Tema 3. Trigonometría elemental plana. 1. Introducción. 2. Ángulos planos y su medida

Texto completo

(1)

Tema 3

Trigonometría elemental plana.

1. Introducción

La palabra Trigonometría deriva de las raíces griegas gonios (ángulo) y metron (medida). El prefijo tri se refiere a que las figuras planas geométricas más simples, y además las más utilizadas tanto en los desarrollos teóricos como en muchas aplicaciones, sólo poseen tres ángulos: son los triángulos. En esta lección únicamente se estudiarán triángulos trazados en el plano y con lados rectilíneos. Por tanto, estamos hablando de Trigonometría plana.

Fue el matemático Leonhard Euler (1707-1783), quien consideró la Trigonometría plana como una rama independiente de las Matemáticas, desligándola de la Astronomía de posición, que utiliza la Trigonometría esférica para efectuar cálculos sobre las posiciones de los astros en el firmamento. En estricta lógica histórica, la Trigonometría esférica –las conocidas coordenadas geográficas latitud y longitud, que tan habituales son hoy día en las localizaciones mediante GPS, en sus diversas variantes- es anterior a la Trigonometría plana.

2. Ángulos planos y su medida

Para comenzar, daremos una definición de ángulo plano, y también indicaremos cómo medirlo. Cuando una semirrecta, sin salir del plano en que está trazada, gira o pivota alrededor de su origen, al que llamaremos vértice del ángulo, se dice que genera, describe o barre un ángulo, cuya magnitud indica cuánto ha girado la semirrecta. La dirección de la semirrecta antes de iniciar su giro define el lado inicial del ángulo, y la que alcanza al terminarlo, su lado final. Si la semirrecta gira en sentido contrario al de las agujas del reloj, el ángulo descrito se considera positivo y si gira en el sentido de las agujas del reloj, negativo (ver la figura adjunta).

La definición anterior de ángulo es bastante clara para ángulos “pequeños” y positivos, sin embargo no es operativa en lo relativo a la magnitud, pues no dice cómo hacer corresponder al barrido geométrico un número, su medida. Por ejemplo, el movimiento podría concluir con la posición final de la semirrecta igual a la inicial, con lo que se

(2)

Como en el presente tema se trabajará con ángulos tanto positivos como negativos y de magnitud arbitraria, se precisa afinar algo más en las definiciones.

Supongamos que el vértice de un ángulo ocupa el centro de una circunferencia, y quedémonos sólo con los tramos o segmentos de semirrecta que representan radios de la circunferencia. Podemos llamar ángulo central a esta construcción geométrica. Ahora ya se puede asignar una medida al ángulo central: Es la longitud del arco que une los extremos de los radios que lo definen. Hay dos cuestiones importantes planteadas por esta definición:

• En primer lugar, usando varias circunferencias concéntricas, la medida del ángulo resultaría diferente al medirla sobre cada circunferencia. Sin embargo, la longitud del arco es proporcional al radio, pues la longitud total de la circunferencia es 2 rπ , así que tomaremos como medida del ángulo la razón o

cociente entre la longitud obtenida y el radio de la circunferencia sobre la que se midió. Así, la medida del ángulo no dependerá del radio de la circunferencia usada en su medición. Éste es un ejemplo de “cantidad adimensional”.

• Segundo. Si el lado final del ángulo coincidiera con el lado inicial tras una vuelta completa, ya podemos dar a la vuelta completa una medida distinta de cero: Sería la longitud total de la circunferencia, y al dividirla por el radio, resultará igual a la cantidad adimensional 2 r 2

r

π = π

.

• Los ángulos cuya medida, según el método anterior, está entre 0 y 2

π

, se llaman ángulos agudos, y si entre y

2

π π , ángulos obtusos. Los ángulos con medidas

y 2

π π , respectivamente, son los ángulos rectos y llanos.

La medición de cualquier magnitud necesita una unidad adecuada. Para medir longitudes pueden emplearse metros, yardas, etc, y para medir ángulos se usan habitualmente como unidades el grado y el radián.

(3)

2.1. Sistema sexagesimal

Este método consiste en suponer dividida la circunferencia en 360partes iguales, los grados, usados para medir ángulos centrales. El grado se subdivide, a su vez, en 60 minutos, y el minuto en 60 segundos. Es habitual encontrar estas medidas en la coordenadas geográficas de los GPS, en expresiones tales como 28 06 ' 27 ''° (28grados,

6minutos, 27segundos) 2.2. Sistema circular

Este sistema –el más utilizado en las Matemáticas teóricas- toma como unidad el arco cuya longitud sea igual al radio de la circunferencia a la que pertenece. Tal arco se llama radián. Con estas unidades, el ángulo que abarca una circunferencia completa mide 360° ó 2π radianes, como ya se indicó un poco más arriba, aunque sin usar la

palabra “radián”. Así pues, los ángulos agudos miden menos de 2 π

radianes, o bien, menos de 0

90 , y así sucesivamente.

2.3. Cambios entre ambos sistemas y uso de los mismos

Aunque las calculadoras científicas ofrecen la posibilidad de trabajar con los dos sistemas de medida, es conveniente explicitar el cambio de radianes a grados y viceversa. Así, tendremos:

( ) ( )

o o o 2 radianes 360 360 180 1radián 2 π π π = = = o o 360 2 radianes 2 1 radianes radianes 360 180 π π π = = =

Ejemplo: Operaciones con ángulos en el sistema sexagesimal. Sólo hay que tener en cuenta que al operar con minutos o segundos, a veces será necesario tener en cuenta si las cantidades son mayores que 60:

Dados los ángulos α =53 20 '31'' y o β =41 35' 44''o , calcular: a. α β+ o o o o 53 20' 31'' 41 35' 44'' 94 55' 75'' 94 56' 15'' + = = b. α β− o o o o o 53 20' 31'' es igual á ' '' 41 35' 44'' restando ahora: 41 35' 44'' queda 11 52 79 91 44' 47'' −

(4)

c. o o o

3× = ×γ 3 (53 15 '31'')=159 45 93' '' 15= 9 46 3' 3''

Ejemplo: Expresar en radianes los siguientes ángulos: 330º, 1º, 22º 30’

º º º ' 330 1 22 30 Grados: 3 330 1 22 5 Radianes: 5 76 8 73 10 0 3927 180 180 180 π π π ⇓ ⇓ ⇓ − × = , × = , × . × = ,

Ejemplo: Expresar en grados los siguientes ángulos:

7 20 4 1 6 9 Radianes: 180 7 180 7 o 180 20 o o o Grados : 210 40 229 18 18 24 6 6 9 π π π π π π π ⇓ ⇓ ⇓ × × = = × = , ,

Ejemplo: Usar fracciones decimales de grados y pasarlas minutos y segundos. Se tiene que: o o 32, 5 =32 grados y (0, 5 60) minutos× =32 30 ' Y también que: o o 42, 51 42 grados y (0, 51 60) minutos 42 grados y 30, 6 minutos

42 grados y 30 minutos y (0, 6 60) segundos 42 30 '36 ''

= × =

=

× =

3. Dos propiedades fundamentales

La primera es que la suma de los tres ángulos de cualquier triángulo plano es 1800. La demostración se basa en las propiedades de los ángulos determinados por una recta que corta a otras dos rectas paralelas, según se ve en la figura. No insistimos aquí en los detalles, invitando al lector a observar detenidamente el dibujo.

(5)

ángulos mide 90 ó 0 radianes 2

π

), el cuadrado construido sobre la hipotenusa (el mayor de los lados) tiene la misma área que la suma de los cuadrados construidos sobre los otros dos lados (los catetos).

El resultado segundo se conoce como Teorema de Pitágoras. Una demostración gráfica viene dada en la figura siguiente, donde h2, etc, son las representaciones simbólicas de las áreas de los cuadrados. Esta demostración es de origen chino, y se conocen más de trescientas demostraciones diferentes del Teorema

4. Razones trigonométricas y sus nombres

En la práctica basta con estudiar únicamente la medida de ángulos agudos, como se verá más adelante en los ejercicios. Construyamos un ángulo central agudo y mediante un sistema de rectas paralelas perpendiculares al lado inicial formemos varios triángulos rectángulos semejantes, como se ve en la figura de la página siguiente (se llama triángulos semejantes a los que tienen exactamente los mismos ángulos) que permiten establecer las siguientes cadenas de igualdades, definidoras de las razones trigonométricas cuyos nombres figuran entre paréntesis:

cateto opuesto sen (seno) hipotenusa cateto adyacente cos (coseno) hipotenusa cateto opuesto tg (tangente) cateto adyacente cateto adyacente cateto opu PM P M OM OM OP OP OM OM PM P M OP OP OP OP PM P M α α α ′ ′ = = = = ′ = = = = ′ ′ = = = = ′ ′ = = = ′ ′     cot (cotangente) esto hipotenusa sec (secante) cateto adyacente hipotenusa cosec (cosecante) cateto opuesto OM OM OP OP OM OM PM P M α α α = ′ = = = = ′ = ′ ′ = = =  

(6)

Se verifica que: Las razones obtenidas dependen sólo del ángulo α, y no del triángulo rectángulo concreto usado para su cálculo. Los nombres de las razones son los siguientes:

Seno de un ángulo agudo, es la razón entre el cateto opuesto al ángulo y la hipotenusa del triángulo rectángulo formado con dicho ángulo.

Coseno, la razón entre el cateto adyacente al ángulo y la hipotenusa.

Tangente, la razón entre los catetos opuesto y adyacente del triángulo rectángulo definido por dicho ángulo.

Cotangente, el recíproco de la tangente. O sea, 1 tangente. Secante, el recíproco del coseno.

Cosecante, el recíproco del seno.

5. Fórmula fundamental de la Trigonometría plana

“La suma de los cuadrados del seno y del coseno de un mismo ángulo es igual a la unidad”.

En efecto, sea α un ángulo agudo cualquiera y formemos un triángulo rectángulo tal como se ve en la figura anterior. Aplicando las definiciones de seno y coseno de un

α

a

b

c

M M’’ M’’’ α O P P’ P’’ P’’’ M’

(7)

ángulo, se tiene que: sen cos b c a c α α = =

Elevando al cuadrado ambas igualdades y sumando, quedará: 2 2 2 2 2 2 2 2 2 2 2 2 2 sen cos 1 sen cos 1 b a b a c c c c c α α α α + + = + = = = + =

Puede verse que es un caso particular del teorema de Pitágoras.

6. Funciones trigonométricas

6.1. Definiciones

Como a cada valor α del ángulo le corresponde otro para cada una de las razones indicadas, éstas resultan ser funciones del ángulo α, conocidas como funciones trigonométricas o goniométricas.

Según la definición de las razones trigonométricas como cocientes de longitudes, parece que siempre deberían ser números positivos. Sin embargo, en la práctica es conveniente que, para indicar las posiciones relativas de puntos y figuras planas, se utilicen también valores negativos para las razones. Dibujando unos ejes de coordenadas y adjudicando un signo a los segmentos trazados sobre ellos a partir del origen, queda dividido el plano en cuatro cuadrantes, habitualmente llamados I, II, III, y IV:

En la figura se han representado dos ángulos de diferentes cuadrantes con los signos de sus senos y cosenos, de los que se deducen los de las demás razones trigonométricas. También es conveniente saber reconocer el aspecto de las funciones trigonométricas,

I: sen +, cos + III: sen -, cos -

II: sen +, cos -+

IV: sen -, cos + coseno

(horizontal)

seno

(8)

6.2. Representación gráfica de las funciones trigonométricas sen x , en grados (izq) y radianes (der)

cos x , representado en grados (izq) y radianes (der)

(

)

tg x a veces, tan x representada en grados (izq) y radianes (der) -1 -0.5 0 0.5 1 -300 -200 -100 100 200x 300 -1 -0.5 0 0.5 1 -6 -4 -2 2 4 6 x -30 -20 -10 0 10 20 30 -300 -200 -100 100 x200 300 -30 -20 -10 0 10 20 30 -6 -4 -2 2 4 6 x -1 -0.5 0 0.5 1 -300 -200 -100 100 x200 300 -1 -0.5 0 0.5 1 -6 -4 -2 2 x 4 6

(9)

4. Aplicaciones: resolver triángulos rectángulos

En general, resolver un triángulo es calcular los elementos del mismo (lados y ángulos) cuando se tienen datos suficientes para ello. Notemos que son seis los elementos de un triángulo, y que no es necesario darlos todos para determinar el triángulo. Los casos extremos son: Dados los tres lados, los demás elementos quedan determinados1, mientras que si se dan sólo los tres ángulos2, es imposible determinar los lados.

Un triángulo rectángulo queda por completo determinado por dos de sus elementos, siempre que no sean dos ángulos, y para calcular los restantes elementos, será necesario conocer las relaciones que ligan cada elemento desconocido con los datos disponibles.

En lo sucesivo representaremos por α β γ las medidas de los ángulos de un triángulo, y , ,

por a, b, c, las medidas de los lados respectivamente opuestos a los ángulos.

1. Por ser complementarios los ángulos agudos de un triángulo rectángulo, tenemos la siguiente relación entre los ángulos:

o 90 β γ+ =

2. El teorema de Pitágoras nos dará b2+c2 =a2.

3. Como consecuencia inmediata de las definiciones trigonométricas, tenemos: Para el cateto b:

sen o bien sen

cos o bien cos

b b a a b b a a β β γ γ = = × = = × Para el cateto c:

sen esto es sen

cos esto es cos

c c a a c c a a γ γ β β = = × = = ×

1 Siempre que satisfagan la condición de que cualquier lado sea menor que la suma de los otros dos y β γ α c b a

(10)

Operando un poco más, un cateto resulta ser igual al producto del otro cateto por la tangente de ángulo opuesto al primero (o por la cotangente del ángulo adyacente).

Para el cateto b:

tan de donde tan

cot de donde cot

b b c c b b c c β β γ γ = = × = = × Para el cateto c:

tan luego tan

cot luego cot

c c b b c c b b γ γ β β = = × = = ×

Con las fórmulas halladas se puede resolver un triángulo rectángulo cualquiera, puesto que cada fórmula relaciona a lo sumo tres elementos (dos datos y una incógnita).

Pueden presentarse cuatro casos posibles: 1.- Datos: la hipotenusa y un ángulo.

Ángulos Lados 90 conocido conocido sen 90 cos a b a c a α β β γ β β = = × = − = ×

2.- Datos: un cateto y un ángulo que no sea el recto.

Angulos Lados Angulos Lados

sen sen

conocido conocido conocido sen

90 cos 90 conocido b c a a b b a c a c α β α γ β β β γ β β γ β = = = × = − = × = −

3.- Datos: la hipotenusa y un cateto.

Angulos Lados

conocido

90 cos

sen , esto es, arcsen conocido a b a c c c a a α β γ γ γ γ γ = − = × ; = =

(11)

Angulos Lados

2 2

tan arctan conocido

90 conocido a b c b b b c c c α β β β γ β = + ; = ⇒ = = − Ejemplos

1.- Resolver el triángulo rectángulo en el que un ángulo mide 60º y el cateto adyacente a este ángulo mide 4.

Solución: Basta ver la figura para poder escribir lo que sigue. o cateto cos 60 hipotenusa 4 0.5 8 b a a a = = = o cateto sen 60 hipotenusa 0.866 8 6.928 c a b b = = = y evidentemente, β=30º

También se podría haber hecho uso del teorema de Pitágoras o bien de la relación, o cateto opuesto

tg 60

cateto adyacente

= , para obtener la misma solución. β 60º 90º c b=4 a

(12)

2.- Resolver el triángulo rectángulo si la hipotenusa mide 9 y un cateto mide 4.

Por el teorema de Pitágoras:

2 2 2 2 9 4 81 16 65 8.062 c c c = + = − = =

Por otro lado

sen 4 sen 9 arcsen 0.44 26.38º 90 90 26.38 63.62º b a β β β γ β = = = = = − = − = β γ 90º c b=4 a=9

Figure

Actualización...

Referencias

Actualización...

Related subjects :