• No se han encontrado resultados

Modelado Numérico de Tsunamis

N/A
N/A
Protected

Academic year: 2021

Share "Modelado Numérico de Tsunamis"

Copied!
25
0
0

Texto completo

(1)

Modelado Numérico de Tsunamis

un barniz…y algunos desafíos

Patricio Catalan

Profesor Adjunto

Departamento de Obras Civiles

UTFSM

(2)
(3)

¿Por Dónde Comenzar?

Un ejercicio de modelación numérica en realidad es un ejercicio de simulación, donde el

objetivo final es lograr una reproducción lo más precisa de la realidad o fenómeno de

interés

Es un problema complejo, que cuenta al menos con tres elementos claves

3

Algoritmos y

Software

Matemática

Modelado

- Física

Ridgway Scott, PASI 2013

Objetivos:

1. Desarrollar modelos matemáticos apropiados que describan la física de los tsunami

(4)
(5)

Partamos por la física

Después de todo, el objetivo/problema es reproducir la realidad

Previo… que representa para Uds. esto:

5

@p

@x

(6)

Definición de un tsunami

Perturbación repentina de la superficie de un cuerpo de agua, de gran escala, que genera

ondas de períodos muy largos

La definición formal

Serie de ondas oceánicas de período entre 5 y 60 minutos generadas por una

perturbación a gran escala del océano.

6

2004 Indian Ocean Tsunamis

Comparisons between model results and Jason-1 measurements

(Wang and Liu, JHR 44, 2006)

(left) and TOPEX measurements (right)

Wave amplitude <0.6 m

Wavelength > 300 km

1/17/13%

15%

(7)

Ok…pero…

Esa definición no nos ayuda mucho, pero si se analizan los

datos se tiene lo siguiente

El tsunami es una onda de período muy largo…luego

su longitud es grande también:

L

L >

+100 km

Se propagan en el oceáno (principalmente), cuya

profundidad media es

h

= 4 km

Luego, la relación

h/L

es

≪ .

¿Por qué es relevante esto?

Por que en teoría de oleaje, si esa razón es pequeña, se

dice que es una onda de aguas someras

En ese caso, la velocidad de propagación de la onda es

C=√ (gh)

Resultados de campo sugieren que al menos el frente

principal se comporta así

7

C%=%Speed%of%the%leading%waves%

%%

%

C%=%212.7%m/s%and%%h%=%4.61%km%for%

Tohoku%tsunamis%

%

C%=%211.9%m/s%and%h%=%4.58%km%for%

Queen0Charlo[e%%%tsunamis%

%

C%=%190.4%%m/s%and%h%=%3.70%km%for%

Chile%tsunami%%

%

%

The%leading%wave%appears%to%

behave%like%a%linear%shallow%wave!%%

%

%

Note:%3.97km/s%%Rayleigh%wave%

speed%

%

2

/ = mean depth

h C

=

g

1/17/13% 20%

(8)

Algunas Ventajas de la Escala de los Tsunamis

Dos medidas de linealidad de los procesos

Profundidad/Longitud:

h/L

Muy pequeño en el oceáno abierto : lineal

Permite aproximación de aguas someras (velocidad uniforme en la

vertical)

Amplitud/Profundidad:

A/h

Relevante en aguas someras y zona de inundación : No lineal

(9)

Luego

Luego, es aparente que los tsunamis pueden ser modelados por teorías de onda larga…

¿Que significa esto?

Vamos a revisar un poco la mecánica de fluidos fundamental.

Requerimos poder representar el comportamiento cinemático y dinámico de un fluido.

Cinemático: Cómo se mueve, sin importar las fuerzas

Dinámico: Incorporando las fuerzas.

(10)

Cinemática: Conservación de la masa

10

d

dt

I

8

⇢d

8 +

I

A

⇢~v

· ˆndA = 0

D

Dt

+

· ⇥v = 0

(11)

Dinámica

Esta es fácil:

F = m*a

(12)

Dinámica: Ecuación de Navier-Stokes

Supuestos: Fluido newtoniano, flujo incompresible

12

@u

@t

+ (~u · r)~u = ~g

1

rp + ⌫r

2

~u

Aceleración

Local

Aceleración

Advectiva

Fuerza de gravedad


(por unidad de

masa)

Fuerza de superficie

debida a la presión


Fuerza de superficie

debida a la

esfuerzos de corte

de origen viscoso


(13)

El sistema así no nos es útil…

Nos aprovechamos de la condición de aguas someras

Hipótesis:

Velocidad vertical despreciable:

w=0

Velocidad horizontal prácticamente uniforme en la vertical:

u(z)=u , v(z)=0

Distribución de presión hidrostática (depende linealmente de la profundidad

solamente)

Esto permite integrar las ecuaciones entre el fondo del mar y la superficie, provistas las

condiciones de contorno siguientes

Velocidad paralela al fondo

Velocidad paralela a la superficie

Esfuerzos en la superficie despreciables

Esfuerzos de fondo representados a través de la fricción

La integración requiere del uso de la Regla de Leibniz para evaluar las cantidades en la

frontera

(14)

El sistema final

14

NON LINEAR SHALLOW WATER EQUATIONS

1

@H

@t

+

r · (H~u) = O(µ

2

)

@~u

@t

+ ✏~u

· r~u + r⌘ = O(µ

2

)

CONTINUIDAD

MOMENTUM

✏ =

A

h

µ

2

=

h

L

2

H = h + ✏⌘

⌘ : Desplazamiento de la superficie libre

~u : Vector velocidad

(15)

NLSWE

EDP de tipo hiperbólico ✔

😄

Permite uso de expresiones explícitas

Puede presentar discontinuidades/shocks

Requiere de gran precisión sin oscilaciones cerca de las discontinuidades ✗

Requiere de cuidado en zonas secas/mojadas ✗

Requiere de otros términos ad-hoc

Coriolis

Rotura

15

Technology for a better society

The Shallow Water Equations

A Hyperbolic partial differential equation

Enables explicit schemes

Solutions form discontinuities / shocks

Require high accuracy in smooth parts

without oscillations near discontinuities

Solutions include dry areas

Negative water depths ruin simulations

Often high requirements to accuracy

Order of spatial/temporal discretization

Floating point rounding errors

Can be difficult to capture "lake at rest"

A standing wave or shock

27

COMMUN.MATH.SCI. ⃝c 2007 International Press

Vol. 5, No. 1, pp. 133–160

A SECOND-ORDER WELL-BALANCED POSITIVITY PRESERVING

CENTRAL-UPWIND SCHEME FOR THE SAINT-VENANT SYSTEM∗

ALEXANDER KURGANOV† AND GUERGANA PETROVA

Abstract. A family of Godunov-type central-upwind schemes for the Saint-Venant system of shallow water equations has been first introduced in [A. Kurganov and D. Levy, M2AN Math. Model. Numer. Anal., 36 (2002), pp. 397–425]. Depending on the reconstruction step, the second-order versions of the schemes there could be made either well-balanced or positivity preserving, but fail to satisfy both properties simultaneously.

Here, we introduce an improved second-order central-upwind scheme which, unlike its forerun-ners, is capable to both preserve stationary steady states (lake at rest) and to guarantee the positivity of the computed fluid depth. Another novel property of the proposed scheme is its applicability to models with discontinuous bottom topography. We demonstrate these features of the new scheme, as well as its high resolution and robustness in a number of one- and two-dimensional examples.

Key words. Hyperbolic systems of conservation and balance laws, semi-discrete central-upwind schemes, Saint-Venant system of shallow water equations.

AMS subject classifications. 65M99, 35L65

1. Introduction

We are interested in developing a simple, accurate, and robust numerical method for the Saint-Venant system of shallow water equations, which was introduced more than 130 years ago in [24] and is still widely used to model flows in rivers and coastal areas. In the one-dimensional (1-D) case, the Saint-Venant system reads:

⎧ ⎨ ⎩ ht+ (hu)x= 0, (hu)t+ $ hu2+ 1 2gh 2% x= −ghB ′, (1.1)

where B(x) represents the bottom elevation, h is the fluid depth above the bottom, u is the velocity, and g is the gravitational constant.

The system (1.1) admits smooth steady-state solutions, satisfying hu = Const, u

2

2 + g(h + B) = Const,

as well as nonsmooth steady-state solutions. Both are physically relevant and thus practically important. A good numerical method for the system (1.1) should ac-curately capture both the steady states and their small perturbations (quasi-steady flows). From practical point of view, one of the most important steady-state solutions is a stationary one (lake at rest):

u = 0, h + B = Const. (1.2)

The methods that exactly preserve such solutions are called well-balanced, and we refer the reader to [2, 4, 8, 10, 12, 16, 17, 20, 21, 22, 23, 27, 28], where a variety of high-order well-balanced schemes for the Saint-Venant system can be found. Even though

Received: June 16, 2006; accepted (in revised version): December 9, 2006. Communicated by

Lorenzo Pareschi.

Mathematics Department, Tulane University, New Orleans, LA 70118, (kurganov@math.tulane.

(16)

Modelo ampliado

16

Aceleración

de Coriolis

Presión no

hidrostática

Fricción de

Fondo

Difusión

Horizontal

Con esto, en principio el problema de encontrar un modelo matemático está solucionado

Algoritmos y

Software

Matemática

Modelado

(17)

¿Cómo se comportan estos modelos?

Probamos 7 modelos de uso frecuente en Chile que tienen como ecuaciones gobernantes

las presentadas anteriormente.

Para minimizar los efectos propios del tsunami, tratamos de mantener las mismas

configuraciones y dominio

Mismas condiciones iniciales

Mismo dominio de cálculo

Sin embargo, fuimos variando la resolución de la discretización

(18)

Comparación IntraModelos

18

Elapsed Time [Min]

0 50 100 150 200 250 300 η [m] -6 -4 -2 0 2 4 6 Alejandro*Alcántar* Master*Student,** Departamento*de*Obras*Civiles,* Universidad*Técnica*Federico*Santa*Maria,*Valparaiso,*Chile,*Valparaiso,*Chile,* alejandro.alcantar@alumnos.usm.cl* Patricio*Catalán* Associate*Professor,** Departamento*de*Obras*Civiles,* Universidad*Técnica*Federico*Santa*Maria,*Valparaiso,*Chile,* patricio.catalan@usm.cl*

22327: Quantification of Inter-Tsunami Model

Variability for Hazard Assessment Studies

S21A-4416

Models*and*Domain

Context

Sample*InterGModel*Results

• Tsunami(modeling(is(an(essential(step(in(estimating(hazard(for(a(wide(variety(of(purposes.(For( instance,( if( the( goal( is( to( estimate( tsunami( hazard,( a( forecast( is( made( either( adopting( a( deterministic( approach( on( which( an( extreme( event( is( considered,( or( using( probabilistic( assessments.( The( latter( are( still( matter( of( active( research( and( have( not( reach( a( widespread( operational(level(yet.(

• In(this(goal,(several(models(for(tsunami(propagation(and(inundation(exist(which(are(available(for( potential(users(under(different(licensing(options.(Typically,(all(the(models(tested(are(based(on( the( Nonlinear( Shallow( Water( Equations,( although( they( might( differ( in( the( numerical( implementation(and(the(treatment(of(adChoc(terms(such(as(frictional(forces.(( • Most(of(these(models(have(been(benchmarked(against(existing(analytical,(laboratory(and(field( data(sets((Synolakis*et*al.*2008).(However,(benchmarking(is(usually(carried(out(under(optimal( conditions(in(terms(of(data(and(most(importantly,(spatial(and(temporal(resolution.( • However,(in(practice,(data(might(not(be(of(the(required(quality(in(many(areas.(This(is(especially( true(for(bathymetric(data,(which(has(been(shown(before(to(have(a(relevant(effect(on(the(results.( In(addition,(some(parameters(relevant(for(the(process(are(based(solely(on(the(decision(of(the( user.(

Objective

To( assess( the( variability( in( the( prediction( across( different( models( typically( used( in( engineering( practice.(

Methodology

1)(We(intend(to(minimize(effects(that(could(not(be(attributed(to(model(differences.(Therefore,(we( run(the(simulations(using( •A(common(bathymetry:(Composed(of(( ⁃GEBCO(data(at(30”(resolution(for(the(regional(domain.( ⁃High(resolution(bathymetry(from(Nautical(Charts(at(two(location(of(interest.( ( ( •A(common(tsunami(source,(using(a(Planar(Fault(Model(for(the(Mw(8.8(Maule(Earthquake.(The( initial(sea(level(deformation(was(estimated(by(each(model(using((their(own(internal(engines(but( using(the(same(parameters(for(the(Okada*(1985)(formulation.( 2)(We(run(several(configurations(for(each(model,(using(similar(nesting(ranging(from(coarse(model( runs(at(only(30”(resolution,(to(high(resolution(nesting(up(to(3”(at(the(point(of(interest.(The(CFL( condition(was(kept(in(the(range(0.7(for(all(cases.( •The(goal(of(this(was(to(test(the(model(variability(with(changing(grid(resolution.(

3)( We( also( tested( different( model( runs( with( varying( Manning( friction( coefficient,( from( 0.010( C( 0.032( •The(goal(of(this(was(to(test(the(model(variability(with(changing(friction.( 4)(We(selected(4(target(locations(for(the(comparison.(( •Two(in(the(inner(bay(at(Valparaíso(and(Talcahuano(where(tide(gages(operated(by(the(National( Hydrographic(Service(of(the(Chilean(Navy(were(present(for(the(2010(event.( •Two(at(50(m(and(100m(deep,(outside(the(bay(to(reduce(local(bay(effects.(

C

onclusions*and*Future*Work

• Despite(sharing(the(same(fundamental(model(equations,(the(models(tested(can(show(a(large( degree(of(variability(in(the(deterministic(estimation(of(tsunami(amplitude(time(series(when(used( in((forecast(mode.( • As(expected,(this(variability(is(greatly(reduced(if(high(resolution(bathymetric(data(is(available.( However,(the(response(across(models(still(shows(a(considerable(degree(of(variability,(with(peak( amplitudes(varying(up(to(2(m((50%(of(peak(amplitude)(for(the(cases(tested.( • This(level(of(variability(across(models(have(been(observed(also(in(2D(models(based(on(the(NSWE( applied(to(Hydraulic(Modeling((e.g.(Neelz*and*Pender,*2010)(

• Future( work( considers( expanding( the( analysis( to( deeper( water,( to( minimize( interpolation(( artifacts(and((resonant(effects.( • Also,(comparison(with(actual(tsunami(time(series((available(from(the(Mw8.1(Iquique(Earthquake( will(be(carried(out.(

Acknowledgements

This(work(has(been(funded(by(the(Chilean(National(Science(and(technology(Committee(CONICYT( through(FONDEF(Grant((D11I1119(and(CONICYT/FONDAP/15110017(program(CIGIDEN

We( tested( 7( models( which( are( commonly( used( in( Chile( either( by( scientists( and( engineers.(These(are( •TUNAMI( •COMCOT(( •NEOWAVE(( •GeoClaw(( •TsunAWI(( •MIKE21((( •Delft3D

Results

Sample*IntraGmodel*Results

These(figures(show(all(the(time(series(at(the(tide(gage(for(a(given(model(under(changing(bathymetric(size(and(fixed(Manning(roughness( coefficient((thin(lines).(The(dark(lines(are(the(average(time(series(and(the(dotted(line(is(the(standard(deviation(among(runs.( IntraCmodel(results(could(be(grouped(in(three(typical(model(response(to(changes(in(grid(resolution:( Case B • (Case*A)(High(sensitivity(in(free(surface(displacement(but(negligible(

dependency( on( phase( (arrival( time).( Variability,( estimated( by( the( standard(deviation,(was(comparable(to(the(average(signal.(

• 2(models((fell(into(this(group.

(Case* B)( Large( sensitivity( in( free( surface( displacement( and( a(

notorious( dependency( on( phase( (arrival( time).( Variability( was( comparable(to(the(average(signal.( • 2(models(fell(into(this(group.( tide gages Longitude, W La titude , S

Elapsed Time [Min]

0 50 100 150 200 250 300 η [m] -6 -4 -2 0 2 4 6 Case A

(Case* C)( Reduced( sensitivity( in( free( surface( displacement( but( ( it(

increases( significantly( at( crest( and( troughs.( Variability( was( greatly( reduced( when( compared( to( other( cases,( showing( a( remarkable( consistency(in(the(phase.(

• 3models(fell(into(this(group.(

Elapsed Time [Min]

0 50 100 150 200 250 300 η [m] -6 -4 -2 0 2 4 6 Case C These(figures(show(the(time(series(of(all(models(for(a(fixed(Manning(roughness(factor(and(comparable(grid( settings.(

Elapsed Time [Min]

0 50 100 150 200 250 300 η [m] -10 -8 -6 -4 -2 0 2 4 6 8 10

Elapsed Time [Min]

0 50 100 150 200 250 300 η [m] -10 -8 -6 -4 -2 0 2 4 6 8 10

(Coarse* Grid)( A( high( degree( of( variability( is(

observed( both( in( amplitude( and( arrival( times.( Peak( amplitudes( vary( between( 1C6,( with( large( variations(in(temporal(response.((

• Overall(structure(of(the(time(series(is(controlled(by( resonant(conditions(at(bay(level.

(Finer* Grid)( Most( models( tend( to( yield( a( similar(

temporal( response,( with( comparable( peak(( amplitudes( and( phases,( although( the( location( of( the(maxima(can(vary(significantly(in(time.((

• A( couple( of( models( deviate( notoriously,( which( is( under(further(investigation.

References

Néelz,(S.(&(Pender,(G.((2010),('Benchmarking(of(2D(Hydraulic(Modelling(Packages'(SCHO0510BSNOCECP),(Technical(report,(Environment( Agency(Science(Report(,SC080035/R2,(Rio(House,(Waterside(Drive,(Aztec(West,(Almondsbury,(Bristol,(BS32(4UD.( Synolakis,(C.;(Bernard,(E.;(Titov,(V.;(Kвnoglu,(U.(&(González,(F.((2008),('Validation(and(verification(of(tsunami(numerical(models',(Pure(and( Applied(Geophysics(165(11),(2197CC2228.(

(19)

Comparación InterModelos

19

Elapsed Time [Min]

0 50 100 150 200 250 300 η [m] -6 -4 -2 0 2 4 6

Alejandro*Alcántar*

Master*Student,**

Departamento*de*Obras*Civiles,*

Universidad*Técnica*Federico*Santa*Maria,*Valparaiso,*Chile,*Valparaiso,*Chile,*

alejandro.alcantar@alumnos.usm.cl*

Patricio*Catalán*

Associate*Professor,**

Departamento*de*Obras*Civiles,*

Universidad*Técnica*Federico*Santa*Maria,*Valparaiso,*Chile,*

patricio.catalan@usm.cl*

22327: Quantification of Inter-Tsunami Model

Variability for Hazard Assessment Studies

S21A-4416

Models*and*Domain

Context

Sample*InterGModel*Results

Tsunami(modeling(is(an(essential(step(in(estimating(hazard(for(a(wide(variety(of(purposes.(For(

instance,( if( the( goal( is( to( estimate( tsunami( hazard,( a( forecast( is( made( either( adopting( a(

deterministic( approach( on( which( an( extreme( event( is( considered,( or( using( probabilistic(

assessments.( The( latter( are( still( matter( of( active( research( and( have( not( reach( a( widespread(

operational(level(yet.(

In(this(goal,(several(models(for(tsunami(propagation(and(inundation(exist(which(are(available(for(

potential(users(under(different(licensing(options.(Typically,(all(the(models(tested(are(based(on(

the( Nonlinear( Shallow( Water( Equations,( although( they( might( differ( in( the( numerical(

implementation(and(the(treatment(of(adChoc(terms(such(as(frictional(forces.((

Most(of(these(models(have(been(benchmarked(against(existing(analytical,(laboratory(and(field(

data(sets((Synolakis*et*al.*2008).(However,(benchmarking(is(usually(carried(out(under(optimal(

conditions(in(terms(of(data(and(most(importantly,(spatial(and(temporal(resolution.(

However,(in(practice,(data(might(not(be(of(the(required(quality(in(many(areas.(This(is(especially(

true(for(bathymetric(data,(which(has(been(shown(before(to(have(a(relevant(effect(on(the(results.(

In(addition,(some(parameters(relevant(for(the(process(are(based(solely(on(the(decision(of(the(

user.(

Objective

To( assess( the( variability( in( the( prediction( across( different( models( typically( used( in( engineering(

practice.(

Methodology

1)(We(intend(to(minimize(effects(that(could(not(be(attributed(to(model(differences.(Therefore,(we(

run(the(simulations(using(

•A(common(bathymetry:(Composed(of((

⁃GEBCO(data(at(30”(resolution(for(the(regional(domain.(

⁃High(resolution(bathymetry(from(Nautical(Charts(at(two(location(of(interest.(

(

(

•A(common(tsunami(source,(using(a(Planar(Fault(Model(for(the(Mw(8.8(Maule(Earthquake.(The(

initial(sea(level(deformation(was(estimated(by(each(model(using((their(own(internal(engines(but(

using(the(same(parameters(for(the(Okada*(1985)(formulation.(

2)(We(run(several(configurations(for(each(model,(using(similar(nesting(ranging(from(coarse(model(

runs(at(only(30”(resolution,(to(high(resolution(nesting(up(to(3”(at(the(point(of(interest.(The(CFL(

condition(was(kept(in(the(range(0.7(for(all(cases.(

•The(goal(of(this(was(to(test(the(model(variability(with(changing(grid(resolution.(

3)( We( also( tested( different( model( runs( with( varying( Manning( friction( coefficient,( from( 0.010( C(

0.032(

•The(goal(of(this(was(to(test(the(model(variability(with(changing(friction.(

4)(We(selected(4(target(locations(for(the(comparison.((

•Two(in(the(inner(bay(at(Valparaíso(and(Talcahuano(where(tide(gages(operated(by(the(National(

Hydrographic(Service(of(the(Chilean(Navy(were(present(for(the(2010(event.(

C

onclusions*and*Future*Work

Despite(sharing(the(same(fundamental(model(equations,(the(models(tested(can(show(a(large(

degree(of(variability(in(the(deterministic(estimation(of(tsunami(amplitude(time(series(when(used(

in((forecast(mode.(

As(expected,(this(variability(is(greatly(reduced(if(high(resolution(bathymetric(data(is(available.(

However,(the(response(across(models(still(shows(a(considerable(degree(of(variability,(with(peak(

amplitudes(varying(up(to(2(m((50%(of(peak(amplitude)(for(the(cases(tested.(

This(level(of(variability(across(models(have(been(observed(also(in(2D(models(based(on(the(NSWE(

applied(to(Hydraulic(Modeling((e.g.(Neelz*and*Pender,*2010)(

Future( work( considers( expanding( the( analysis( to( deeper( water,( to( minimize( interpolation((

artifacts(and((resonant(effects.(

Also,(comparison(with(actual(tsunami(time(series((available(from(the(Mw8.1(Iquique(Earthquake(

will(be(carried(out.(

Acknowledgements

This(work(has(been(funded(by(the(Chilean(National(Science(and(technology(Committee(CONICYT(

through(FONDEF(Grant((D11I1119(and(CONICYT/FONDAP/15110017(program(CIGIDEN

We( tested( 7( models( which( are( commonly(

used( in( Chile( either( by( scientists( and(

engineers.(These(are(

•TUNAMI(

•COMCOT((

•NEOWAVE((

•GeoClaw((

•TsunAWI((

•MIKE21(((

•Delft3D

Results

Sample*IntraGmodel*Results

These(figures(show(all(the(time(series(at(the(tide(gage(for(a(given(model(under(changing(bathymetric(size(and(fixed(Manning(roughness(

coefficient((thin(lines).(The(dark(lines(are(the(average(time(series(and(the(dotted(line(is(the(standard(deviation(among(runs.(

IntraCmodel(results(could(be(grouped(in(three(typical(model(response(to(changes(in(grid(resolution:(

Case B

(Case*A)(High(sensitivity(in(free(surface(displacement(but(negligible(

dependency( on( phase( (arrival( time).( Variability,( estimated( by( the(

standard(deviation,(was(comparable(to(the(average(signal.(

2(models((fell(into(this(group.

(Case* B)( Large( sensitivity( in( free( surface( displacement( and( a(

notorious( dependency( on( phase( (arrival( time).( Variability( was(

comparable(to(the(average(signal.(

2(models(fell(into(this(group.(

tide

gages

Longitude, W

La

titude

, S

Elapsed Time [Min]

0 50 100 150 200 250 300 η [m] -6 -4 -2 0 2 4 6

Case A

(Case* C)( Reduced( sensitivity( in( free( surface( displacement( but( ( it(

increases( significantly( at( crest( and( troughs.( Variability( was( greatly(

reduced( when( compared( to( other( cases,( showing( a( remarkable(

consistency(in(the(phase.(

3models(fell(into(this(group.(

η [m] -6 -4 -2 0 2 4 6

Case C

These(figures(show(the(time(series(of(all(models(for(a(fixed(Manning(roughness(factor(and(comparable(grid(

settings.(

Elapsed Time [Min]

0 50 100 150 200 250 300 η [m] -10 -8 -6 -4 -2 0 2 4 6 8 10

Elapsed Time [Min]

0 50 100 150 200 250 300 η [m] -10 -8 -6 -4 -2 0 2 4 6 8 10

(Coarse* Grid)( A( high( degree( of( variability( is(

observed( both( in( amplitude( and( arrival( times.(

Peak( amplitudes( vary( between( 1C6,( with( large(

variations(in(temporal(response.((

Overall(structure(of(the(time(series(is(controlled(by(

resonant(conditions(at(bay(level.

(Finer* Grid)( Most( models( tend( to( yield( a( similar(

temporal( response,( with( comparable( peak((

amplitudes( and( phases,( although( the( location( of(

the(maxima(can(vary(significantly(in(time.((

A( couple( of( models( deviate( notoriously,( which( is(

under(further(investigation.

References

Néelz,(S.(&(Pender,(G.((2010),('Benchmarking(of(2D(Hydraulic(Modelling(Packages'(SCHO0510BSNOCECP),(Technical(report,(Environment(

Agency(Science(Report(,SC080035/R2,(Rio(House,(Waterside(Drive,(Aztec(West,(Almondsbury,(Bristol,(BS32(4UD.(

(20)

¿Cómo se Explica Esto?

20

Algoritmos y

Software

Matemática

Modelado

- Física

(21)

Implementación Numérica

El desafío es pasar de un esquema continuo (como las derivadas parciales), a un esquema

discreto como lo es una malla de cálculo numérica

Sin perder precisión

Con bajo costo

Sin introducir errores

La ecuación es hiperbólica y resuelta como un problema de condición inicial o de contorno.

El método típico es de marcha, en el espacio y el tiempo.

La forma de resolver la ecuación parcial en diferencias finitas puede tener efectos en la

respuesta del problema

Difusión Numérica

Convección Numérica

Dispersión Numérica

21

Universidad Técnica Federico Santa María FONDEF D11I1119

Ecuación de Aguas Someras: Métodos de resolución

Se resumirá en la siguiente tabla los métodos empleados para ambos la CPU y GPU.

CPU

GPU

Comcot

Tunami

Neowave

Tusunawi

GeoClaw

SWE

Formulation Conservative Conservative

Conservative Conservative

Non-

Non-

Conservative Conservative

Method

Difference

Finite

Difference

Finite

Difference

Finite

Elements

Finite

Difference

Finite

Difference

Finite

Scheme

Explicit

Explicit

Implicit

Explicit

Explicit

Explicit

Tab. 2: Análisis de los métodos empleados en cada Software.

Discusión:

Es importante destacar que el método explícitos de diferencias finitas son preferibles porque sólamente evaluaciones

en cada paso de tiempo son requeridas. También es fácil de ver que los esquemas de diferencia finitas son mas populares

para la evolución en el dominio del tiempo y el espacio. La razón principal se puede atribuir al hecho de que los sistemas

de diferencia finitas son altamente paralelizables y pueden ser utilizada con openMP para la CPU y openCL or CUDA

para la GPU, (e.g. Brodtkorb et al. (2010, 2012)). A demás, como la disminución en el tiempo requerido para completar

las simulaciónes es uno de nuestro objetivo principales, un esquema de diferencia finitas explícito debería ser el enfoque

que debe adoptarse.

Ecuación de Aguas Someras: Esquemas

En la siguiente tabla se resumen los esquemas de solución para la CPU y GPU empleadas tanto para la continuidad y la

ecuación de momentum. El concepto de esquema guarda relación con la forma en que se realiza la discretización de las

variables y operadores para pasar de una variable continua, como por ejemplo, el nivel del mar en el caso de un tsunami, a

una variable discreta, como lo sería el nivel del mar calculado ahora en los puntos de la malla de cálculo. La definición de

esto es fundamental, pues distintos esquemas de cálculo pueden favorecer distintos aspectos, como por ejemplo, la

estabili-dad numérica y/o la propagación de errores de truncación. Adicionalmente, en la tabla también se incluye algunas formas

adoptadas paralela aumentar la la precisión conforme se acerca la onda a las zonas de interés como bahías y ciudades.:

CPU

GPU

Comcot

Tunami

Neowave

TsunAWI

GeoClaw

SWE

Continuity

Leap-frog

Difference

Central-

First-order

Upwind

Leap-frog

First-order

Upwind

Central-

Upwind

Momentum

First-order

Upwind

Difference

Central-

First-order

Upwind

Leap-frog

First-order

Upwind

Central-

Upwind

Accuracy

Nested-

Grids

Nested-

Grids

Refinement

Mesh

Adaptative Mesh

Refinement

Time-step

Variable

Tab. 3: Análisis de los esquemas empleados por cada Software.

Discusión:

(22)

Diferencia Central

Ventajas:

Es más sencillo de programar y requieren menos tiempo en la computadora por paso de

tiempo. ⋄

El esquema es más preciso que un Central–Upwind de primer orden.

Un parámetro de disipación es necesario para acercarse a un estado de equilibrio.

Permite el uso de múltiples grillas (grillas anidadas) para regiones extensas.

Desventajas:

Es un método altamente inestable.

Es algo más disipativo de manera numérica, lo que significa que la onda decae debido a

la precisión del método y no sólo debido a procesos físicos.

Tiene que ser modificado para obtener las propiedades de segundo orden, para mejorar

la precisión.

 Depende en gran medida del

∆t

y la discretización espacial

∆x

.

Esquemas numéricos

22

Universidad Técnica Federico Santa María FONDEF D11I1119

Ecuación de Aguas Someras: Métodos de resolución

Se resumirá en la siguiente tabla los métodos empleados para ambos la CPU y GPU.

CPU

GPU

Comcot

Tunami

Neowave

Tusunawi

GeoClaw

SWE

Formulation Conservative Conservative

Conservative Conservative

Non-

Non-

Conservative Conservative

Method

Difference

Finite

Difference

Finite

Difference

Finite

Elements

Finite

Difference

Finite

Difference

Finite

Scheme

Explicit

Explicit

Implicit

Explicit

Explicit

Explicit

Tab. 2: Análisis de los métodos empleados en cada Software.

Discusión:

Es importante destacar que el método explícitos de diferencias finitas son preferibles porque sólamente evaluaciones

en cada paso de tiempo son requeridas. También es fácil de ver que los esquemas de diferencia finitas son mas populares

para la evolución en el dominio del tiempo y el espacio. La razón principal se puede atribuir al hecho de que los sistemas

de diferencia finitas son altamente paralelizables y pueden ser utilizada con openMP para la CPU y openCL or CUDA

para la GPU, (e.g. Brodtkorb et al. (2010, 2012)). A demás, como la disminución en el tiempo requerido para completar

las simulaciónes es uno de nuestro objetivo principales, un esquema de diferencia finitas explícito debería ser el enfoque

que debe adoptarse.

Ecuación de Aguas Someras: Esquemas

En la siguiente tabla se resumen los esquemas de solución para la CPU y GPU empleadas tanto para la continuidad y la

ecuación de momentum. El concepto de esquema guarda relación con la forma en que se realiza la discretización de las

variables y operadores para pasar de una variable continua, como por ejemplo, el nivel del mar en el caso de un tsunami, a

una variable discreta, como lo sería el nivel del mar calculado ahora en los puntos de la malla de cálculo. La definición de

esto es fundamental, pues distintos esquemas de cálculo pueden favorecer distintos aspectos, como por ejemplo, la

estabili-dad numérica y/o la propagación de errores de truncación. Adicionalmente, en la tabla también se incluye algunas formas

adoptadas paralela aumentar la la precisión conforme se acerca la onda a las zonas de interés como bahías y ciudades.:

CPU

GPU

Comcot

Tunami

Neowave

TsunAWI

GeoClaw

SWE

Continuity

Leap-frog

Difference

Central-

First-order

Upwind

Leap-frog

First-order

Upwind

Central-

Upwind

Momentum

First-order

Upwind

Difference

Central-

First-order

Upwind

Leap-frog

First-order

Upwind

Central-

Upwind

Accuracy

Nested-

Grids

Nested-

Grids

Refinement

Mesh

Adaptative Mesh

Refinement

Time-step

Variable

Tab. 3: Análisis de los esquemas empleados por cada Software.

Discusión:

MSc. Danilo S. Kusanovic, Patricio Catalán

Tsumami Modelling

7/11

65

Fig. 19 Two-dimensional structured mesh for finite difference approximations.

U

x

!

!

!

!

i, j

U

i+1, j

U

i−1, j

2

x

δ

2x

U

i, j

.

U

y

!

!

!

!

i, j

U

i, j+1

U

i, j−1

2

y

δ

2y

U

i, j

.

In general, finite difference approximation will involve a stencil of points surrounding U

i, j

.

65

Fig. 19 Two-dimensional structured mesh for finite difference approximations.

∂U ∂ x ! ! ! ! i, jUi+1, jUi−1, j 2∆ x ≡δ2xUi, j. ∂U ∂ y ! ! ! ! i, jUi, j+1Ui, j−1 2∆ y ≡δ2yUi, j.

(23)

Esquemas numéricos

23

Universidad Técnica Federico Santa María FONDEF D11I1119

Ecuación de Aguas Someras: Métodos de resolución

Se resumirá en la siguiente tabla los métodos empleados para ambos la CPU y GPU.

CPU

GPU

Comcot

Tunami

Neowave

Tusunawi

GeoClaw

SWE

Formulation Conservative Conservative

Conservative Conservative

Non-

Non-

Conservative Conservative

Method

Difference

Finite

Difference

Finite

Difference

Finite

Elements

Finite

Difference

Finite

Difference

Finite

Scheme

Explicit

Explicit

Implicit

Explicit

Explicit

Explicit

Tab. 2: Análisis de los métodos empleados en cada Software.

Discusión:

Es importante destacar que el método explícitos de diferencias finitas son preferibles porque sólamente evaluaciones

en cada paso de tiempo son requeridas. También es fácil de ver que los esquemas de diferencia finitas son mas populares

para la evolución en el dominio del tiempo y el espacio. La razón principal se puede atribuir al hecho de que los sistemas

de diferencia finitas son altamente paralelizables y pueden ser utilizada con openMP para la CPU y openCL or CUDA

para la GPU, (e.g. Brodtkorb et al. (2010, 2012)). A demás, como la disminución en el tiempo requerido para completar

las simulaciónes es uno de nuestro objetivo principales, un esquema de diferencia finitas explícito debería ser el enfoque

que debe adoptarse.

Ecuación de Aguas Someras: Esquemas

En la siguiente tabla se resumen los esquemas de solución para la CPU y GPU empleadas tanto para la continuidad y la

ecuación de momentum. El concepto de esquema guarda relación con la forma en que se realiza la discretización de las

variables y operadores para pasar de una variable continua, como por ejemplo, el nivel del mar en el caso de un tsunami, a

una variable discreta, como lo sería el nivel del mar calculado ahora en los puntos de la malla de cálculo. La definición de

esto es fundamental, pues distintos esquemas de cálculo pueden favorecer distintos aspectos, como por ejemplo, la

estabili-dad numérica y/o la propagación de errores de truncación. Adicionalmente, en la tabla también se incluye algunas formas

adoptadas paralela aumentar la la precisión conforme se acerca la onda a las zonas de interés como bahías y ciudades.:

CPU

GPU

Comcot

Tunami

Neowave

TsunAWI

GeoClaw

SWE

Continuity

Leap-frog

Difference

Central-

First-order

Upwind

Leap-frog

First-order

Upwind

Central-

Upwind

Momentum

First-order

Upwind

Difference

Central-

First-order

Upwind

Leap-frog

First-order

Upwind

Central-

Upwind

Accuracy

Nested-

Grids

Nested-

Grids

Refinement

Mesh

Adaptative Mesh

Refinement

Time-step

Variable

Tab. 3: Análisis de los esquemas empleados por cada Software.

Discusión:

MSc. Danilo S. Kusanovic, Patricio Catalán

Tsumami Modelling

7/11

65

Fig. 19 Two-dimensional structured mesh for finite difference approximations.

∂U ∂ x ! ! ! ! i, jUi+1, jUi−1, j 2∆ x ≡δ2xUi, j. ∂U ∂ y ! ! ! ! i, jUi, j+1Ui, j−1 2∆ y ≡δ2yUi, j.

In general, finite difference approximation will involve a stencil of points surrounding Ui, j.

62

In the following we derive a finite difference approximation of

∂U

∂ x

at node x

i

. (Note: this is essentially the same

procedure as was used to derive the midpoint method in Chapter 3). For a differentiable function U, the derivative at

the point x

i

is given by:

∂U

∂ x

!

!

!

!

xi

= lim

x→0

U(x

i

+ ∆ x) −U(x

i

∆ x)

2∆ x

(95)

The finite difference approximation is obtained by eliminating the limiting process:

U

xi

U(x

i

+ ∆ x) −U(x

i

∆ x)

2∆ x

=

U

i+1

U

i−1

2∆ x

δ

2x

U

i

.

(96)

The finite difference operator δ

2x

is called a central difference operator. Finite difference approximations can also be

one-sided. For example, a backward difference approximation is,

U

xi

1

∆ x

(U

i

U

i−1

) ≡ δ

x

U

i

,

(97)

and a forward difference approximation is,

U

xi

1

∆ x

(U

i+1

U

i

) ≡ δ

+

x

U

i

.

(98)

Exercise 1. Write a M

ATLAB

function which computes the central difference approximation at nodes

x

1

, x

2

, . . . , x

Nx

on the domain [0, 1] with periodic boundary conditions (i.e U

0

= U

Nx

). The function should

have the form function dU = centraldiff(U) where U = (U

1

, U

2

, . . . , U

Nx−1

, U

Nx

)

T

, and dU =

2x

U

1

, δ

2x

U

2

, . . . , δ

2x

U

Nx−1

, δ

2x

U

Nx

)

T

.

Exercise 2. Write the function forwarddiff which uses a forward difference approximation with the same input.

Exercise 3. Write the function backwarddiff which uses a backward difference approximation with the same

input.

47.1 Local Truncation Error for a Derivative Approximation

In Chapter we determined the local order of accuracy of multi-step methods by computing the truncation error. The

same approach may be used to determine the order of accuracy of finite difference approximations. Suppose we use

a backwards difference, δ

x

U

i

to approximate the first derivative, U

x

at point i. The local truncation error for this

(24)

¿Por qué la sensibilidad?

Diferentes esquemas tienen distintos errores de truncado

Esto significa que en cada paso, un cierto nivel de error se genera que de acumularse, puede

generar deficiencias en la modelación

Ejemplo:

Disipación numérica

24

Universidad Técnica Federico Santa María

FONDEF D11I1119

A comparison between the time series fot the hydrostatic solution in the presented formulation and the one provided

by the non-hydrostatic solution is shown in figure(11). It can be seen that the hydrostatic model does not conserve the

shape and amplitude of the solitary wave as it travels. However, the propagation profile seems to travel at the same speed

only changing its shape.

(a)

(b)

(c)

(d)

Fig. 11: Times series values evaluated at (a) x = 500 [m]. (b) x = 1000 [m]. (c) x = 1500 [m]. (d) x = 2000 [m].

Lessons learned:

1. All hydroestatic models are unable to preserve the water level surface when a soliton is traveling (comcot, geoclaw,

stock etc). This characteristic may affect the the results of the water level in future benchmark cases.

2. In order to overcome the previous challenge a non-hydroestatic term should be added to the model.

(25)

Desafío

Identificar el origen de las discrepancias entre los modelos.

Referencias

Documento similar

De hecho, este sometimiento periódico al voto, esta decisión periódica de los electores sobre la gestión ha sido uno de los componentes teóricos más interesantes de la

Ciaurriz quien, durante su primer arlo de estancia en Loyola 40 , catalogó sus fondos siguiendo la división previa a la que nos hemos referido; y si esta labor fue de

Habiendo organizado un movimiento revolucionario en Valencia a principios de 1929 y persistido en las reuniones conspirativo-constitucionalistas desde entonces —cierto que a aquellas

The part I assessment is coordinated involving all MSCs and led by the RMS who prepares a draft assessment report, sends the request for information (RFI) with considerations,

Proporcione esta nota de seguridad y las copias de la versión para pacientes junto con el documento Preguntas frecuentes sobre contraindicaciones y

[r]

Contraindicaciones: El uso de la mascarilla está contraindicado para los pacientes y los miembros de sus familias, profesionales sanitarios y compañeros de

 Para recibir todos los números de referencia en un solo correo electrónico, es necesario que las solicitudes estén cumplimentadas y sean todos los datos válidos, incluido el