• No se han encontrado resultados

Karyotypes and DNA content in diploid and polyploid Lycium (Solanaceae) - Sociedad Argentina de Botánica

N/A
N/A
Protected

Academic year: 2020

Share "Karyotypes and DNA content in diploid and polyploid Lycium (Solanaceae) - Sociedad Argentina de Botánica"

Copied!
8
0
0

Texto completo

(1)

Bol. Soc.

Argent.

Bot. 35 (3-4): 237

-

244.

2000

KARYOTYPES

AND

DNA

CONTENT

IN

DIPLOID

AND

POLYPLOID

LYCIUM (SOLANACEAE)*

LAURA

STIEFKENS1

and

GABRIEL BERNARDELLO2

Summary:Karyotypesand nuclearDNA content of Lyciumspecies fromArgentinaand Chileareanalyzed, beingthe firstreportforthe genus.Lycium elongatum,L. infaustum,andL. chilensevar.vergaraeandvar.

minutifoliumarediploid (2n=24),whereasL.chilense var.chilense,var.confertifolium,andvar. descolei are

tetraplold (2n=48).Forthe diploidtaxa,karyotypes,totalchromosome length,andmean chromosome lengths

and ratioswere obtained.Allthese taxahave Identicalkaryotype formula (11 mpairs+ 1 smpair). Therangeof

DNAcontentInthe diploidswas3.22-3.84pg, whileinthetetraploidswas 6.50-6.60pg,i.e.abouttwice the

amountofthe diploids.Significant differencesweredetectedbetweendiploidandtetraploidtaxa, andamong the diploids,but tetraploids showedno significantdifferences amongthem. Because of the constancyof karyotypicfeatures, it was not possible to determine relationshipsbetweenkaryotypesandDNAcontent variations.Speciation atthe diploidlevelin Lyciumhasnot producedgreatdifferences in DNAcontent per basicgenomeandinthekaryotype formula.

Keywords:Lycium, Solanaceae,karyotype,DNAcontent,polyploidy.

,

Resumen: Cariotiposy contenidode ADNenLyciumdiploidesypoliploides (Solanaceae). Seanalizan los

cariotiposy el contenido deADNnucleardeespeciesargentinasy chilenas deLycium,siendoel primer informepara el género. Lycium elongatum, L. infaustum, L. chilensevar. vergarae y var.minutifoliumson diploides (2n= 48),mientras que L.chilensevar.chilense,var.confertifolium,y var. descoleison tetraploides

(2n=48).Para losdiploideéseobtuvieron cariotipos, largocromosómicototal ylongitud cromosómicaeíndice

braquial promedios. Todasestasentidades tienenidéntica fórmula cariotípica(11 paresm + 1parsm).El

rango observado de contenido deADNen los taxadiploides fue 3.22-3.84 pg, mientrasqueen lostetraploides fue6.50-6.60pg,o sea alrededor deldoble de lacantidad de losdiploides. Sedetectarondiferencias

significativas

entrelos diploidesylostetraploides, yentrelos diploidesentresí,perolos tetraploidesnomostrarondiferencias entreellos. Debido alaconstanciacariotípica,nose pudieron determinarrelacionesentrecariotiposy contenido deADN.Laespeciacióna nivel diploide enLyciumno haproducidograndes diferenciasen loscariotipos nien el contenido deADNporgenoma básico.

Palabras clave:Lycium, Solanaceae,cariotipos, contenido de ADN,poliploidía.

diversification: Arizona (U.S.A.) in the North and

Argentina in the South (Hitchcock, 1932; Bemardello

& Chiang-Cabrera,

1998).

The morphological

variation in the genus is

extensive,

with

a

wide range

of

variation in

sizes,

forms, and

colors in the flowers

(Chiang,

1981;

Bemardello,

1986a; Bemardello &

Chiang-Cabréra, 1998).

There

are

several

articles

on

American

representatives concerning different

aspects

of

these

plants, like

anatomy

and morphology, embryology,

reproductive

biology, and systematics (e.g.,

Bemardello,

1983a,

b,

1986a,

b, 1987; Bemardello

&

Bonzani, 1991;

Bemardello & Leiva-González,

1993;

Bemardello

&

Chiang-Cabrera, 1998).

However, their cytological knowledge is

meager.

Data

available

indicate that

most

of

the

species

are

diploid with n=x=12 (cf. Bemardello, 1982; Chiang,

1982; Hunziker

et

al.,

1985;

Chiang

et

al.,

1989;

Stiefkens & Bemardello,

1996),

although

a

few

INTRODUCTION

The

cosmopolitan

genus

Lycium L.

contains

ca.

75 shrubby species that mainly

grow

in arid

or

semiarid

environments

(Bemardello, 1986a).

It is included in

Tribe Lycieae Hunz., subfam. Solanoideae, considered

monophyletic

and derived

(Olmstead &

Palmer,

1992).

Within this

tribe, composed only by three woody

ge¬

nera

(Hunziker,

1979),

Lycium

is regarded

as

.primitive

and older

(Bemardello,

1987;

Bemardello &

Chiang-Cabrera, 1998). The American continent has the

highest concentration of species with

twocenters,

of

* DedicatedtoProf.Dr.JuanH.Hunzikeron theocasslon of

.his 75th anniversary.

'Laboratorio

de Morfología Vegetal,Facultad de Ciencias Exactas, Físicas y Naturales, UniversidadNacional de

Córdoba. Av. V. Sarsfleld 299,5000Córdoba.

instituto

MultidiscipllnarlodeBiologíaVegetal

(2)

polyploid

taxa

have been

reported

(cf.

Bemardello,

50% acetic acid

on a

slide, macerated,

squashed,

1982;

Chiang, 1982). Most

cytological

studies

in

the

and heated

gently.

Slides

were

made

permanent

in

genus

report

chromosome

numbers based

on

the

Euparal by

means

of

Bradley’s

method (1948). At

analysis

of

meiotic material (cf.

Bemardello, 1982;

least four cells

per

individual and 15 per

species

Chiang, 1982), whereas

there

are

few

karyotypic

were

examined. Tenmetaphases ofeach

species

were

studies of

South

American

taxa

(Bemardello

et

al.,

photographed

with

phase

contrast

optics and Kodak

1995; Stiefkens &

Bemardello,

1996).

These articles

Panatomic

X

film.

The photographs

were

used

to

have

pointed

out

a

high

constancy

in

the

karyotype

take

measurements

of

short

arm, long arm, and

to¬

tal chromosome

length

for

each

chromosome

pair.

Among flowering

plants, there is

a

wide range

Centromeric

indices and

arm

ratios

were

calculated

of

variation

in

nuclear DNA

content

(cf. Bennett &

and used

to

classify

the

chromosomes after

Levan

Leitch,

1995, 1997).

Bennett

(1976, 1987)

has

et

al.

(1964). Satellites

were

classified

according

to

suggested

that

interspecific variation

in DNA

Battaglia

(1955).

Total

haploid chromosome

length

content

has adaptive significance and is correlated

ofthe

karyotype

(tl),

based

on

the

mean

chromosome

with

the environment

and the geographical

lengths for

each

species,

average

chromosome

distribution. Within

the

Solanaceae,

this kind of

length,

and average

arm

ratio

were

calculated. In

studies include

a

few genera: Capsicum,

each

cell,

12

pairs of chromosomes

were

identified

Cyphomandra, Hyosciamus, Lycopersicon,

as

homologous

based

on

similarity in

size

and

Nicotiana, Petunia,

Solanum, and Withania (cf.

centromere

position. Karyograms

were

constructed

Bennett &

Leitch, 1995, 1997;

Belletti

et

al.,

1998;

by organising the chromosomes

into groups

Bennett

et

al.,

1998)

and

no

data are

available

according

to

their

arm

ratio,

ordering

them

by

regarding

Lycium

and

tribe

Lycieae. In

this paper,

decreasing length

within

each

category,

and

we report

and

compare

DNA

contents,

somatic

numbering

them

using

this

same

scheme, Idiograms

chromosome numbers,

and

karyotypes

of

the

diploid

are

based

on

the

mean

values

for

each

taxon.

taxa

in

three species and five

varieties

of Lycium

Karyotype

asymmetry was

estimated

using

the

from Argentina and Chile, for

a

better understanding

indices of Romero Zarco (1986) and Stebbins’

of

the

systematic

and

evolutionary

relationships

classification (1971).

within the

genus.

The species studied

are

included

of

the

seven

species studied.

DNA

content

was

measured in telophase nuclei

in

sect.

Schistocalyx

(L.

chilensé)

and

sect.

Lycium

(2C)

at

the

root

apex

of

germinating

seeds (Tito

et

(

L

.

elongatum,L. infaustum),

although

the sectional

al.,

1991).

Seeds

were

germinated and

fixed

as

for

treatment

of

the genus

was

recently

considered

ar-

the previous methodbut without

pretreatment.

Maize

tificial (Bemardello & Chiang-Cabrera, 1998).

flint {Zea mays L. spp.

mays

) “opaque 2” line was'

used'

as

standard

to

calculate

genome

size

in

picograms;

its

genome

size (2C

=

6.658 pg)

was

calibrated

according

to

Bennett & Smith (1976)

using

Allium

cepa

L.‘Ailsa Craig’ (Rosato

et

al.,

1997).

After

fixation, the

roots

were

rinsed

30

minutes

in

distilled

water.

Hydrolysis

was

carried

Studies of

somatic

chromosomes

were

done

as

ou*-

with 5 N HC1

at

20°C. Different

times

of

follows.

Mitosis in

root

tip

cells

was

studied

from

hydrolysis

were

tested and

the

optimum period

squashes from primary

roots

of

germinating

seeds,

determined

was

40

minutes. After hydrolysis, the

Seeds

were

soaked for 1-2 days

in

running

water,

roots

were

rinsed three times

with

distilled

water for

put

in

petri dishes

on

moist

filter paper, and stored

15

minutes. Staining

was

done with

Feulgen

at

pH

at

room temperature

in

the dark. Fresh

root

tips-were

2,2

for 2

hrs

in

the dark.

Then,

the material

pretreated for 2 hrs

in

a

saturated solution of

rinsed three times

in

so2

water

for

10

minutes each

paradichloro-benzene in

water at

room temperature

rinse,

then rinsed

again

with

distilled

water

10

(±20°C),

rinsed

in

distilled

water,

and fixed

in

minutes

and

squashed

in

45% acetic

acid. The

cover

freshly made

ethanokacetic

acid* (3:1)

at

room

slip

was

removed after freezing with

C02and

the

temperature

(±20°C)

for 12-24

hrs.

Then, they

were

placed

in

alcoholic acid-carmine (Snow, 1963) for

mounted in

Euparal,

and maintained in the dark until

one

week. Meristem cells

were

isolated

in

a

drop of

measurements

were

made. The

amount

of Feulgen

MATERIAL

AND

METHODS

Table 1

includes

the

taxa

studied and its

collection data.

was

material

was

dehydrated in

absolute

alcohol,

(3)

. Table1.Lyciumtaxastudied.Ifnotspecified,they were collectedinARGENTINA.Datainclude:province (initalics), collection

site,collector,andnumber.HerbariumsamplesaredepositedatCORD.Allpopulationswerestudied cytologically.An asteriskindicates populationsanalyzedinDNAcontent.

L. chítense MiersexBertero

var.

confertifolium

(Miers) Barkley:RioNegro, Ruta 251 Km104-105, A. A. Cocucci 441.SanJuan,Ruta436, Km189,Bernardello837.CHILE,Coquimbo, Ovalle, Bernardello860*.

var.chítense'. Córdoba, Miramar, Bernardello 757. CHILE,Coquimbo,antesde Rivadavia,Bernardello845*; Coquimbo,LaSerena,Bernardello 865.

var.descoleiBarkley: Chubut,PuntaPàrdela,Bernardello 785*;PuertoPirámide,Bernardello786. var.

minutifolium

(Miers) Barkley:LaPampa,ParqueLuro,Bernardello 257*. Chubut, PenínsuladeValdéz,

Bernardello252. SantaCruz, Lago Cadriel, A. A. Cocucci 450.

var. vergarae(Phil.) Bernardello:SanJuan,Arrequintin,Bernardello839*. L.elongatum Miers: Córdoba,Tulumba,Bernardello721*.

L.

infaustum

Miers: Córdoba, Serrezuela, A. T. Hunzikerelat. 25389*.

staining per

nucleus,

expressed in arbitrary

units,

ofL. chilense studied (chilense

,

confertifolium,

and

was

measured

at

a

wavelength of 570

nm

using the

descolei)

are

tetraploid with 2n=48 (Fig. 2). Our

scanning

method

in

a

Zeiss

Universal

data

on

L. elongatum and L.

infaustum

agree

with

Microspectrophotometer (UMSP 30) in the Institu-

an

earlier article (Stiefkens & Bernardello, 1996).

to

Fitotécnico Santa Catalina. Sixty

nuclei

per

taxon

For

L. chilense

as a

species, previous

counts

were

measured and data

were

compared using

a

t

indicated n=12, 24 (Bernardello, 1982) without

test.

The differences in DNA

content

between

taxa

specification of the varieties examined. Thus, all

(varieties

and species)

were

tested through

an

these

counts

are new.

ANOVA

and

comparisons between

means

using the

Tukey's

test.

These findings

agree

with

previous data showing

that x=12 is the basic number for the

genus

and tribe

Lycieae

(Bernardello,

1982, 1985;

Chiang, 1982,

1983),

as

happens in

most

genera

andtribesin subfam.

Solanoideae

(cf.

Hunziker,

1979; Moscone, 1992).

As

diploids andpolyploids naturally grow in arid

Chromosome

numbers (Table 2) indicate

that-/.,

and semiarid environments,

no

correlation

can

be

elongatum, L.

infaustum,

and

two

varieties of L.

drawn between the level of ploidy and aridity,

as

chilense

(

vergarae

and minutifolium)

are

diploid

found in

other

cases

(e.g., Stebbins, 1985; Poggio

with 2n=24 (Fig. 1), whereas the remaining varieties

et

al.,

1989).

RESULTS

AND

DISCUSSION

Table 2.Lyciumtaxastudied,ploidy level,somatic chromosome numbers,karyotypeformula,totalhaploid

chromosome

length(tl)inpm,

meanchromosomelength(c) inpm,mean armratio (r),meanintrachromosomalasymmetryindex

(A,),

meaninterchromosomalasymmetry

index

(A2),

nuclear DNAcontentinpicograms(x±standard deviation), andDNAper basic genomeinpicograms. Anasterisk indicates that the first chromosomepair bear'sasatelliteinthe shortarm.DataonL.elongatumandL.

infaustum

aretaken from Stiefkens & Bernardello (1996). Thelettersinthe DNAcontentcolumnintlicate the results of the Tukey'stest.

Ploidy level

In Karyotype formula tl A, A2 DNAcontent DNA per basic genome

c r

Taxon

(2C)

L. elongatum 2x 24 11m*+1sm 25.01 2.08 1.22 0.16 0.12 3.22±0,24“ 1.61

3,84

±0.22b

L.

infaustum

2x 24 11m*+ 1sm 21.52 1.79 1.25 0.18 0.13 1.92

L.chilense

2x 24 21.04 1.75 1.20 0.14 0.16 3.68±0.24c 1.84

var,minutifolium 11m*+1sm

2x 24 11m*+1sm 20.94 1.75 1.19 0.14 0.14 3.55+0.16' 1.77

var.vergarae

6.60

±0.45d

4x 48

(4)

%

1

*

\

4

%

**

»t

*•

.

%

V

A

»»

MI

%

4

\

v

*

#

I

»•

n®*

I

*

%

#

SI

*

B

Fig.1.PhotomicrographsofmitoticmetaphasesofLycium. A:L. chítensevar.minutifolium,B: L. chilensevar.vergarae. Bar=5 pm, bothatthesamescale.

(5)

t

%

»

%

#

%

I

®

ts

9

êm

&

*«*%**

*

»

'**

*

*

v

*

*

*

*

tw

#

#

%

#

3*

JT

m

I

%

*

A

*#

%

t

/

i

#

%

i

%

%

#

*i

*

#r

i

B

%

I

*v

A

#

#

#

#

t

U

f

*

#

4

*

4

%

*

%

*

#

£

t

#

%

#

C

Fig.2.PhotomicrographsofmitoticmetaphasesofLycium. A: L. chilensevar

confertifolium

.B: L.chilense var. descolei. C: L. chilensevar.chilense. Bar=5 pm, allatthesamescale.

(6)

For

the

diploid

taxa, we

obtained

karyotype

Table 3.Comparisonsamong DNAcontent measurementsby

formulae, total

haploid

chromosome

length,

and

ANOVAatP<0.05

.

df=degreesoffreedom.

*

Statistically significant

mean

chromosome

lengths

and ratios (Table 2). The

chromosomes

are

small (x

=

1.84

±

0.16 pm)

and

the

haploid

chromosome length ranges from 20.94

to

25.01

pm.

All

taxa

have identical

karyotype

for¬

mula,

with 11

m

chromosome

pairs and

one

sm

pair

(Fig. 3).

Both members ofpair 1 bear microsatellites

in

the short arm, clearly observed in 78% of the

studied cells. We did

not

analyze

the

karyotypes

of

thepolyploid

taxa

because of the similar

morphology

Solanaceae

is 1.25-30.6 pg (x

=

6.49; Bennett

et

al.

,

of the chromosomes and the difficulty

in

matching

1998).

Regarding

other genera of Solanaceae with

homologue

chromosomes.

Karyotypes

are

highly symmetrical according

to

comparatively higher

than data reported for

the

Aj

and

A2

indices obtained (Table 2),

belonging

Lycopersicon

and

most

Solarium, but

lower

than

to

category

1A

in Stebbins’

classification (1971).

Capsicum, Cyphomandra, Nicotiana, and

Withania,

This agrees with the general trend in the Solanaceae

as

summarized

by

Bennett

&

Leitch (1995, 1997)

(Stebbins,

1971;

Moscone,1989;

Bernardello &

and Bennett

et

al. (1998).

Anderson,

1990; Moscone

et

al.,

1992;

Bernardello

et

al,,

1994).

differences.

Comparison df F P 1587.50

Among alltaxa 419 0.001* Amongdiploids 239 88.51 0.001* Amongtetraploids 179 0.82 0.40

2n=24,

48, the 2C

content

found

in Lycium

is

Our

findings

based

on a

total of nine species and

seven

varieties from

sectionsLycium and Schistocalyx

The nuclear DNA

content

of

the nuclei and

show that these

taxa

have

comparable and

constant

samples tested showed

no

statistical

significance

karyotype

composition

(Bernardello

et

al.,

1995;

within

each

taxon.

Thus,

those data

were

pooled for

Stiefkens

&

Bernardello, 1996,

this paper). However,

each

one

(Table 2). In the diploid

taxa;

the

observed

theseplants have different

reproductive

and vegetative

range

was

3.22-3.84

while

in

the

tetraploid

ones:

morphologies

(Bernardello, 1986a). These results

6.50-6,60,

i.e.,

about

twice the

amount

of

the

suggest

that morphological

differentiation

in

the

diploids. When statistical tests were applied (Table

group was

not

followed

by

chromosomal

divergence

.

3),

significant

differences

were

detected

between

(Stiefkens &

Bernardello,

1996).

diploid

and tetraploid

taxa.

In

addition, diploid

taxa

According

to

this

karyotypic

constancy,

it

was

showed

statistical

differences when compared among

not

possible

to

determine

relationships

between

them, although

the differences

are

very

small. On

karyotypes

and nuclear DNA

content

variations.

In

the other

hand,

the tetraploid

varieties

showed

no

addition,

speciation

at

the

diploid level

in

Lycium

significant differences among them (Table 3).

has

not

produced

great

differences

in

DNA

content

This is the first

report

of

nuclear DNA

content

per

basic

genome,

as

found in other angiosperms,

for

Lycium:

The range of 2C DNA

content

in

the

e.g., Larrea (Poggio

et

al.,

1989).

1

2

3

4

5

6

7

8

9

10

11.

12

ASSSSsssssss

s

B

SSSSSSSSSSS

S

m

sm

Fig. 3.IdiogramsofLycium.A: L.chítensevar.

minutifolium.

B: L.chítensesm. vergarae. Bar=2|am,bothatthe same scale.

(7)

BERNARDELLO,L. & N.E. BONZANI. 1991. Sobre lanaturaleza del endospermaenLycium(Solanaceae).Kurtziana 21: 177-184. BERNARDELLO,L.&F. CHIANG-CABRERA. 1998.Acladistic

studyonthe AmericanspeciesofLycium (Solanaceae) based

onmorphologicalvariation.Monogr. Syst. Bot. MissouriBot. Card. 68: 33-46.

BERNARDELLO, L„ C. B. HEISER & M. PIAZZANO. 1994.

Karyotypic studies in Solanum section Lasiocarpa (Solanaceae). Amer. J. Bot. 81: 95-103.

BERNARDELLO,L. M. & S.LEIVA-GONZÁLEZ. 1993. Rela¬ ciones fenéticasentrelas especies sudamericanas de Lycium (Solanaceae).Anales Lnst. Biol. UÑAM,ser.Bot. 64: 33-47.

BERNARDELLO,L„ I. RODRÍGUEZ, L. STIEFKENS & L. GALETTO.1995.Thehybridnatureof Lycium ciliatum x cestroides (Solanaceae): experimental,anatomical,an

cytologicalevidence. Cañad. J. Bot. 73: 1995-2005. BRADLEY, M. V. 1948. A method for makingaceto-carmine

squashespermanentwithout removal ofcoverslip.Stain Technol. 23:41-44.

CHIANG,F. 1981

.

A taxonomicstudy oftheNorth Americanspecies

ofLycium (Solanaceae). Ph. D. dissertation, TheUniversityof Texas, Austin.

CHIANG,F.1982.Estudios cromosómicosenLycium (Solanaceae) de Norteamérica. Bol.Soc.Bot.México 43: 9-23.

CHIANG,F. 1983.Elnúmero cromosómicode Grabowskia geniculata (Solanaceae)deNorteamérica. Bol. Soc. Bot. Méxi¬

co45:141-142.

CHIANG,F.

,

R. VIVEROS & P. MERCADO. 1989.Elnúmero cromosómicode LyciumleiospermunI. M. Johnston (Solanaceae).Bol. Soc. Bot. México 48: 145-146.

HITCHCOCK,C. L.1932. A monographic studyofthe genus Lycium of thewesternhemisphere.Ann.MissouriBotyGard.

19;179-374.

HUNZIKER, A. T. 1979. Scmth AmericanSolanaceae: a synoptic survey.In:HAWKES,J.,R. LESTER & A. SKELDING (eds), The biologyandtaxonomy

of

the Solanaceae. Linnean Soc. Symp.ser.7: 49-85.

HUNZIKER,J. H„ C. C.XIFREDA & A. F. WULFF. 1985. Estu¬ dios cromosómicos enangiospermas de Sudamérica. Darwiniana 26:7-14.

LEVAN, A., K. FREDGA & A. SANDBERG.1964.Nomenclature forcentromericpositiononchromosomes.Hereditas 52: 201-220.

MOSCONE, E.A.1989. Karyotypeanalysesinthree Patagonian and S. Andean endemic genera ofNicotianeae (Solanaceae). Plant Syst. Evol. 166: 31-39.

MOSCONE,E. A. 1992. Estudios de

cromosomas

meióticosen

SolanaceaedeArgentina. Darwiniana 3 1: 261-297. MOSCONE, E. A., M. LAMBROU, A. T. HUNZIKER & F.

EHRENDORFER. 1992.Giemsa C-banded karyotypesin

Capsicum (Solanaceae).Plant Syst. Evol.186:213-229.

OLMSTEAD,R. & J.PALMER.1992. A chloroplast DNA

phylogenyofthe Solanaceae: subfamilialrelationshipsand character evolution. Ann. MissouriBot. Gard. 79: 346-360.

ACKNOWLEDGEMENTS

We thank CONICET, SECYT-UNC, and

CONICOR for financial

support.

Lidia Poggio, Car¬

los Naranjo, and

Marcela Rosato

are

sincerely

acknowledged for helping in

many

ways.

BIBLIOGRAPHY

BATTAGLIA,E. 1955. Chromosomemorphologyandterminology.

Caryologia 8:179-187.

BELLETTI,P„ C. MARZACHI & S.LANTERI. 1998.Flow cytometricmeasurementofnuclear DNAcontentinCapsicum (Solanaceae).Plant Syst. Evol. 209: 85-91.

BENNETT, M. D. 1976. DNAamount,latitude andcropplant distribution.In: JONES,K. & P. BRANDHAM (eds.), Current chromosome research, pp. 151-1-58. Elsevier North-Holland BiomedicalPress, Amsterdam.

BENNETT,M. D. 1987.Variationin genomic forminplantsandits ecologicalimplications. New Phytol. 106(Suppl.): 177-200.

BENNETT,M. D„ A. V. COX & I. J. LEITCH.1998,'Angiosperm

DNA C-valuesdatabase,http://www.rbgkew.org.uk/cval/ databasel.html.

BENNETT, M. D. & I. J. LEITCH. 1995.Nuclear DNAamounts

in Angiosperms.Ann. Bot. 76: 113-176.

BENNETT, M. D. & 1. J.

LEITck

1997.Nuclear DNAamounts

inAngiosperms-583newestimates. Ann. Bot. 80: 169-196. BENNETT, M. D. & J. B. SMITH. 1976. Nuclear DNAamountin

Angiosperms.Proc. Roy. Soc. LondonB,Biol. Sci. 274: 227-274. BERNARDELLO,L. M.1982.EstudiosenLycium (Solanaceae). II.Recuentoscromosómicosenentidadesargentinas.Hickenia 1: 321-328.

BERNARDELLO,L.M.(983a.EstudiosenLycium(Solanaceae). III.Estructuraydesarrollo de fruto y semillaenLycium y Grabowskia (Solanaceae).Bol. Soc. Argent. Bot. 23: 147-176. BERNARDELLO, L. M. 1983b. EstudiosenLycium(Solanaceae). IV.Biologíareproductivade L.cestroides,conespecial refe¬

renciaala dehiscencia de laanteraenel género. Kurtziana 16: 33-70.

BERNARDELLO,L.M. 1985.Elnúmero cromosómicodePhrodus

microphyllus(Solanaceae).Bol. Soc. Argent. Bot.24:196-197. BERNARDELLO, L. M.1986a. Revisión taxonómicade lasespe¬

ciessudamericanasdeLycium (Solanaceae).Bol. Acad. Nac. Ci. Córdoba 57: 173-356.

BERNARDELLO,L. M. 1986b. EstudiosenLycium (Solanaceae). V. El gineceode Lycieae. Kurtziana 18: 23-45.

BERNARDELLO,L. M. 1987.Comparativefloralmorphologyin Lycieae (Solanaceae). Brittonia 39: 112-129.

BERNARDELLO,L. & G. ANDERSON.1990. Karyotypicstudies

inSolanum section Basarthrum (Solanaceae). Amer. J. Bot. 11: 420-431.

(8)

POGGIO,L., A. D. BURGHARDT & J. H. HUNZIKER. 1989. STEBBINS,G.L. 1985

.

Polyploidy,hybridization and the invasion Nuclear DNA variation in diploidandpolyploidtaxaofLarrea

(Zygophyllaceae).Heredity63: 321-328.

ROMERO ZARCO,C. 1986. Anewmethodforestimating

karyotypeasymmetry.Taxon 35: 526-530.

ofnewhabitats. Ann. MissouriBot. Gard.72:824-832.

STIEFKENS,L. & L. BERNARDELLO. 1996.Karyotypic

studies in South American Lycium (Solanaceae). Cytologia61: 395-402.

ROSATO,M.,C. A.NARANJO &L.POGGIO.1997.Recalibration TITO, C. M., L. POGGIO & C. A. NARANJO. 1991.

ofopaque-2 line ofmaizeas astandardtoestimate nuclearDNA

amount.Maize Genet.Coop.Newslett.71:49.

SNOW, R.1963.Alcoholic hydrochloric acid carmineasstain for chromosomes in squash preparations. Stain Technol. 38: 9-13.

STEBBINS,G.L. 1971. Chromosomalevolution in higher plants. E. Arnold,London.

Cytogenetic studiesinthe genus Zea 3. DNAcontentand heterochromatininspeciesandhybrids. Theor.Appl.

Genet. 83:58-64.

Recibido el 19 efe Septiembre de 2000, aceptado el 08 de Noviembre efe 2000.

Referencias

Documento similar

MD simulations in this and previous work has allowed us to propose a relation between the nature of the interactions at the interface and the observed properties of nanofluids:

 The expansionary monetary policy measures have had a negative impact on net interest margins both via the reduction in interest rates and –less powerfully- the flattening of the

Jointly estimate this entry game with several outcome equations (fees/rates, credit limits) for bank accounts, credit cards and lines of credit. Use simulation methods to

It could maybe seem somehow insubstantial to consider an actual increase in computing power produced merely by a change in representation, consid- ering that computable functions

Here we can verify what we believe constitutes a paradox: the necessity of con- siderations of an ethical kind is imposed, but from that tradition of Economic Theory whose

In the previous sections we have shown how astronomical alignments and solar hierophanies – with a common interest in the solstices − were substantiated in the

The concept of breakdown probability profile is useful to describe the break- down properties of any estimate obtained through resampling, not just the bagged median or the

Two cases are considered, the one for which the symplectic form on the torus is of integer cohomology class n (section 4.1), where full modular invariance is obtained only when the