• No se han encontrado resultados

Estrellas de Neutrones:

N/A
N/A
Protected

Academic year: 2021

Share "Estrellas de Neutrones:"

Copied!
27
0
0

Texto completo

(1)

Estrellas de Neutrones:

Física extrema en el Universo

Ricardo Heras

Preparatoria Abierta-SEP

www.ricardoheras.com

(2)

LAS MISTERIOSAS VELOCIDADES DE LOS PULSARES

• Después de brillar por millones de años, algunas

estrellas gigantes colapsan gravitacionalmente y en

fracción de segundos se desintegran.

• Un producto notable de esta desintegración es una

ESTRELLA DE NEUTRONES.

• Aquí platicaré de las estrellas de neutrones y en

particular sobre sus enigmáticas velocidades de

(3)

Las estrellas de neutrones nacen

de eventos catastróficos conocidos

como supernovas

La energía liberada en la

explosión es de ̴ 𝟏𝟎

𝟓𝟑

ergs.

(4)
(5)

SN 1054: el Cangrejo

El 17 agosto de 1054, el astrólogo del imperio chino

Yang Wei escribió:

“Observé modestamente que una estrella nueva apareció.

Arriba tiene una débil incandescencia amarilla. Si se analizan

cuidadosamente los pronósticos concernientes al emperador,

la interpretación es la siguiente: el hecho que la estrella

forastera no rebase a Pi y a su brillo, significa que el

emperador es una persona de gran valor y dignidad.”

(6)
(7)

Año 1572

El 11 de noviembre de 1572 una supernova fue observada por

el astrónomo danés Tycho Brahe. En ese entonces era más

brillante que Venus. En marzo de 1574 su brillo había disminuido

de nuevo y ya no se veía a simple. A esta supernova se le conoce

como Nova Tycho.

(8)

Año 1604

En octubre de 1604 el astrónomo alemán Johannes Kepler observó una

supernova. El estudio que hizo sobre ella fue tan extenso que

(9)

Año 1934

En 1934, Walter Baade y Fritz Zwicky propusieron la

idea teórica de que una estrella de neutrones

(10)

Año 1967

En 1967, Jocelyn Bell y Antony Hewish

descubrieron la existencia

de estrellas de neutrones

mientras buscaban

(11)
(12)
(13)

Australian Telescope National Facility

Después de 40 años desde su descubrimiento se han

encontrado más de 2000 estrellas de neutrones. Hoy en día

la astrofísica de estrellas de neutrones es ampliamente

investigada en todo el mundo y es uno de los campos más

prometedores de la astrofísica. También ha contribuido

fuertemente para el desarrollo de la radio astronomía

instrumental

(14)

Un remanente estelar debido al núcleo colapsado de una

estrella gigante después de agotar su combustible

nuclear y explotar como una supernova.

Radio ̴ 10 km

Masa ̴ 1.4 masas solares

Densidad ̴𝟏𝟎

𝟏𝟒

g/𝒄𝒎

𝟑

(15)

El Teorema de Pines

Sección 1.5 del libro Neutron Stars: equation of state and structure (P. Haensel)

« Las estrellas de neutrones son súper-estrellas»

Demostración:

Las estrellas de neutrones son súper-densas,

súper-rotantes, súper-magnéticas, súper-conductoras,

súper-aceleradoras de partículas, …. súper-veloces!!

(16)

LAS ENIGMATICAS VELOCIDADES DE LOS PULSARES

De acuerdo al catálogo de pulsares ATNF el promedio

de sus velocidades espaciales es de 450 km/s.

10 de éstos arriba de 1000 km/s!

La velocidad espacial es mucho mayor que la velocidad de

la estrella progenitora, entonces parece que la estrella de

neutrones recibió un adicional impulso inicial cuyo origen

es un misterio en la física de las estrellas de neutrones

(17)

Pulsar Kicks:

¿Pero cúal es su origen?

(18)

Basic assumptions in the

Birth-ultrafast-magnetic-field-decay model:

During its birth process a neutron star experiences: 1. An increase of its period from the initial value P0 to the current value Ps

(a change of rotational energy)

2. An exponential decay of its magnetic field from the initial value B0 to the current surface value Bs

(a change of radiative energy)

3. An increase of its space velocity from the initial value V0 to the current value V

(19)

Basic assumptions……

4. These birth energy changes are connected by

where and are the radius and mass of the neutron star; the speed of light and the characteristic time of the exponential field decay and the initial velocity is taken to be zero. According to the green formula, the radiation loss and increase of kinetic energy are both at the expense of rotational energy.

[A similar equation but with a different radiative term is the basis of the “Rocket Model” proposed by Harrison ad Tademaru, ApJ , 201, 447 (1975), See Eq. (12)]

(20)

Implications of the model:

For the Crab pulsar the equation yields if and

For the magnetar J1809-1943 the equation gives if and

For the IMSP B1257+12 the equation yields if and

The characteristic time is consistent with the idea that all neutron stars are born with magnetic fields in the range of and initial periods in range The time is the shortest theoretical time for a physical kick

(21)

Implications of the model……..

From the exponential law and

It follows that is the time decay from to . For field decays from one to eight orders of magnitude one has and therefore

indicating an ultrafast magnetic field decay! With the energy conversion takes the form

This formula is the fundamental equation of the birth-ultrafast-magnetic-field-decay model of neutron stars

(22)

Implications of the model……..

From the exponential law and

It follows that is the time decay from to . For field decays from one to eight orders of magnitude one has and therefore

indicating an ultrafast magnetic field decay! With the energy conversion takes the form

This formula is the fundamental equation of the birth-ultrafast-magnetic-field-decay model of neutron stars

(23)

According to the red formula, the radiation loss and increase of kinetic energy are both at the expense of rotational energy.

(i) All neutron stars are born with magnetic fields in the range of and initial periods in th range of . Neutron stars are born

with magnetic fields of magnetars and periods of millisecond pulsars

(ii) Very tiny fractions of second after their

formation, neutron stars display their current periods and magnetic fields.

(24)

Taking into account that the process is ultrafast the speed can be approximated by which can be used together with the green ad reed

formulas to obtain the birth acceleration

The birth acceleration is determined by the initial

period and magnetic field: P0 and B0 and the current period and magnetic field: Ps and Bs

(25)
(26)

The birth accelerations of neutron stars

are in the range of

These initial accelerations occuring in

the interval of

They explain the enigmatic (observed)

(27)

e-mail: ricardoherasosorno@gmail.com website: http://www.ricardoheras.com

Referencias

Documento similar

ROC curve (top panel) and purity curve for galaxies (middle panel) and stars (bottom panel) when only morphological parameters in the magnitude range 15 ≤ r ≤ 23.5 of the XMATCH

Depending on rotational frequency and stellar mass, such densities are easily surpassed in the cores of neutron stars so that gravity may have broken up the neutrons (n) and protons

ü  Discovery of millisecond pulsation from accreting neutron stars in LMXB supports how mass accretion is able to effectively spin-up a neutron star .!. ü  PSR

PASS is intended to perform a permanent all-sky survey, obtaining time-series photometry from all bright stars that are visible in one or more observing locations, with the

• The Initial mass function and the nucleosynthesis stellar yields or production of new elements in stars, are two essential inputs for the chemical evolution

In this paper, we have examined the onset of octupole deformation and the related spectroscopic properties in neutron-rich lanthanide nuclei with neutron numbers 86  N  94 using

(Spectroscopic typing is facilitated by the fact that, due to the fast ejecta velocities expected of KNe, 0.03 –0.30c, their spectra are expected to be featureless or only have

Second, the sample of less massive (M  ≤ 1.5 M  ) giant stars with planets covers the same mass range as the MS pro- genitors and subgiant stars where the metal signature has