• No se han encontrado resultados

Feature selection for spontaneous speech analysis to aid in Alzheimer’s disease diagnosis: A fractal dimension approach

N/A
N/A
Protected

Academic year: 2023

Share "Feature selection for spontaneous speech analysis to aid in Alzheimer’s disease diagnosis: A fractal dimension approach"

Copied!
18
0
0

Texto completo

(1)

Availableonlineatwww.sciencedirect.com

ScienceDirect

ComputerSpeechandLanguage30(2015)43–60

Feature selection for spontaneous speech analysis to aid in Alzheimer’s disease diagnosis: A fractal dimension approach

Karmele López-de-Ipi˜na

a,∗

, Jordi Solé-Casals

b

, Harkaitz Eguiraun

c

, J.B. Alonso

d

, C.M. Travieso

d

, Aitzol Ezeiza

a

, Nora Barroso

a

,

Miriam Ecay-Torres

e

, Pablo Martinez-Lage

e

, Blanca Beitia

f

aDepartmentofSystemsEngineeringandAutomation,UniversityoftheBasqueCountry,Donostia,Spain

bDataandSignalProcessingResearchGroup,UniversityofVicCentralUniversityofCatalonia,Vic,Spain

cResearchCenterforExperimentalMarineBiologyandBiotechnology,PlentziaMarineStation, UniversityoftheBasqueCountry,UPV/EHU,Plentzia,Bizkaia,Spain

dSignalandCommunicationsDepartment,TheInstituteforTechnologicalDevelopmentandInnovationonCommunications, UniversityofLasPalmasdeGranCanaria,LasPalmasdeGranCanaria,Spain

eNeurologyDepartmentCITA-AlzheimerFoundation,Donostia,Spain

fDepartmentofMathematics,UniversityoftheBasqueCountry,Vitoria-Gasteiz,Spain Received15October2013;receivedinrevisedform1August2014;accepted18August2014

Availableonline27August2014

Abstract

Alzheimer’sdisease(AD)isthemostprevalentformofdegenerativedementia;ithasahighsocio-economicimpactinWestern countries.ThepurposeofourprojectistocontributetoearlierdiagnosisofADandallowbetterestimatesofitsseveritybyusing automaticanalysisperformedthroughnewbiomarkersextractedthroughnon-invasiveintelligentmethods.Themethodselected isbasedonspeechbiomarkersderivedfromtheanalysisofspontaneousspeech(SS).Thusthemaingoalofthepresentworkis featuresearchinSS,aimingatpre-clinicalevaluationwhoseresultscanbeusedtoselectappropriatetestsforADdiagnosis.The featuresetemployedinourearlierworkofferedsomehopefulconclusionsbutfailedtocapturethenonlineardynamicsofspeech thatarepresentinthespeechwaveforms.Theextrainformationprovidedbythenonlinearfeaturescouldbeespeciallyusefulwhen trainingdataislimited.Inthiswork,thefractaldimension(FD)oftheobservedtimeseriesiscombinedwithlinearparametersin thefeaturevectorinordertoenhancetheperformanceoftheoriginalsystemwhilecontrollingthecomputationalcost.

©2014ElsevierLtd.Allrightsreserved.

Keywords: Nonlinearspeechprocessing;Alzheimer’sdiseasediagnosis;Spontaneousspeech;Fractaldimensions

Correspondingauthorat:DepartmentofSystemsEngineeringandAutomation,UniversityoftheBasqueCountry,PolytechnicSchool,Europa Plaza1,20008Donostia,Spain.Tel.:+34653723757.

E-mailaddresses:karmele.ipina@ehu.es(K.López-de-Ipi˜na),jordi.sole@uvic.cat(J.Solé-Casals),harkaitz.eguiraun@ehu.es(H.Eguiraun), jesus.alonso@ulpgc.es(J.B.Alonso),carlos.travieso@ulpgc.es(C.M.Travieso),aitzol.ezeiza@ehu.es(A.Ezeiza),nora.barroso@ehu.es (N.Barroso),mecay@cita-alzheimer.org(M.Ecay-Torres),pmlage@cita-alzheimer.org(P.Martinez-Lage),mariablanca.beitia@ehu.es(B.Beitia).

http://dx.doi.org/10.1016/j.csl.2014.08.002 0885-2308/©2014ElsevierLtd.Allrightsreserved.

(2)

1. Introduction

Alzheimer’sdisease(AD)isthemostcommontypeofdementiaamongtheelderly.Itischaracterizedbyprogressive andirreversiblecognitivedeteriorationwithmemorylossandimpairmentsinjudgmentandlanguage,togetherwith othercognitivedeficitsandbehavioralsymptoms.Thecognitivedeficitsandbehavioralsymptomsaresevereenoughto limittheabilityofanindividualtoperformeverydayprofessional,socialorfamilyactivities.Asthediseaseprogresses, patientsdevelopseveredisabilityandfulldependence.AnearlyandaccuratediagnosisofADhelpspatientsandtheir familiestoplanforthefutureandoffersthebestpossibilitiesoftreatingthesymptomsofthedisease.Accordingto currentcriteria,thediagnosisisexpressedwithdifferentdegreesofcertaintyaspossibleorprobableADwhendementia ispresentandotherpossiblecauseshavebeenruledout.ThediagnosisofdefiniteADrequiresthedemonstrationofthe typicalADpathologicalchangesatautopsy(McKhannetal.,1984,2011;VandePoleetal.,2005).Theclinicalhallmark andearliestmanifestationofADisepisodicmemoryimpairment.Atthetimeofclinicalpresentation,othercognitive deficitsarepresentinareaslikelanguage,executivefunctions,orientation,perceptualabilitiesandconstructionalskills (Morris,1993;APA,2000).Allthesesymptomsleadtoimpairedperformanceineverydayactivities.Approachesto theearlydiagnosisofADhaveinthepastfewyearsmadesignificantadvancesinthedevelopmentofreliableclinical biomarkers(AA,2014).

Despitetheusefulnessofbiomarkers,thecostandtechnologyrequirementsinvolvedmakeitimpossibletoapplysuch teststoallpatientswithmemorycomplaints.Giventheseproblems,non-invasiveintelligenttechniquesofdiagnosis maybecomevaluabletoolsforearlydetectionofdementia.Non-technicalstaffinthehabitualenvironmentsofthe patientcouldusethesemethodologies,whichincludee.g.automaticspontaneousspeechanalysis(ASSA)(Fig.1), withoutalteringor blocking the patients’ abilities, as the spontaneous speechinvolved inthese techniquesis not perceivedasastressfultestbythepatient.Moreover,thesetechniquesareverylow-costanddonotrequireextensive infrastructureortheavailabilityofmedicalequipment.Theyarethuscapableofyieldinginformationeasily,quickly, andinexpensively(Faundez-Zanuyetal.,2012;López-de-Ipi˜naetal.,2013a,b).

Inadditiontothe lossof memory,oneof themajor problemscausedbyADisthe lossof languageskills.We candetectdifferent communicationdeficits inthe area of language,including aphasia (difficulty inspeakingand understanding)andanomia(difficultyinrecognizingandnamingthings).Thespecificcommunicationproblemsthe patientencountersdependonthestageofthedisease(McKhannetal.,2011;VandePoleetal.,2005;Morris,1993):

1. Firststageorearlystage(ES):difficultyinfindingtherightwordinspontaneousspeech.Oftenremainsundetected.

2. Secondstageorintermediatestage(IS):impoverishmentoflanguageandvocabularyineverydayuse.

3. Thirdstageoradvancedstage(AS):answerssometimesverylimitedandrestrictedtoveryfewwords.

Fig.1.Signalandspectrogramofacontrolsubject(left)andasubjectwithAD(right)duringspontaneousspeech.

(3)

Themaingoalofthepresentworkisfeaturesearchinspontaneousspeechaimingatpre-clinicalevaluationforthe definitionoftestforADdiagnosis.Thesefeatureswillbeusedtodefinethegroup(CR)andthethreeADlevels.As phonologicalandarticulatoryimpairmentsmayoccuratpresentationor earlyinthecourseofAlzheimer’sdisease (Crootaetal.,2000),wewillusemeasuresthatcanreflectthenonlinearnatureofsuchchangesintheacousticalsignals.

Oneofthemostrelevantnonlineartechniquesforautomaticspeechrecognition(ASR)istheconsiderationofthefractal dimension(FD)ofthespeechsignalasafeaturetobeusedinthetrainingprocess.Ingeneral,fractaldimensionscanbe utilizedtoquantifythecomplexity,concerningthegeometryofadynamicalsystemgivenitsmultidimensionalphase- space.Thisquantificationisrelatedtotheactivedegreesoffreedomoftheassumeddynamicalsystem,providinga quantitativecharacterizationofasystem’sstate(PitsikalisandMaragos,2009;MaragosandPotamianos,1999).

Biologicalsystemsareregulatedbyinteractingmechanismsthatoperateacrossmultiplespatialandtemporalscales.

Theoutputvariablesofthesesystemsoftenhavecomplexfluctuationsthatarenotsolelyduetonoisebutalsocontain informationabouttheintrinsicdynamics.Timeseriesgeneratedbybiologicalsystemsmostlikelycontaindeterministic andstochasticcomponents(Costaetal.,2005).Classicalmethodsofsignalandnoiseanalysiscanquantifythedegree ofregularityofatimeseriesbyevaluatingtheappearanceofrepetitivepatterns,butmostsuchmethodsonlymodel linearcomponentswithoutintroducinganyinformationaboutnon-linearity,irregularitiesorstochasticcomponents.

Thiscomplex informationcould be essential when subtlechanges are analyzed.Thus,when appropriate dataare available,linearsystemscanbeimplementedfairlyrapidly,astheyrelyonwell-knownmachinelearningtechniques toachievetheirgoals,avoidingcomplexadjustmentstothesystem.

The interest in fractals in speechdate back to the mid-1980s (Pickover andKhorasani, 1986), andthey have beenusedforavarietyofapplications,includingconsonant/vowelcharacterization(Martinezetal.,2003;Langiand Kinsner,1995),speakeridentification(Nelwamondoetal.,2006),andend-pointdetection(Lietal.,2007),evenfor whisperedspeech(ChenandZhao,2006).Recentresearchconcernstheanalysisofpathologicalvoicesthroughafractal approach(Chouardetal.,2001;Ouayounetal.,1999;Péanetal.,2000,2002).Thefractaldimension(FD)quantifies theroughnessofatemporalsignalandestimatesitsdegreeoffreedom,andisthusagoodapproachtomodelingits fluctuations.Moreover,thefractalapproachallowsonetoquantifytheroughnessofthevoice,between1(sinusoidal complexsignal)and2(whitenoise).MaragosandPotamianos(1999)providesomemotivationandjustificationfrom thefieldofspeechaerodynamicsforusingfractaldimensiontoquantifythedegreeofturbulenceinspeechsignals.They alsoexploredifferencesinarticulatortrajectoriesandglobalintensity.InthisresearchFDoutperformszero-crossings analysisinthecaseofunvoicedsegments.LikeinotherworkonADdictionbasedonbiosignals(EEGandMEG) (Abásoloetal.,2008;Gómezetal.,2009)),thismethodologycouldbeusefulfordetectingsymptomsofAlzheimer’s, suchasdoubts,breaksorsilencesinthespeechsignal.Figs.2and3showdifferencesforacontrolsubject(CR)anda personwithADinintensity,pitchandFD.

Theapproachadoptedinthisworkistoimprovethesystemdevelopedinourpreviouswork(López-de-Ipi˜naetal., 2013a,b),augmentingthefeatureswithFD.TheFDisawell-knownandusedfeaturefordescribingthecomplexity ofasystem,andcouldhelpinthedetectionofsubtlechangesusefulforearlydiagnosis.Moreover,thisfeaturehasthe abilitytocapturethedynamicsofthesystemandthusrevealrelevantvariationsinspeechutterances.Moreprecisely, weuseimplementationsofHiguchi’s,Katz’sandCastiglioni’salgorithms(Higuchi,1988;Katz,1988;Castiglioni, 2010)inordertoaddthisnewfeaturetothesetthatfeedsthetrainingprocessofthemodel.

Theremainderofthispaperisorganizedasfollows:inSection2,thematerialsarepresented.Section3explains themethodologyoftheexperiments,Section4showstheexperimentalresults,andfinally,conclusionsarepresented inSection5.

2. Materials

ThisstudyisfocusedonearlyADdetectionanditsobjectiveistheidentificationofADinthepre-clinical(before firstsymptoms)andprodromic(someveryearlysymptomsbutnodementia)stages.Theresearchpresentedhereisa complementarypreliminaryexperimenttodefinethresholdsforanumberofbiomarkersrelatedtospontaneousspeech.

Thefeaturesearchinthisworkisdesignedforpre-clinicalevaluationtoselectappropriatetestsforADdiagnosis.The dataobtainedwillcomplementthebiomarkersetofeachpersonindiagnosingAD.

In anattempttodevelopanewmethodologyapplicable toawiderangeof individualsdifferingwithregardto sex,age,languageandculturalandsocialbackground,wehaveconstructedamulticulturalandmultilingual(English, French,Spanish,Catalan,Basque,Chinese,ArabicandPortuguese)databasewithvideorecordingsof50healthyand

(4)

Fig.2.Analysisofacontrolperson(CR).UtteranceinBasquelanguage,“...Belerobat...”:(a)speechsignal,pitch(blue)andintensity(yellow), (b)spectrogram,(c)Higuchifractaldimension(CFD)and(d)Castiglionifractaldimension(HFD).(Forinterpretationofthereferencestocolorin thetext,thereaderisreferredtothewebversionofthisarticle.)

20ADpatients(i.e.,patientswithapriordiagnosisofAlzheimer’s)recordedfor12hand8h,respectively.Theage spanoftheindividualsinthedatabasewas20–98yearsandtherewere20malesand20females.Thisdatabaseiscalled AZTIAHO.Alltheworkwasperformedinstrictaccordancewiththeethicalguidelinesoftheorganizationsinvolved intheproject.

Therecordingsconsistedofvideosofspontaneousspeech–peopletellingpleasantstoriesorrecountingpleasant feelingsaswellasinteractingwitheachotherinfriendlyconversation.Therecordingatmospherewasrelaxedand non-invasive.TheshorterrecordingtimesfortheADgroupareduetothefactthatADpatientsfindspeechmoreof

(5)

Fig.3.AnalysisofapersonwithAD(AD),utteranceinSpanish,“Noseloqueeseso...”:(a)speechsignal,pitch(blue)andintensity(yellow),(b) spectrogram,(c)Higuchifractaldimension(CFD)and(d)Castiglionifractaldimension(HFD).(Forinterpretationofthereferencestocolorinthe text,thereaderisreferredtothewebversionofthisarticle.)

aneffortthanhealthyindividuals:theyspeakmoreslowly,withlongerpauses,andwithmoretimespentonlooking forthecorrectwordandutteringspeechdisfluenciesorbreakmessages.Intheadvancedstageofthedisease,theyfind thisefforttiringandoftenwanttostoptherecording.Wecompliedwiththeirrequests.Thevideowasprocessedand theaudioextractedinwavformat(16bitsand16kHz).Thefirststepwasremovingnon-analysableevents:laughter, coughing, shorthardnoisesandsegmentswherespeakersoverlapped.Next,backgroundnoisewasremovedusing denoiseradaptivefiltering.Afterthepre-processing,about80%ofthematerialfromthecontrolgroupand50%ofthe materialfromtheADgroupremainedsuitableforfurtheranalysis.Thecompletespeechdatabaseconsistsofabout 60minof materialfor the ADgroup andabout9h for thecontrol. Thespeechwasnextdivided into consecutive

(6)

segmentsof60sinordertoobtainappropriatesegmentsforallspeakers,resultingfinallyinadatabaseofabout600 segmentsofspontaneousspeech.

Finally,inordertoperformourexperimentsasubsetof20ADpatientswasselected(68–96yearsofage,12women, 8men)withadistributioninthethreestagesofADasfollows:firststage[ES=4],secondarystage[IS=10]andtertiary stage[AS=6].Thecontrolgroup(CR)wasmadeupof20individuals(10maleand10female,aged20–98years)and representingawiderangeofspeechresponses.ThissubsetofthedatabaseiscalledAZTIAHORE.

3. Methods

3.1. Featureextraction

3.1.1. Featuresselectedforautomaticspontaneousspeechanalysis(ASSA)

Spokenlanguageisoneofthemostimportantelementsdefininganindividual’sintellect,sociallife,andpersonality;

itallowsustocommunicatewitheachother,shareknowledge,andexpressourculturalandpersonalidentity.Spoken languageisthemostspontaneous,natural,intuitive,andefficientmethodofcommunicationamongpeople.Therefore, theanalysisbyautomatedmethodsofspontaneousspeech(SS–freeandnaturalspokencommunication),possibly combinedwithothermethodologies,couldbeausefulnon-invasivemethodforearlyADdiagnosis(López-de-Ipi˜na etal.,2013a,c).Theanalysisofspontaneousspeechfluencyisbasedonthreefamiliesoffeatures(SSFset),obtained bythePraatsoftwarepackage(Praat)andsoftwarethatweourselvesdevelopedinMATLAB.Forthatpurpose,an automaticVoice ActivityDetector(VAD)(VAD;SoléandZaiats,2003)hasextractedvoiced/unvoicedsegments as partsofanacousticsignal(López-de-Ipi˜naetal.,2013a,b).

Thethreefamiliesoffeaturesinclude(López-de-Ipi˜naetal.,2013b):

(1) Duration:thehistogramcalculatedoverthemostrelevantvoicedandunvoicedsegments,theaverageofthemost relevantvoiced/unvoiced,voiced/unvoicedpercentageandspontaneousspeechevolutionalongthetimedimension, andthevoicedandunvoicedsegments’mean,maxandmin;

(2) Timedomain:shorttimeenergy;

(3) Frequencydomain,quality:spectralcentroid.

Theenergyofasignalistypicallycalculatedonashort-timebasis,bywindowingthesignalataparticulartime, squaringthesamplesandtakingtheaverage.Thespectralcentroidiscommonlyassociatedwiththemeasureofthe brightnessofasound.Thismeasureisobtainedbyevaluatingthe“centerofgravity”usingtheFouriertransform’s frequencyandmagnitudeinformation.

3.1.2. Fractaldimension

Mostfractalsystemshaveacharacteristiccalledself-similarity.Anobjectisself-similarifaclose-upexamination of the objectreveals that it is composedof smaller versionsof itself.Self-similarity can bequantified as a rela- tivemeasureof thenumberofbasicbuildingblocksthatformapattern,andthismeasureisdefinedas thefractal dimension.

ThereisnotanyprecisereferenceoftheFDvalueagivenwaveformshouldhave.Inaddition,speechwaveforms arenotstationary,somostASRtechniquesemployshortsectionsofthesignalinordertoextractfeaturesfromthe waveform.Thismeansthatoneplausibletechniqueforextractingfeaturesfromspeechwaveforms,forthepurpose ofrecognizingdifferentphonemes,istodividethesignalinshortchunksandcalculatethefeaturesforeachchunk.

Thiswasthe approach weadopted. In otherwords, we calculatedthe fractal dimensionof short segments of the waveformandobservedtheevolutionoftheobtainedvaluesalongthewholesignal,withtheaimoffindinginitfractal characteristicsthatcouldhelpinidentifyingdifferentelementsofthespokenmessage.

Thereareseveralalgorithmsformeasuringthefractaldimension.Inthecurrentworkwefocusonthealternatives thatareespeciallysuitedfortimeseriesanalysisanddonotrequirepreviousmodelingofthesystem.Threeofthese algorithmsareHiguchi(1988),Katz(1988)andCastiglioni(2010),namedfortheirauthors.HiguchiandCastiglioni werechosenbecausetheyhavebeenreportedtobemoreaccurateinpreviousworkwithunder-resourcedconditions (Ezeizaetal.,2013;López-de-Ipi˜naetal.,2013b,c).Katzisalsoreportedasarobustalgorithmtocalculatefractal dimension(Estelleretal.,2001).

(7)

Higuchi(1988)proposedanalgorithmformeasuringthefractaldimensionofdiscretetimesequencesdirectlyfrom thetimeseriesx(1),x(2),...,x(N)Thealgorithmisbasedonanewtimeseries,xkm,constructedfromtheoriginalone, asfollowing:

xkm=



x(m),x(m+k),x(m+2k),...,x

 m+

Nm k

 k



, for m=1,2,...,k (1) wherea meansintegerpartfora,mindicatestheinitialtimevalueandkindicatesthediscretetimeintervalbetween points(delay).Foreachofthetimeseriesxkmconstructed,theaveragelengthLm(k)iscomputedas:

Lm(k)=

 N−m

k

i=1 |x(m+ik)x(m+(i1)k)|(N−1) N−m

k

k (2)

Next,thelengthofthecurveforthetimeintervalkisdefinedasthesumvalueoverksetsofLm(k)asshowedin Eq.(3):

L(k)= k

m=1

Lm(k) (3)

Finally,theslopeofthecurveln(L(k))/ln(1/k)isestimatedusingleastsquareslinearbestfit,andtheresultisthe Higuchifractaldimension(HFD).

Ontheotherhand,Katz(1988)proposedanormalizedformulaofthefractaldimension(seeEq.(3))becausethis fractaldimensiondependsontheparticularunitsofmeasure.

TheFDofaplanarcurvecanbedefinedas:

FD= log10(L)

log10(d) (4)

InthiscaseListhelengthofthecurveanddisthediameter(theplanarextent)ofthecurve.Fortimeseries,which areorderedsetsof(x,y)pointpairs,thetotallengthLisnothingbutthesumofthedistancesbetweensuccessivepoints, aspresentedinEq.(5):

L= n

i=1

li,i+1 (5)

whereli,jmeanstheEuclideandistancebetweentwopointpairs(xi,yi)and(xj,yj)asshowninEq.(5),andn+1isthe totalnumberofpointpairs.

li,j=

(yiyj)2+(xixj)2 (6)

Thediameterofthetimeseriescanbecalculatedasthefarthestdistancebetweenthestartingpoint(point1)and anyotherpoint(pointi)ofthetimeseries,aspresentedinEq.(6):

d =max{l1,i} (7)

TheFDcomparestheactualnumberofunitsinacurvewiththeminimumnumberofunitsrequiredtoreproduce apatternofthesamespatialextent;andasmentionedabove,willdependuponthemeasurementunitsusedbecause FDiscalculatedinadiscretespacenotincontinua.Katz’sapproachsolvesthisproblembynormalizingdandLby thelengthoftheaveragestepa,theaveragedistancebetweensuccessivepoints,definedasL/n,wheren+1isthetotal numberofpointpairs(aspresentedinEq.(5)).Therefore,normalizingdistancesin(4)weobtainKatz’sapproachto calculatetheFDofatimeseries(8):

FD= log10(n)

log10(n)+log10(d/L) (8)

However,Castiglioni(2010)claimsthatintheX–Yplane,whichdescribesthewaveform,themagnitudesxandyin useareintrinsicallydifferentsincetheycorrespondtothemagnitudeofthesignal(y)andtimepoints(x).Therefore, giventhat the inputsignal isamono-dimensional waveform,the length andthe extensioncanbe rewrittenusing

(8)

Fig.4.Higuchifractaldimension(HFD)foracontrolsubject(above)andanADsubject(below),fordifferentwindowsizes.

Mandelbrot’sapproach.Asimpleandefficientwaytodothisistomeasurethesetwomagnitudesdirectlyintheirown dimension.Foreach,theextensiononthey-axisistherangeofyk:

d=max{yk}−min{yk} (9)

andthelengthListhesumofalltheincrements,inmodulus:

L= n

k=1

|yk+1yk| (10)

Whereagain,disthediameterofthecurve,Listhelengthofthecurveandn+1isthetotalnumberofpointpairs.

3.1.3. Windowsizeduringthefeatureextractionprocess

Theselectionofanappropriatewindowsizetobeusedduringtheexperimentsisessential.Fig.4illustratesthe qualitativeeffectofwindowsizeontheresultsoftheexperiments.Broadlyspeaking,thefractaldimensionisatool forattemptingtocapturethedynamicsofthesystem.Withashortwindow,theestimationishighlylocalandadapts fasttothechangesinthewaveform.Whenthewindowislonger,somedetailsarelostbutthefractaldimensionbetter anticipatesthecharacteristicsofthesignal.Additionally,previousstudiesthattakeintoaccountthewindowsizeof similardimensionestimations(Tsonis,2007;Jang,2011;Estelleretal.,2001)suggestthatalongerwindowcouldbe usefulinsomecases.Consequently,fourwindow-sizesof160,320and1280pointswillbeanalyzed.

(9)

Table1

Accuracy(%)inthefinalsystemwithMLPandKNNforCRandAD.

Nameoftheset Description

SSF Spontaneousspeechfeatures

SSSF Automaticselectionofspontaneousspeechfeatures SSSF+FD SSSFsetandfractaldimension(FD)

VFD Maximum,minimum,variance,standarddeviation,medianandmodeaverageforfullsignalandvoicedsignal SVFD Automaticselectionofmaximum,minimum,variance,standarddeviation,medianandmodeaverageforfullsignaland

voicedsignal

Table2

Accuracy(%)inthefinalsystemwithMLP(SSSF+CSVFD)andKNN(SSSF+HSVFD)forCRandAD(WS=320)andconfidenceintervalfor 95%and90%.

Class KNN MLP

Acc CI(95%) CI(90%) Acc CI(95%) CI(90%)

CR 90.90 [84.09,97.90] [85.21,96.79] 92.43 [86.85,99.15] [87.83,9816]

AD 87.30 [79.07,95.52] [80.39,94.20] 90.9 [84.10,98.03] [85.06,96.93]

3.2. Automaticfeatureselection

Inordertodevelopapplicationswithlowcomputationalcost,featuresetsshouldbeoptimized.Inafirstapproach, threealgorithmswillbeusedforautomaticattributeselection.Specifically,thefollowingonesfromtheWEKAsoftware (WEKA)suitewereselectedtotakeintoaccountgainrelativetoeachclass,eachfeatureandtherelationsamongthem:

1. SVMAttributeEval:EvaluatestheusefulnessofanattributebyusinganSVMclassifier.Attributesarerankedby thesquareoftheweightassignedbytheSVM.Attributeselectionformulticlassproblemsishandledbyranking attributesforeachclassseparatelyusingaone-versus-allmethodandthendealingfromthetopofeachpiletogive afinalranking(WEKA).

2. CfsSubsetEval:Evaluatestheusefulnessofasubsetofattributesbyconsideringtheindividualpredictiveabilityof eachfeature,alongwiththedegreeofredundancybetweenthem.Subsetsoffeaturesthatarehighlycorrelatedwith theclasswhilefeatureshavinglowintercorrelationarepreferred(WEKA).

3. GainRatioAttributeEval:Evaluatestheusefulnessofanattributebymeasuringthegainratio withrespecttothe class(WEKA).

Thesealgorithmswillbeusedovertheinitialfeaturesetstoselectsmallerandappropriateattributesetsfor low computationalcostperformance.

3.3. Featuresets

Intheexperimentation,threefamiliesoffeaturesetswillbeused:

1. SSFandSSSF 2. SSSF+FD

3. SSSF+VFDandSSSF+SVFD

Fromthesethreefamilieswederivefivedifferentsetsthatwillbeusedinthefollowingexperiments,asdetailedin Table1(seealsoTable3foracompletelistofacronymsusedinthiswork).

(10)

3.4. Automaticclassification

Themaingoalofthepresentworkisfeaturesearchinspontaneousspeechorientedtopre-clinicalevaluationfor thedefinitionoftestsforADdiagnosis.ThesefeatureswilldefinetheCRgroupandthethreeADlevels.Asecondary goalwillbethecontrolofcomputationalcostorientedtoreal-timeapplications.Thusautomaticclassificationwillbe modeledwithaviewtowardefficiency.Twodifferentparadigmswillbeevaluated:

1. Multilayerperceptron(MLP)withneuronnumberinhiddenlayer(NNHL)=(attribute/number+classes/number) andtrainingstep(TS)NNHL×10,MLPA500.

2. k-Nearestneighbors(KNN)paradigm.

TheWEKAsoftwaresuitehasbeenusedincarryingouttheexperiments.TheresultswereevaluatedusingClas- sificationErrorRate(CER),Accuracy(Acc)andCumulativeError(Arias-Londo˜noetal.,2010;Godinoetal.,2005, 2006).Forthetrainingandvalidationsteps,weusedk-foldcross-validationwithk=10.Cross-validationisarobust validationmethod forvariable selection(Picard andCook,1984).Repeatedcross-validation (ascalculatedby the WEKAenvironment)allowsrobuststatisticaltests.WealsousethemeasurementprovidedautomaticallybyWEKA

“Coverageofcases”(0.95level)andconfidenceintervalforpercentages(CI)for95%,90%and80%.

4. Experimentalresults

TheexperimentationwascarriedoutwithAZTIAHOREdataset.

4.1. Analysisofthefractaldimension

Inthisfirststageabout80attributesweregeneratedwithregardtothecriteriadescribedabove:featuresselectedfor automaticspontaneousspeechanalysis(ASSA)andfeaturesbasedonthefractaldimension.Then,automaticfeature selectionwascarriedoutusingthemethodologydescribedin3.2forallthreefractaldimensionalgorithmsandfour differentwindow-sizes(160,320,640and1280points).

4.2. Automaticfeatureselection

AutomaticfeatureselectionwascarriedoutusingthemethodologydescribedinSection3.2.Forallthreefractal dimensionalgorithmsandfourdifferentwindow-sizes(160,320,640and1280points),12similarproposalsoffeature setswereanalyzed.About50featureswereselectedfromtheoriginalsets.Theselectedattributesarethesameforall cases:featuresrelativetoASSAandfeaturesbasedonthefractaldimension.Finallyfollowingfeaturefamilieswere usedinthenextSection4.3:SSF,selectionofSSF(SSSF),SSSF+FD,fullsetsoffeatures(SSSF+VFD)andsets withtheselectedfeatures(SSSF+SVFD).SSSFsetoutperformstheCERratesin%ofSSF(MLP,24.81%andKNN, 29.46%)inabout5%.Specifically,thereferenceresultsCERin%forSSSF,withoutFD,are:MLP,20.16%andKNN, 27.14%(seeRefbluebarinFig.5).RecognitionratesforbothalgorithmsareoptimalfortheCRgroupbutverypoor forES.ThusSSSFwasselectedforuseinthesubsequentexperimentsdescribedbelow.

4.3. Automaticclassification

InthenextstagethemethodologydescribedinSection3.4wasused.Thetaskwasautomaticclassification,withthe classificationtargetsbeing:healthyspeakerswithoutneurologicalpathologiesandspeakersdiagnosedwithAD.Four kindsofexperimentswerecarriedout:selectionofwindow-size;featureanalysis;analysisofglobalresults;analysis ofclasses’results.

Fig.5showstheclassificationerrorratein%forfractaldimensionalgorithmsandbothparadigms:MLPandKNN.

Inthistask,severalwindowsizeswereanalyzed:160,320,640and1280points.TheSSSFsetandfractaldimension setswereusedinthisstage.TheminimumCERisachievedwithMLPandwindowsofmiddlesize:320and640.

Bothwindow-sizeswill beused insubsequent experiments.Most ofthe newproposals,whichincludethe fractal dimension,achievedimprovementsoverthereferencemethods.Fig.6analysestheinfluenceofattributeselectionwith

(11)

Fig.5.Classificationerrorrate(%)forfractaldimensionalgorithms,severalwindowsizesandbothparadigms:MLPandKNN.Refbarswere obtainedwithoutusingfractaldimensionfeatures.

Fig.6.Classificationerrorrate(%)forseveralwindowsizesandbothparadigms:MLPandKNNwithfractaldimensionfeaturesets(VFD)and attributesetsafterselection(SVFD).Refbarswereobtainedwithoutusingfractaldimensionfeatures.

(12)

Fig.7.Classificationerrorratein%forthethreedefinedfractaldimensionalgorithmswithonlyFDandwithsetsafterattributeselection(SVFD) andforbothparadigmsMLPandKNN.Refbarswereobtainedwithoutusingfractaldimensionfeatures.

regardtofractaldimensionalgorithms,modelingandwindowsize.WithMLPtheCERin%decreasedinallcases.

RegardingKNN,thebestglobalresultswereobtainedfortheHiguchialgorithm.Thecomputationalcostinallcases issignificantlyreducedwiththeKNNparadigm (seeFig.10).Thus,theSSSF+SVFDsets,withfeaturesselected byautomaticselection,wereusedinsubsequentexperiments.Theglobalresultsofthisstudyweresatisfactory.The newfractalfeaturesdecreaseCERinMLPfrom20.16%to14.73%andinKNNfrom27.14%to21.71%(seeFig.6).

Thissuggeststhatthesetsthatincludethefractaldimension,itsdetailedvariationsandautomaticattributeselection, wereabletoproperlymodelnon-linearsignalfeatures.Inbothexperimentsthecoverageofcaseswasabout94%.The confidenceintervalsareofabout±3forMLPand±5forKNNover80%.Fig.7showstheimprovement(CERin%)in mostcaseswhenSVFDisincluded,mainlyforMLP.ThebestresultsareachievedwithMLPforKatzandCastiglioni withawindow-sizeof320points.Ingeneral,KNNislessstablethanMLP.Moreover,MLPpresentsgoodratesfor computationalcost(see Fig.10).KNN hasthelowestcomputationalcostforallcasesandwithfractal dimension featuresisabletodetectESsegments,butcannotachievetheresultsobtained byMLP.Thebestglobalresultsare producedbySSSF+CSVFD(14.73%)withMLPandWS=320.KNNobtainsthebestresultswithHiguchialgorithm variants(21.71%).

Fig.8 showstheresultsforclasses (accuracyin%). SSSF+CSVFDwithMLPandWS=320isagain thebest option.Thissetobtainsthebestresultsforallclassesandalsoimprovestheclassificationwithregardtoearlydetection (ESclass).InthecaseofIS,wealsoobtainedabetterrateofidentifyingthemiddleADlevel.Themodelisalsoableto discriminatebetweenpathologicalandnon-pathologicalsegmentsineachpatient.Finally,regardingcumulativeerror forclassesin%(CE),Fig.9showstheobtainedresults.TheW320option,whichpresentsthelowestCE,seemsto bettercapturethedynamicsof thesignalwiththevariantsofCastiglionifractaldimension.Itshouldbenotedthat thereisasmallpercentageoffalsepositives,whichmayduetodoubtsinutteranceproduction.Coverageofcasesis about95%intheglobalsystem.ThedifferencesbetweenESandtheotherstageswithregardtoratesisduetothe factthatthespecificcommunicationproblemsthepatientencountersdependonthestageofthedisease,asdescribed inSection1(aphasia,anomia).Moreover,whenpatientsareintheESorASstage,problemsrelatedtoage–suchas dysphonicvoice–areoftenpresentaswell,asagingcausesalterationsinthevoiceproductionsystem.Table2shows accuracy(%)inthefinalsystemwithMLPandKNNforCRandADandalsoconfidenceintervalfor95%and90%.

(13)

Fig.8.Accuracy(%)withMLPandKNNfordifferentclasses:CR,ES,ISandAS.Refbarswereobtainedwithoutusingfractaldimensionfeatures.

Fig.9. Cumulativeerror(%)withMLPandKNNfordifferentclasses:CR,ES,ISandAS.

(14)

Table3 Acronymsused.

Acronym Description

AD Alzheimer’sdisease

CR Control

FD Fractaldimension

KFD KatzFD

HFD HiguchiFD

CFD CastiglioniFD

SSF Spontaneousspeechfeatures

SSSF SelectionofSSF

SSSF+FD SSSFsetandHFD,KFDorCFD

STD Standarddeviation

VFD Maximum,minimum,standarddeviation,medianandmodeaverageforfullandvoicedsignal

SVFD AutomaticselectionofVFD

MLP Multilayerperception

NNHL Neuronnumberinhiddenlayer

TS Trainingstep

MLP501000 NNHL=50andTS=1000

MLPA500 NNHL=max(attribute/number+classes/number)andTS=NNHL×10

KNN k-Nearestneighbors

CER Classificationerrorrate

Acc Accuracy

CE Cumulativeerror

Fig.10analysesthecomputationalcostoftheproposedalgorithm:(a)withregardtoModelBuildingandRecognition Processfor:KNN,MLPA500andMLP501000(MLPwithNNHL=500andTS=1000);and(b)withregardtoModel BuildingandRecognitionProcessfor:KNN,andMLPA500withdifferentfeaturesset.

Wecanobserve (Fig.10a)that whenbuildingthemodel,KNNandMLPA500havesimilarcomputationalcost, followedbyMLP501000;butinclassificationtasks,clearlyKNNisthebestoneregardingthisaspect.Whatismore interestingistoobserveindetailFig.10b,wherewepresentalsocomputationalcostforbuildingthemodelandfor classificationtask,butinthiscaseonlyforKNNandMLPA500,andwithdifferentsetsoffeatures.Now,evenifstill KNNoutperformsMLP,automaticselectionofparametersallowsustoclearlydiminishthecomputationaltimefor MLPA500(about4timeslessthanMLP501000),whichinturnsisthemethodthatgivesbetterperformanceinterms ofClassificationErrorRate(seeFigs.6–8).Therefore,MLPwithautomaticselectionofparametersisthebestoption becauseitobtainsthelowestCERandareasonablecomputationaltimefor therecognitionprocess(less than10s, whichissuitableforrealtimeapplications).

ComputationalcostwithregardtoModelBuildingandRecognitionProcessfor:KNNandMLPA500withdifferent featuresets

Fig.10.(a)Computationalcostwithregardtomodelbuildingandrecognitionprocessfor:KNN,MLPA500andMLP501000(MLPwithNNHL=500 andTS=1000),(b).

(15)

5. Conclusionsandfuturework

Themaingoalofthepresentprojectisfeaturesearchinspontaneousspeechtoaidinthepre-clinicalevaluation andtheselectionofappropriatetestsforADdiagnosis.Thesefeaturesareofgreatrelevanceforhealthspecialiststo identifyADsufferersanddifferentiatebetweenthethreeADlevels.Theapproachofthisworkistoimproveprevious modelingbasedonspontaneousspeechfeatureswithfractaldimensions.Withregardtopreviouswork,newmodeling applicationswithsmallcomputationalcosthavebeenevaluated.Moreprecisely,weproposetouseHiguchi’s,Katz’s, andCastiglioni’salgorithmsinordertoaddthesenewfeaturestothesetthatfeedsthetrainingprocessofthemodel.

Inthiswork,anapproachtotheinclusionofnonlinearfeaturesisdescribed.Thisstraightforwardapproachappears robustintermsofcapturingthedynamicsofthewholewaveform,astheCERdecreaseswhenusingFDfeatures,with lesscomputationalcostthanthepreviouslyusedones.Infutureworkwewillintroducenewfeaturesrelatedtospeech modelingthatcanpotentiallybeappliedtostandardmedicaltestsforADdiagnosisandtoemotionresponseanalysis.

Wewill alsomodel the fractaldimension using otheralgorithms,andentropyfeatures as newnonlinear features.

Finally,anewapproachbasedonone-classclassifierdesignedforearlydetectionwillbealsodeveloped.

Acknowledgments

ThisworkhasbeenpartiallysupportedbyaSAIOTEKfromtheBasqueGovernment,UniversityofVic–Central UniversityofCataloniaundertheresearchgrantR0947,andtheSpanishMinisteriodeCienciaeInnovaciónTEC2012- 38630-C04-03.

References

AA,2014.Alzheimer’sAssociation,Availablefrom:http://www.alz.org/

AmericanPsychiatricAssociation(APA),2000.DiagnosticandStatisticalManualofMentaldisorders,WashingtonDC,4thed.,TextRevision.

Abásolo,D.,Escudero,J.,Hornero,R.,Espino,P.,Gómez,C.,2008.FractaldimensionoftheEEGinAlzheimer’sdisease.Encycl.Healthcare Inform.Syst.

Arias-Londo˜no, J.D., Godino-Llorente, J.I., Sáenz-Lechón, N., Osma-Ruiz, V., Castellanos-Domínguez, G., 2010. An improved method for voice pathology detection by means of a HMM-based feature space transformation. Pattern Recogn. 43 (9), 3100–3112, http://dx.doi.org/10.1016/j.patcog.2010.03.019.

Castiglioni,P.,2010.WhatiswronginKatz’smethod?Commentson:“Anoteonfractaldimen-sionsofbiomedicalwaveforms”.Comput.Biol.

Med.40,11–12.

Chen,X.,Zhao,H.,2006.Fractalcharacteristic-basedendpointdetectionforwhisperedspeech.In:Proceedingsofthe6thWSEASInternational ConferenceonSignal,SpeechandImageProcessing,Lisbon,Portugal.

Chouard,C.H.,Pean,V.,Ouayoun,M.,Meyer,B.,2001.Afractalapproachtothefeaturesofspeechconsonants.ActaOtolaryngol.121(January (2)),249–253.

Croota,K.,Hodgesa,J.R.,Xuerebc,J.,Pattersona,K.,2000.PhonologicalandarticulatoryimpairmentinAlzheimer’sdisease:acaseseries.Brain Lang.75(2),277–309.

Esteller,R.,Vachtsevanos,G.,Echauz,J.,Litt,B.,2001.Acomparisonofwaveformfractaldimensionalgorithms.IEEETrans.CircuitsSyst.I:

Fundam.TheoryAppl.48(2),177–183.

Ezeiza,A.,LópezdeIpi˜na,K.,Hernández,C.,Barroso,N.,2013.Enhancingthefeatureextractionprocessforautomaticspeechrecognitionwith fractaldimensions.Cogn.Comput.5,545–550,http://dx.doi.org/10.1007/s12559-12-91-65.29120.

Faundez-Zanuy, M., et al., 2012. Biometric applications related to human beings: there is life beyond security. Cogn. Comput., http://dx.doi.org/10.1007/s12559-012-91699.

Godino,J.I.,Gómez-Vilda,P.,Blanco-Velasco,M.,2006.Dimensionalityreductionofapathologicalvoicequalityassessmentsystembasedon Gaussianmixturemodelsandshorttermcepstralparameters.IEEETrans.Biomed.Eng.53(10),1943–1953.

Godino,J.I.,Gómez-Vilda,P.,Sáenz-Lechón,N.,Blanco-Velasco,M.,Cruz-Roldán,F.,Ferrer-Ballester,M.A.,2005.SupportVectorMachines AppliedtotheDetectionofVoiceDisorders.SpringerVerlag,BerlinHeidelberg,pp.219–230.

Gómez,C.,Mediavilla,A.,Hornero,R.,Abásolo,D.,Fernández,A.,2009.UseoftheHiguchi’sfractaldimensionfortheanalysisofMEGrecordings fromAlzheimer’sdiseasepatients.Med.Eng.Phys.31(3),306–313,ISSN1350-4533.

Higuchi,T.,1988.Approachtoanirregulartimeseriesonthebasisofthefractaltheory.Phys.D31277,283.

Jang,J.S.R.,2011.AudioSignalProcessingandRecognition.In: RogerJang’sHomepage,Availablefrom:http://www.cs.nthu.edu.tw/∼jang (accessed2011).

Katz,M.,1988.Fractalsandtheanalysisofwaveforms.Comp.Biol.Med.18(3),145–156.

Langi,A.,Kinsner,W.,1995.Consonantcharacterizationusingcorrelationfractaldimensionforspeechrecognition.In:ProceedingsofCommuni- cations,Power,andComputing.ConferenceProceedings.IEEE.

Li,Y.,Fan,Y.,Tong,Q.,2007.Endpointdetectioninnoisyenvironmentusingcomplexitymeasure.In:Proceedingsofthe2007International ConferenceonWaveletAnalysisandPatternRecognition,Beijing,China.

(16)

López-de-Ipi˜na,K.,Alonso,J.B.,Solé-Casals,J.,Barroso,N.,Faundez-Zanuy,M.,Travieso,C.,Ecay-Torres,M.,Martinez-Lage,P.,Egiraun, H.,2013b.OnautomaticdiagnosisofAlzheimer’sDiseasebasedonSpontaneous,SpeechAnalysisandEmotionalTemperature,Cognitive Computation.Springer,Berlin,http://dx.doi.org/10.1007/s12559-013-9229-9.

López-de-Ipi˜na,K.,Eguiraun,H.,Solé-Casals,J.,Ecay,M.,Ezeiza,A.,Barroso,N.,Martinez-Lage,P.,Martinez-de-Lizardui,U.,2013c.Feature extractionapproachbasedonfractaldimensionforspontaneousspeechmodellingorientedtoAlzheimerdiseasediagnosis.In:NOLISP,2013, pp.144–151.

López-de-Ipi˜na,K.,Alonso,J.B.,Travieso,C.M.,Solé-Casals,J.,Egiraun,H.,Faundez-Zanuy,M.,Ezeiza,A.,Barroso,N.,Ecay,M.,Martinez- Lage,P.,Martinez-de-Lizardui,U.,2013a.Ontheselectionofnon-invasivemethodsbasedonspeechanalysisorientedtoautomaticAlzheimer diseasediagnosis.Sensors13(5),6730–6745.

Costa,M.,Goldberger,A.L.,Peng,C.K.,2005.Multiscaleentropyanalysisofbiologicalsignals.Phys.Rev.E71(2pt.1).

Maragos,P.,Potamianos,A.,1999.Fractaldimensionsofspeechsounds:Computationandapplicationtoautomaticspeechrecognition.J.Acoust.

Soc.Am.105(3),1925–1932.

Martinez,F.,Guillamon,A.,Martinez,J.J.,2003.Vowelandconsonantcharacterizationusingfractaldimensioninnaturalspeech.In:Proceedings ofNOLISP’2003.

McKhann,G.,Drachman,D.,Folstein,M.,Katzman,R.,Price,D.,Stadlan,E.M.,1984.ClinicaldiagnosisofAlzheimer’sdisease:Reportofthe NINCDS-ADRDAWorkgrouponAlzheimer’sDisease,24.,pp.939–944.

McKhann,G.M.,etal.,2011.ThediagnosisofdementiaduetoAlzheimer’sdisease:recommendationsfromtheNationalInstituteonAging- Alzheimer’sAssociationworkgroupsondiagnosticguidelinesforAlzheimer’sdisease.Alzheimer’sDement.7(3),263–269.

Morris,J.C.,1993.Theclinicaldementiarating(CDR):currentversionandscoringrules.Neurology43,2412b–2414b.

Nelwamondo,F.V.,Mahola,U.,Marwola,T.,2006.Multi-scalefractaldimensionforspeakeridentificationsystems.In:Proceedingsofthe8th WSEASInternationalConferenceonAutomaticControl,Modeling&Simulation,pp.81–86.

Ouayoun,M.,Péan,V.,Meyer,B.,Chouard,C.H.,1999Mar.Astudyofspeechfractaldimensions.ActaOtolaryngol.119(2),261–266.

Péan,V.,Ouayoun,M.,Fugain,C.,Meyer,B.,Chouard,C.H.,2000.Afractalapproachtonormalandpathologicalvoices.ActaOtolaryngol.120 (2),222–224.

Péan,V.M.,Ouayoun,C.,Fugain,B.,Meyer,C.H.,2002.Chouardafractalapproachofpathologicalvoices,fractalsinbiologyandmedicine.Math.

Biosci.Interact.,147–151,http://dx.doi.org/10.1007/978-3-0348-8119-716.

Picard,R.,Cook,D.,1984.Cross-validationofregressionmodels.J.Am.Stat.Assoc.79(387),575–583,http://dx.doi.org/10.2307/2288403(JSTOR 2288403).

Pickover,C.A.,Khorasani,A.,1986.Fractalcharacterizationofspeechwaveformgraphs.Comp.Graph.10(1),51–61.

Pitsikalis,V.,Maragos,P.,2009.Analysisandclassificationofspeechsignalsbygeneralizedfractaldimensionfeatures.SpeechCommun.51(12), 1206–1223.

Praat.DoingPhoneticsbyComputer.Availablefrom:http://www.fon.hum.uva.nl/praat

Solé,J.,Zaiats,V.,2003.Anon-linearVADfornoisyenvironment.Cogn.Comput.2(3),191–198.

Tsonis,A., 2007. Reconstructing dynamics from observables: the issue ofthe delay parameter revisited.Int. J. Bifurc.Chaos 17, 4229, http://dx.doi.org/10.1142/S0218127407019913.

VAD,VoiceActivityDetectoralgorithm.Availablefrom:http://www.mathwork.com

VandePole,L.A.,etal.,2005.TheeffectsofageandAlzheimer’sdiseaseonhippocampalvolumes,aMRIstudy.Alzheimer’sDement.1(1Supp.

1),51.

WEKA.Availablefrom:http://www.cs.waikato.ac.nz/ml/weka/

KarmeleLópez-de-Ipi ˜nareceivedthePh.D.degreeinComputerSciencein2003,andaMasterdegreeinElectronics andAutomationandtheB.Sc.degreeinPhysicsin1990,attheUniversidaddelPaísVasco/EuskalHerrikoUnibertsitatea (UPV/EHU).Sheworkedforenterprisesuntil1995whenjoinedtheDepartmentofSystemsEngineeringandAutomation oftheUniversityoftheBasqueCountry.HewasDirectorattheUPV/EHU(2004–2009).Sheiscurrentlyheadofthe EngineeringandSocietyresearchgroup,ELEKIN.HerresearchinterestsareinBioengineeringandBiomedicalEngineering, PatternRecognition,SignalProcessing,AmbientIntelligenceandRobotics.

JordiSolé-CasalsreceivedthePh.D.degreewithEuropeanlabelin2000,andtheB.Sc.degreeinTelecommunicationsin 1995,bothfromthePolytechnicUniversityofCatalonia(UPC),Barcelona.In1994hejoinedtheDepartmentofDigital TechnologiesandInformationoftheUniversityofVic,wherehewastheDirector(2010–2012).HeiscurrentlyHeadof theDataandSignalProcessingResearchGroup.HeisvisitingscientistwiththeGIPSA-Lab(Grenoble,France),LABSP RIKEN(Tokyo,Japan)andBMU(Cambridge,UK).Hisresearchinterestsareinbiomedicalsignalprocessing(EEG,fMRI, speech,biometricapplications),neuralnetworks,sourceseparationandindependentcomponentanalysis.

Referencias

Documento similar

word embeddings [32]. BERT-BASED MODELS TO CLASSIFY EEGS 458 To compare the results, we develop two experiments based 459 on BERT models with the same architecture. First, a model

Our results demonstrate that NOX4 expression is upregulated in the presence of pathological hyperphosphorylated tau in brains of AD and FTLD patients and in a humanized mouse model

The empirical study carried out using quantile regression confirms that visitors to theme parks who are willing to pay a high price for express passes are

To determine the diagnostic test accuracy (DTA) of 18 F-flor- betaben as the index test for detecting people with mild cognitive impairment (MCI) at time of performing the test

The experiments have analyzed the automatic measurement and definition of appropriate features in Spontaneous Speech, Emotional Response Analysis and Integral Response in

Each measure presented in Section 2.2 was computed in both data sets, after the computed values were used as input features for a classifier, first individually

In this paper we deal with the problem of diagnosis, feature selection, and ranking of the features as a function of their classification importance, and the design of a

Feature extraction using multiway array decomposition: (a) from an original database (database A), the MAD allows one to extract the encoding variable matrix SA; (b) the LS