On an integral of powers of a Spirallike function, Kyungpook Math. J. 12 (1972) 249–253.

[3] N.N. Pascu, On a univalence criterion II, Itinerant Seminar Functional Equations, Approximation and Convexity, (Cluj Napoca, 1985), Preprint, University ‘‘Babeş–Bolyai’’, Cluj Napoca, 85 (1985), 153–154.

[4] O. Mayer, Functions Theory of One Complex Variable, Bucureşti, 1981 (Romanian). [5] D. Blezu, On univalence criteria, General Mathematics 14 (1) (2006) 87–93.

Referencias

Documento similar

The non-trivial cohomology groups are related to the primitive symmetric invariant tensors [51, 22, 38, 27, 13, 49, 48, 47] on mathcalG, which in turn determine Casimir elements in

is in line with the assumption that some players are disapproval–averse, because the coopera- tion rate in the control treatment is strictly positive and in the expectations

International Conference on Biometrics: Theory, Applications and

Existing psychosocial barriers in society are capable of having an overly negative impact on women in science, technology, engineering and mathematics (STEM). And it can be

The radiative transfer equation (RTE) and its formal solution (both in differential and integral form).. •

17,18 Contrary to graphene, the band gap in ML-MDS separating the valence and conduction bands is naturally large and due to the absence of inversion symmetry in ML-MDS the

The regulation of more than thousand vitamin D target genes in colon carcinoma cells, normal stem cells, cancer stem cells, stromal NFs and CAFs as well as immune cells of the

The proof relies on an integral representation of the fractional Laplace-Beltrami operator on a general compact manifold and an instantaneous continuity result for weak solutions