• No se han encontrado resultados

Diagramas de fases y su aplicación.pdf

N/A
N/A
Protected

Academic year: 2021

Share "Diagramas de fases y su aplicación.pdf"

Copied!
141
0
0

Texto completo

(1)
(2)

Subido por:

Libros de Ingeniería Química y más

https://www.facebook.com/pages/Interfase-IQ/146073555478947?ref=bookmarks

Si te gusta este libro y tienes la posibilidad,

cómpralo para apoyar al autor.

(3)
(4)

Diagramas de fases y su aplicación Copyright © Luis A. Cisternas.

Edición en e-book:

© Editorial Reverté. S.A., 2012 ISBN: 978-84-291-9309-1

Edición en papel:

© Editorial Reverté. S.A., 2009 ISBN: 978-84-291-7089-4 Propiedad de: EDITORIAL REVERTÉ, S. A. Loreto, 13-15, Local B 08029 Barcelona Tel: (34) 93 419 33 36 Fax: (34) 93 419 51 89 reverte@reverte.com www.reverte.com

Reservados todos los derechos. La reproducción total o parcial de esta obra, por cualquier medio o procedimiento, comprendidos la reprografía y el tratamiento informático, y la distribución de ejemplares de ella mediante alquiler o préstamo públicos, queda rigurosamente prohibida sin la autorización escrita de los titulares del copyright, bajo las sanciones establecidas por las leyes.

(5)
(6)
(7)
(8)

P

REFACIO

La idea de preparar este escrito sobre diagramas de fases nació de conversaciones con dife-rentes personas que asistieron a los cursos dictados durante varios años en empresas que pro-cesan sales inorgánicas. Durante esos cursos se desarrollaron varios ejemplos, y la evaluación y comentarios de los asistentes permitieron mejorar este escrito, eliminar material poco rele-vante e introducir material más valioso.

El objetivo de este texto no es el de revisar toda la literatura, sino el de introducir, de forma concisa, aquellos elementos fundamentales que permiten conocer las bondades y limitaciones de los diagramas de fases sólido-líquido y su aplicación a procesos de cristalización fraccio-nada y cristalización por evaporación. Por este motivo, varios de los avances recientes en esta área no se incluyen aquí, pero cada vez que fue posible se citan trabajos recientes o técnicas más avanzadas, como por ejemplo las técnicas de optimización para el diseño conceptual de procesos de separación por cristalización.

Espero que este trabajo sea útil a quienes se inician en el procesamiento de sales inorgánicas utilizando cristalización, así como a quienes con alguna experiencia puedan refrescar y actua-lizar sus conocimientos sobre el tema. Además, el texto puede ser útil para cursos de pre y postgrado sobre el tema. Con esto en mente, se han incluido ejemplos y problemas propuestos que, aunque limitados, ayudan al lector a practicar lo aprendido.

Luis Cisternas Antofagasta, Chile, 2008

(9)
(10)

A

GRADECIMIENTOS

Tengo que agradecer a varias personas por diferentes motivos, ya sea por comentarios, suge-rencias, preparación de problemas y su solución. Nombrarlos a todos sería difícil de hacer por la posibilidad de excluir a alguien; sin embargo debo agradecer a Patricio Pinto por haber leí-do los borraleí-dores y aportaleí-do comentarios valiosos, así como a mis alumnos Rodrigo Aravena y Nancy Luza por su colaboración en la confección de figuras y la edición, y a Andrea Oliva por la edición final y la solución de cada uno de los problemas propuestos.

(11)
(12)

Í

NDICE ANALÍTICO

Capítulo 1 Solubilidades

1

1.1 ¿Qué es la solubilidad? 1

1.2 ¿Cómo se expresa la solubilidad? 2

1.3 Consideraciones termodinámicas sobre la solubilidad 4

1.4 Efecto sobre la solubilidad de electrolitos inertes 5

1.5 Efecto sobre la solubilidad de iones comunes 6

1.6 Efecto de la temperatura sobre la solubilidad 7

1.7 Efecto de la presión 12

1.8 Efecto de otras sustancias 12

1.9 Sobresaturación y estados metaestables 13

1.10 Comentarios finales 13

Capítulo 2 Aspectos básicos de los diagramas de fases

17

2.1 ¿Qué es un diagrama de fases? 17

2.2 Representación del equilibrio 18

2.3 Representación de procesos 19

2.4 Balances de materia 22

2.5 Regla de las fases de Gibbs 26

2.6 Congruencia e incongruencia 26

2.7 Comentarios finales 29

Capítulo 3 Representación de diagramas de fases

33

3.1 Construcción de diagramas de fases 33

3.2 Representación de sistemas ternarios 41

3.2.1 Cortes isotérmicos 41

3.2.2 Proyección politermal 46

3.3 Sistemas cuaternarios 49

3.3.1 Sistemas con un ión común 50 3.3.2 Pares salinos recíprocos 57

3.4 Sistemas quinarios 62

3.5 Comentarios finales 67

Capítulo 4 Diseño de procesos de cristalización fraccionada

71

4.1 Introducción 71

(13)

Índice

4.2 Separación de sistemas simples 72

4.3 Separación de sistema con formación de compuestos 77

4.4 Incorporación de una o más alimentaciones 85

4.5 Sistemas multicomponentes 89

4.6 Sistemas con reacciones químicas 96

4.7 Otras estrategias de separación 98

4.8 Comentarios finales 101

Capítulo 5 Representación de procesos en diagramas de fases

105

5.1 Introducción 105

5.2 Representación de procesos de cristalización fraccionada en sistemas ternarios 106

5.3 Representación de procesos de cristalización fraccionada en sistemas de

par salino recíproco 109

5.4 Representación de procesos de evaporación

en equilibrio 113

5.5 Representación de procesos de evaporación paragenético 116

5.6 Comentarios finales 118

(14)

1

111

1

S

S

o

o

l

l

u

u

b

b

i

i

l

l

i

i

d

d

a

a

d

d

e

e

s

s

111

1....1111

¿Q

ES LA SOLUBILIDAD

?

Cuando una sustancia electrolítica como el cloruro de potasio se disuelve en un disolvente (agua, por ejemplo) ocurren varios fenómenos que dan como resultado la formación de espe-cies iónicas solvatadas. En primer lugar, es necesario realizar trabajo para vencer las fuerzas que mantienen los iones unidos en el cristal. Entre estas fuerzas se encuentran las electrostá-ticas. Una vez logrado esto, los iones se asociarán a moléculas del disolvente, produciéndose así la solvatación. En el caso del agua, que es un disolvente muy efectivo de compuestos ió-nicos, los iones se rodearán de moléculas de agua orientadas de una forma específica, proceso que se denomina hidratación. Las moléculas de agua son eléctricamente neutras, pero tienen una región positiva y otra negativa, es decir, el agua es un disolvente polar. El número de mo-léculas de agua asociadas a cada ión dependerá del tamaño y carga de éste. Cuanto más pe-queño sea el tamaño del ión y mayor sea su carga, mayor será el número de hidratación. Si se mezcla un disolvente con un exceso de electrolito, el fenómeno de la disolución ocurrirá sólo hasta un cierto límite, alcanzando el sistema el equilibrio después de un tiempo suficiente. Entonces diremos que la disolución está saturada de electrolito, y que la cantidad disuelta en el disolvente es la solubilidad del electrolito.

(15)

2

SOLUBILIDADES

111

1....2222

¿C

ÓMO SE EXPRESA LA SOLUBILIDAD

?

La solubilidad se puede expresar de diferentes maneras dependiendo, por una parte, de la base de referencia y, por otra, de la forma en que se expresa la cantidad del soluto. La base de re-ferencia puede ser masa, volumen o moles de disolvente o de disolución. Del mismo modo, el soluto se puede expresar por su cantidad de masa o moles. La tabla 1.1 indica las unidades más utilizadas. En la mayoría de ellas tienen un nombre: U2, fracción másica (o porcentaje

en peso); U7, molalidad (moles por kg de disolvente); U10, molaridad (moles por 1000 cc de

disolución); U12, fracción molar. La tabla 1.2 proporciona las fórmulas de conversión entre

algunas unidades de concentración. Las unidades de concentración basadas en el volumen son funciones de la temperatura, ya que el volumen de una cantidad de disolvente o de diso-lución depende de la temperatura.

La elección de un tipo de unidad depende de aspectos prácticos. Por ejemplo, para balances de materia se utilizan frecuentemente unidades que indiquen la cantidad de masa del soluto

Tabla 1.1 Principales unidades utilizadas para representar solubilidades.

Soluto Base de referencia Masa de disolvente Masa de la disolución Volumen de disolvente Volumen de disolución Moles de disolvente Moles de disolución Masa U1 U2 U3 U4 U5 U6 Moles U7 U8 U9 U10 U11 U12

Tabla 1.2 Conversión de unidades de concentración.

U1 U2 U4 U10 U12 U1 1 U2 1 U4 1 U10 1 U12 1

ρ = densidad de la disolución, M = masa molecular del soluto, S = masa molecular del disolvente.

U2 1–U2 --- U4 ρ U4 --- U10 M ρ U10 M --- U12 M 1–U12 ( ) S ---U1 1+U1 --- U4 ρ --- U10 M ρ --- U12 M U12(MS) S+ ---ρU1 1+U1 --- U2 ρ U10 M U12 M ρ U12(MS) S+ ---ρU1 M 1( +U1) --- ρU2 M --- U4 M --- U12 ρ U12(MS) S+ ---U1 S U1S+M --- U2 S U2(SM) M+ --- U4 S U4(SM) Mρ+ --- U10 S U10(SM)+ρ

(16)

---¿Cómo se expresa la solubilidad?

3

(porcentaje en peso, por ejemplo), para análisis químico se utilizan unidades basadas en vo-lumen (por ejemplo molaridad), mientras que para modelos termodinámicos o para correla-cionar propiedades se usan unidades que representen la cantidad de soluto en moles (por ejemplo molalidad, fracción molar).

También en ocasiones se utiliza como base algún elemento que no es eliminado o agregado en la operación, por ejemplo, en cristalización por enfriamiento puede ser cómodo usar la composición g soluto/100 g H2O

Ejemplo

1.1

La solubilidad del perclorato férrico (Fe(ClO4)3) en agua a 20 ºC es 78,64 g/100 g disolución saturada. La disolución tiene una densidad de 1,649 g/cm3 a esa temperatura. La fase sólida estable, a esa temperatura, es el decahidrato (Fe(ClO4)3.10H2O). ¿Cuáles son los valores de la solubilidad en otras unidades?

Solución

La solubilidad viene dada en porcentaje en peso, luego la fracción másica es

Los gramos de soluto por gramos de disolvente

En unidades de gramos por cm3 se tiene

Cuando se expresa la solubilidad en moles de soluto, siempre se considera la sal anhidra, in-dependientemente de si está hidratada o no, puesto que la solubilidad es la concentración en la disolución. Así, la concentración en moles de soluto por cm3 de disolución es

U2 78,64 g Fe ClO( 4) 3 100 g disolución --- 1 100 ---× 0,7864 = = U1 0,7864 1–0,7864 --- 3,68 g Fe ClO( 4) 3 g H2O ---= = U4 U2ρ 0,7864 g Fe ClO( 4) 3 g disolución --- 1,649 g disolución cm3 disolución ---× 1,297 g Fe ClO( 4) 3 cm3 disolución ---= = = U10 UM ---0,7864 g Fe ClO( 4) 3 g disolución --- 1,649 g disolución cm3 disolución ---× 354 g mol --- 0,0037 mol Fe ClO( 4) 3 cm3 disolución ---= = =

(17)

Aquí 354 g/mol es el peso molecular del Fe(ClO4)3. Esta concentración generalmente se ex-presa por litro de disolución y se denomina molaridad, es decir 3,7 mol/l.

Finalmente, se puede expresar en fracción molar como

Como se puede observar, la masa del Fe(ClO4)3 es mayoritaria en la disolución (78,64%),

mientras que su población es minoritaria (15,76%).

111

1....3333

C

ONSIDERACIONES TERMODINÁMICAS SOBRE

LA SOLUBILIDAD

Para comprender la dependencia de la solubilidad con ciertas variables independientes, como la temperatura, es necesario desarrollar alguna base termodinámica que la represente. La so-lubilidad de una sal, XY, está determinada por la energía libre de Gibbs (G) de la reacción de disolución de la sal XY, es decir, XY(s)→ X+ + Y–. La constante termodinámica de solubilidad,

K, viene dada por

(1.1)

donde a es la actividad de cada especie, y como aXY es igual a la unidad, se tiene

(1.2) La constante termodinámica de solubilidad, a presión y temperatura constante, se define como (1.3) y por lo tanto K es una función exclusiva de la estequiometría de la reacción, la temperatura y del estado de referencia. Este punto es importante, puesto que la constante termodinámica de solubilidad de una sal específica, a temperatura constante, no cambiará con la presencia de otros iones en la disolución.

La constante de solubilidad también se puede expresar en función de las concentraciones (m) y de los coeficientes de actividad (γ) de los iones en la disolución saturada,

(1.4) donde es el coeficiente de actividad iónico medio. Este coeficiente es igual a la unidad cuando la concentración total de iones tiende a cero; por lo tanto, para solutos levemente

so-U10 U2 S U2(SM) M+ --- 0,7864×18 0,7864×(18–354)+354 ---= = U10 0,1576 mol Fe ClO( 4) 3 mol disolución ---= K aX aYaXY ---= K = aX+ aYK = e ΔG/RT K = mX+ mY–γXY– = mX+ mY–γ± 2 γ± 2

(18)

Efecto sobre la solubilidad de electrolitos inertes

5

lubles en agua, y en ausencia de otros iones, se puede considerar que es prácticamente igual a 1. La figura 1.1 muestra coeficientes de actividad iónico medio para varios electrolitos y, como se puede observar, sus valores disminuyen con la concentración hasta un mínimo y lue-go aumentan a medida que la concentración aumenta, pudiendo alcanzar valores muy supe-riores a 1. Estrictamente, el coeficiente de actividad iónico medio varía, entre otros factores, con la fuerza iónica, la cual se define como

(1.5)

donde m es la molalidad y z es la valencia de cada ión i. En la ecuación 1.5, la suma incluye a todos los iones presentes en la disolución. La fuerza iónica es una medida de la intensidad del campo eléctrico producido por la presencia de iones en la disolución.

111

1....4444

E

FECTOSOBRELASOLUBILIDAD DEELECTROLITOSINERTES

El efecto de iones distintos de X+ e Y sobre la solubilidad de la sal XY se puede estudiar con la ayuda de la ecuación 1.4:

(1.6) FIGURA 1.1 Coeficiente de actividad iónico medio de algunas sales en medio acuoso a 25 °C.

0, 4 0, 6 0, 8 1 1, 2 1, 4 1, 6 1, 8 0 0,5 1 1,5 2 2,5 3 3,5 4 Li Cl Na Cl KC l Li Br Na Br KBr LiI KI

Coeficiente de actividad iónico medio

molalidad I 1 2 --- m( 1z12+m2z22+m3z32+…) 1 2 --- mizi2 i

= = K = mX+ mY–γ±2

(19)

Como es conocido, K es independiente de la presencia de otros iones, pero es una función de la fuerza iónica y de las interacciones entre iones, y entre iones y disolvente. Si la sal XY es muy poco soluble en el disolvente, entonces la presencia de otros iones puede tener un efecto importante en su solubilidad, puesto que estos iones influirán significativamente en la fuerza iónica. Inicialmente, como el disminuye con la fuerza iónica, la solubilidad tendrá que aumentar para compensar esta disminución y mantener K constante. Luego, una vez que alcance su mínimo y empiece a aumentar, la solubilidad tendrá que disminuir para com-pensar el aumento de y mantener K constante.

Si la sal XY es suficientemente soluble en el disolvente, entonces la presencia de otros iones tendrá un efecto menos significativo sobre la solubilidad de la sal, puesto que estos iones ini-cialmente influirán poco sobre la fuerza iónica. Sólo la presencia significativa de éstos podrá afectar notoriamente el comportamiento de la solubilidad.

La figura 1.2 muestra la variación en la solubilidad del ácido bórico por la presencia de sulfato de potasio. Se puede observar que el efecto a concentraciones menores que un 5% de sulfato de potasio es prácticamente despreciable, advirtiéndose un leve aumento en la solubilidad a concentraciones mayores que un 5%. La figura 1.3 muestra el efecto del cloruro de sodio so-bre la solubilidad del nitrato de potasio. Se puede percibir que la solubilidad en este caso dis-minuye, pero el efecto es poco significativo.

111

1....5555

E

FECTO SOBRELA SOLUBILIDADDE IONES COMUNES

El efecto de la adición de NaCl sobre la solubilidad del KCl se puede observar en la figura 1.4. Como es claro, el NaCl tiene un efecto significativo sobre la solubilidad del KCl debido a la

FIGURA 1.2 Efecto del K2SO4 en la

solubili-dad del H3BO3.

FIGURA 1.3 Efecto del NaCl en la solubilidad de KNO3.

γ± 2

γ± 2 γ± 2

γ± 2

Solubilidad del ácido bór

ico , % % de sulfato de potasio 30 25 20 15 10 5 0 25 20 15 10 5 25 C 50 C 90 C

0 Solubilidad del nitr

ato de potasio , % % de cloruro de sodio 45 20 15 10 5 0 25 20 15 10 5 20 C 30 C 40 C 40 35 30 25 0

(20)

Efecto de la temperatura sobre la solubilidad

7

adición de iones Cl–. Este comportamiento se puede explicar, nuevamente, con la ayuda de la ecuación 1.4:

(1.7) Observe que al añadir iones Cl–, por la adición de NaCl, la concentración del ión Cl– aumen-tará, y por lo tanto la concentración del ión K+ tendrá que disminuir para mantener K cons-tante, disminuyendo así la solubilidad del KCl. Luego, en general, la presencia de iones comunes producirá una disminución en la solubilidad de la sal.

111

1....6666

E

FECTO DE LA TEMPERATURA SOBRELA SOLUBILIDAD

El efecto de la temperatura sobre la solubilidad de una sal se puede analizar con la ayuda de la ecuación desarrollada por el Premio Nobel Jacobus Van’t Hoff,

(1.8)

donde ΔH es el calor de disolución. Luego, si la temperatura aumenta, la solubilidad aumenta para un proceso endotérmico y disminuye para uno exotérmico. El calor de disolución varía de una sal a otra y con el número de hidratos presentes. En la tabla 1.3 se dan algunos valores de calores de disolución. Teniendo en cuenta estos valores se puede decir que, para sustancias como el KNO3, la solubilidad aumentará con la temperatura, mientras que para sustancias como el CuSO4 disminuirá.

FIGURA 1.4 Efecto del NaCl en la solubilidad del KCl.

K = mX+ mY–γ±2 Solubilidad de KCl, % % de NaCl 20 15 10 5 0 25 20 15 10 5 0 C 25 C 60 C 35 30 25 0 dlnK d 1 T ---⎝ ⎠ ⎛ ⎞ --- –ΔH R ---=

(21)

Para comprender los efectos del calor de disolución, el proceso de disolución se puede repre-sentar por dos pasos (figura 1.5):

Tabla 1.3 Calores de disolución de compuestos inorgánicos en agua a 18°C.a

Sustancia Dilusiónª Calor, kcal/g-moles

H3BO3 Aq –5,40 NH4NO3 4 –6,47 CuSO4 800 15,90 CuSO4.H2O 800 9,30 CuSO4.5H2O 800 –2,85 LiCl 4 8,66 KCl 4 –4,404 KNO3 4 –8,633 NaNO3 4 –5,05 NaCl 4 –1,164 Na2SO4 4 0,28 Na2SO4.10H2O 4 –18,74

ª Moles de agua usados para disolver 1 g-mol de sustancia.

Fuente: Perry R.H., Green D.W., Maloney J.O., Perry`s Chemical Engineers Handbook, seventh edition, McGraw-Hill, 1997.

FIGURA 1.5 Representación del proceso de disolución. H = –701 kJ/mol

H = 16 kJ/mol –U = 717 kJ/mol

(22)

Efecto de la temperatura sobre la solubilidad

9

a. Separación de los iones desde el cristal sólido para formar iones libres gaseosos, cuyo

cambio entálpico es el valor negativo de la energía de red U (también conocida como energía reticular o energía de cohesión).

b. Proceso exotérmico de solvatación (hidratación en el caso del agua) de los iones gaseosos

para formar iones solvatados en disolución. La energía incluida en este proceso exotérmi-co se exotérmi-conoce exotérmi-como entalpía de solvatación, ΔHs, y es igual a la suma de las entalpías de solvatación (hidratación) de los iones, ΔHs,X, ΔHs,Y. El calor de disolución es por lo tanto igual a la diferencia de esas dos magnitudes:

(1.9)

En la tabla 1.4 se dan algunas entalpías de hidratación de iones, mientras que en la tabla 1.5 se proporcionan valores de energías de red, entalpías de hidratación, entalpías de disolución y solubilidades de algunos haluros alcalinos.

La energía de red del KCl es de 717 kJ/mol, es decir, se requieren 717 kJ para separar 1 mol de KCl en 1 mol de K+ y 1 mol de Cl–.Cuanto mayor sea la energía de red, más estable será el compuesto iónico. Conviene tener presente que la energía de red, –U, es siempre una can-tidad positiva, porque la separación de los iones de un sólido en sus iones en fase gaseosa es un proceso endotérmico, de acuerdo con la Ley de Coulomb.

En la mayoría de los casos, el proceso de disolución de una sal en agua es un proceso endotérmico, es decir, absorbe calor. Esto se debe a que la entalpía de hidratación de los

Tabla 1.4 Entalpías de hidratación de iones a 25 ºC kJ/mol).

Cationes ΔHs,X Aniones ΔHs,Y

Li+ –558 Br– –309

Na+ –444 Cl– –340

K+ –361 I– –296

Tabla 1.5 Algunas propiedades de haluros alcalinos a 25 ºC.

Compuesto ΔHs, kJ/mol –U, kJ/mol ΔH, kJ/mol Solubilidad (mol/l)

LiF –1041 1046 5 0,06 LiCl –898 861 –37 14 LiBr –867 818 –49 10 NaCl –783 787 4 5,4 KCl –701 717 16 4,2 ΔH = ΔHsU

(23)

10

SOLUBILIDADES

iones gaseosos es generalmente menor que la energía necesaria para la sublimación de los io-nes. Sin embargo, existen algunos casos donde ocurre lo contrario, y por lo tanto el pro-ceso es exotérmico. Generalmente, cuando los iones en el cristal están hidratados, la

energía de red, U, es mayor que la energía de hidratación de los iones gaseosos. Esto se

puede observar claramente en las entalpías de las sales de CuSO4 y Na2SO4 de la tabla 1.3.

Por ejemplo, el CuSO4 anhidro tiene una entalpía de disolución de 15,9 kcal/(g mol),

comparada con –2,85 kcal/(g mol) para la misma sal hidratada con cinco moléculas de

agua (pentahidrato). Así, el proceso de disolución el CuSO4 anhidro liberará calor, y la

solubilidad del CuSO4 disminuirá con el aumento de la temperatura; por el contrario, el

proceso de disolución del CuSO4.5H2O absorberá calor, y la solubilidad del

CuSO4.5H2O aumentará con la temperatura. Algo semejante ocurre con el Na2SO4

anhi-dro y el decahidratado, como se puede observar en la figura 1.6.

En general es difícil predecir la variación de la entalpía de disolución y la solubilidad de las sales iónicas porque la carga y el radio iónico tienen efectos contrarios sobre la hidratación de los iones y la ruptura de la red. Sin embargo, es posible observar tendencias sobre una mis-ma familia de sales. En la tabla 1.6 se dan las solubilidades de algunos haluros alcalinos; ob-serve el efecto del radio iónico de cationes (r+) y aniones (r–) como la solubilidad en algunos casos aumenta, en otros disminuye, y en otros alcanza máximos o mínimos a medida que el radio aumenta. Cuanto mayor es la diferencia entre los tamaños de cationes y aniones, mayor es la estabilidad del cristal y por lo tanto menor su solubilidad, en forma contraria si los ta-maños de los cristales son semejantes, mayor es la inestabilidad del cristal y la solubilidad aumenta. Además, en la medida que los tamaños de los iones sean mayores, mayores serán las repulsiones, la energía de red disminuirá y por lo tanto la sal será más inestable, lo que se traduce en un aumento de su solubilidad.

FIGURA 1.6 Solubilidad del Na2SO4. A baja temperatura la solubilidad del decahidrato aumenta al aumentar la temperatura. A temperatura superiores a los 40 °C la solubilidad del anhidro disminuye con el aumento de la temperatura. % de sulfato de sodio 60 40 20 0 60 50 40 30 20 120 100 80 0 T emper atur a, ºC 10

(24)

Efecto de la temperatura sobre la solubilidad

11

Las cargas de los iones también tienen un efecto sobre la energía de red. La energía de red es proporcional al cuadrado de la carga; así la energía de red de cristales monovalentes puede ser hasta cuatro veces menor que la de cristales constituidos por iones divalentes. Por ejem-plo, los valores de energía de red de haluros monovalentes (sales 1:1) se encuentran en el in-tervalo 1046-570 kJ/mol (esto corresponde a LiF y CsI, respectivamente), mientras que para cristales como el MgCl2 (sal 2:1) su energía de red es de 2527 kJ/mol. Para sales 2:2 la energía

de red será aun mayor, y por lo tanto serán menos solubles.

Ejemplo

1.2

Observe los siguientes datos experimentales. Relacione los puntos de fusión y la solubilidad con la energía de red. Analice el efecto del radio iónico del anión.

Cuanto mayor es la energía de red, mayor es la estabilidad del cristal, y por lo tanto más difícil su fusión. Esto explica que el punto de fusión aumente con el aumento de la energía de red. Algo similar explica el comportamiento de la solubilidad de las sales en agua, a medida que el cristal es más estable, menor es la solubilidad de la sal. La razón radio iónico K+ /radio anión es de 0,73, 0,68 y 0,61 para el Cl–, Br– y I–, respectivamente. Esta disminución en la diferencia de los radios iónicos explica la disminución de la energía de red.

Tabla 1.6 Solubilidad de haluros alcalinos (20 ºC), g/100 g agua.

F– Cl– Br– I– r 1,34 Å 1,81 Å 1,95 Å 2,17 Å Li+ 0,61 Å 0,13 (25) 83,5 160 165 Na+ 0,96 Å 4,1 35,9 90,8 178 K+ 1,33 Å 94,9 34,2 65,3 144 Rb+ 1,48 Å 131 (18) 91 108 163 (25) Cs+ 1,66 Å 322 (18) 187 107 (18) 76,5

Los valores entre paréntesis indican temperatura cuando es distinta de 20 ºC.

Compuesto Energía de red, –U, kJ/mol

Punto de fusión, ºC Solubilidad en agua a 20 ºC, g/100 g agua

KCl 699 772 34,2

KBr 689 735 65,3

(25)

111

1....7777

E

FECTO DE LA PRESIÓN

La presión tiene poco efecto sobre la fase condensada, es decir, sólidos y líquidos. Observando la ecuación 1.4 y recordando que K es independiente de la presión y que el efecto de ésta sobre no es significativo, es posible concluir que la presión tendrá un efecto despreciable sobre la solubilidad de especies iónicas en disolventes polares como el agua. Sin embargo, el aumento o la disminución de la presión en estos sistemas modificará el punto de ebullición de la disolu-ción y afectará al diagrama de fases si se incluye la fase vapor.

111

1....8888

E

FECTO DE OTRAS SUSTANCIAS

En general es difícil predecir el efecto sobre la solubilidad de la adición de otros compuestos no electrolíticos. La presencia de gases, líquidos y sólidos no iónicos solubles pueden afectar no sólo a la solubilidad del electrolito, sino también a la fase sólida estable. Por ejemplo, la fase condensada del carbonato de sodio en equilibrio con disoluciones acuosas de él mismo, es el decahidrato. Sin embargo, la presencia de polietilenglicol no sólo reduce su solubilidad, sino que también cambia la fase condensada estable al monohidrato. Además, estos disolventes pue-den producir fases líquidas parcialmente inmiscibles, con diferentes solubilidades.

Los disolventes orgánicos solubles en agua generalmente reducen la solubilidad de las sales en agua. La figura 1.7 muestra la solubilidad del nitrato de sodio en una mezcla agua-alcohol etílico.

FIGURA 1.7 Efecto del alcohol etílico en la solubilidad del NaNO3.

γ± 2

Solubilidad del nitr

ato de sodio

, %

% de alcohol etílico en el disolvente

60 40 20 0 100 80 60 40 20 30 C 40 C 120 100 80 0

(26)

Sobresaturación y estados metaestables

13

111

1....9999

S

OBRESATURACIÓN Y ESTADOS METAESTABLES

La solubilidad es una medida de la concentración de soluto en un disolvente en condiciones de equilibrio sólido-líquido. Aunque está claro que una disolución puede tener una concen-tración menor que la de saturación, es necesario indicar que la disolución puede tener valores de concentración superiores a la de saturación, situación conocida como sobresaturación. La sobresaturación, S, se define como

(1.10)

Una disolución saturada, S = 1, es estable, es decir, el soluto no tiene tendencia a cristalizar o a disolverse. Una disolución sobresaturada, S > 1, se encuentra en un estado inestable, aun-que el grado de inestabilidad dependerá del nivel de sobresaturación. Existe un nivel de

so-bresaturación crítico, a partir del cual el sistema rápidamente formará cristales y la

disolución alcanzará la concentración de equilibrio. Para niveles de sobresaturación por de-bajo del crítico, se requerirá tiempos significativos para alcanzar el equilibrio, y se dice que el sistema se encuentra en un estado metaestable. Estos estados metaestables explican por qué la calcita y el aragonito, que son dos formas de carbonato de calcio, tienen una solubilidad ob-servable, a 60 ºC, de 0,206 y 0,271 % (en peso), respectivamente. En la tabla 1.7 se da la so-bresaturación máxima de algunas sales inorgánicas en agua.

111

1....11110000

C

OMENTARIOSFINALES

El proceso de disolución ocurre porque las moléculas del disolvente logran romper el enlace iónico que mantiene unido el catión y el anión en el cristal. La estabilidad del cristal se puede medir en términos de la energía de red. El proceso de disolución ocurre, después de un tiempo suficiente, hasta cierto nivel conocido como saturación, y la concentración en este estado se conoce como la solubilidad de la sal. Como se ha mostrado, la solubilidad depende, entre otros factores, de la presencia de otras especies iónicas y no iónicas en la disolución y de la

Tabla 1.7 Sobresaturación máxima de algunas sales inorgánicas en agua.

Sustancia Smáxima Sustancia Smáxima

KI 1,008 K2SO4 1,181 KBr 1,018 (NH4)2SO4 1,016 NH4Cl 1,019 CuSO4.5H2O 1,206 NaNO3 1,027 Na2CO3.10H2O 1,107 KNO3 1,121 Na2B4O7.10H2O 2,294 S Concentración Concentración de saturación ---=

(27)

temperatura. Aunque es posible tener una idea general de esas dependencias, e incluso pre-decir cualitativamente su comportamiento, la predicción cuantitativa es en general difícil de realizar. Además, la solubilidad puede depender de otros factores no analizados, como la for-mación de complejos iónicos.

Los conceptos expuestos en este capítulo pueden ser de mucha ayuda para entender el com-portamiento en sistemas multicomponentes y para interpretar o predecir el efecto de ciertos cambios operacionales en procesos que contienen estos sistemas.

B

IBLIOGRAFÍA

ADAMSON A.W., 1979, Química Física, Editorial Reverté S.A.

CHANG R., 2001, Química, Sexta Edición, McGraw Hill.

GRASES F., COSTA A., SÖHNEL O., 2000, Cristalización en Disolución, Editorial Reverté S.A.

PETRUCCI R.H., 1977, Química General, Fondo Educativo Interamericano S.A.

E

JERCICIOSPROPUESTOS

1.1. La solubilidad acuosa de la ferrocianida de calcio Ca2Fe(CN)6, a 50 ºC es de 42,2 g por 100 g de disolución saturada, a la misma temperatura la densidad de la disolución es de 1,392 g/cm3. La fase sólida a 50 ºC es Ca2Fe(CN)6.11H2O.

Exprese la concentración de Ca2Fe(CN)6 en:

a) Fracción másica.

b) Gramos de soluto por gramos de disolvente. c) Gramos por cm3.

d) Moles de soluto por cm3 de disolución.

e) Fracción molar.

1.2. A 25 ºC el producto de solubilidad del cloruro de potasio es 8,704. Para cada una de las

siguientes disoluciones determine si el sistema se encuentra saturado, sobresaturado o diluido.

Concentración (M) γ KCl

5,054 0,5839 4,078 0,575 5,260 0,600

(28)

Ejercicios propuestos

15

1.3. Compare la fuerza iónica del agua de mar con el agua de un lago.

1.4. La solubilidad del sulfato de zinc a 30 ºC es 61,3 g de ZnSO4 por 100 g de agua. Una disolución que contiene 58 g de sulfato de zinc en 100 g de agua se considera:

a) Concentrada o diluida. b) Saturada o no saturada.

1.5. Se tiene tres disoluciones de un compuesto cuyo peso molecular es 80 g/mol. La primera

con un porcentaje en peso de 40% p/p, la segunda con una fracción másica igual a 0,8 y la tercera tiene 5 (g soluto/g disolvente).

¿Qué disolución tiene la mayor concentración?

Agua de mar (M) Agua de lago (M)

Na+ 0,49 0,0002 Mg2+ 0,053 0,00014 Ca2+ 0,01 0,00022 K+ 0,01 0,00003 Cl – 0,57 0,00009 0,028 0,000102 0,002 0,000816 SO42– HCO3

(29)
(30)

17

222

2

A

A

s

s

p

p

e

e

c

c

t

t

o

o

s

s

b

b

á

á

s

s

i

i

c

c

o

o

s

s

d

d

e

e

l

l

o

o

s

s

d

d

i

i

a

a

g

g

r

r

a

a

m

m

a

a

s

s

d

d

e

e

f

f

a

a

s

s

e

e

s

s

222

2....1111

¿Q

ES UN DIAGRAMA DE FASES

?

Un diagrama de fases es una representación gráfica de las condiciones de equilibrio en función de magnitudes como la concentración de las disoluciones, la temperatura y la presión. Desde un punto de vista matemático, un gráfico G = (v, e) es un modelo discreto compuesto de un conjunto de tices v y un conjunto de aristas e que unen los vértices; en el caso de los diagramas de fases los vér-tices representan componentes puros, compuestos, puntos eutécticos, puntos de transición y de saturación múltiple, etc., mientras que las aristas representan curvas de saturación y líneas de reparto. Los diagramas de fases se utilizan ampliamente porque en ellos es más fácil entender el com-portamiento de un sistema en equilibrio. Pero además, estos diagramas también se utilizan para representar procesos y realizar balances de materia. La representación de una mezcla en un diagrama permite determinar fácilmente si ésta se encuentra en equilibrio de fases o no y, en caso de ser afirmativo, cuáles son sus fases en equilibrio, las composiciones de esas fases y las cantidades relativas de cada una de ellas. Sin embargo, los diagramas de fases, o las re-presentaciones gráficas, tienen también varias limitaciones: así, por ejemplo, la

(31)

representa-ción de sistemas de más de tres componentes son siempre parciales, y por lo tanto es posible tomar decisiones incorrectas porque la información utilizada es incompleta.

222

2....2222

R

EPRESENTACIÓN DELEQUILIBRIO

El objetivo de este capítulo es estudiar los aspectos básicos de los diagramas de fases, limita-dos a sistemas salinos en equilibrio sólido-líquido. En la mayoría de los casos el análisis es-tará centrado en sistemas acuosos.

La figura 2.1 es la representación típica de un sistema de dos componentes en equilibrio sólido-líquido, en donde uno de los componentes es agua y el otro una sal hipotética cualquiera. Se ha representado la temperatura en la ordenada y la concentración en la abscisa. Esta elección es arbitraria, y en algunos casos, que son menos frecuentes, se ha utilizado lo inverso. También la elección de la unidad con que se expresa la concentración es arbitraria, pero las dos más comu-nes son la fracción molar y el porcentaje en peso. El sistema consta de cuatro regiocomu-nes: una que representa la fase líquida de la disolución homogénea no saturada en la sal; dos regiones sólido-líquido, en las cuales una disolución saturada coexiste, en una de ellas, con agua en estado sólido (hielo) y, en la otra, con la sal en estado sólido (cristales); finalmente, una cuarta región repre-senta la existencia de dos fases sólidas constituidas por hielo y cristales de sal. Con Tf se denota la temperatura de fusión de los componentes puros, mientras que el punto E se conoce como

punto eutéctico, puesto que es el punto de fusión más bajo, lugar donde coexisten una disolución

saturada y dos fases sólidas, razón por la cual también lo llamaremos punto de saturación

múl-tiple. Las curvas que unen Tf con E corresponden a las curvas de disoluciones saturadas.

FIGURA 2.1 Representación típica de un sistema binario. Disolución líquida

Cristales de sal + disolución saturada

Hielo + cristales de sal

Porcentaje en peso de la sal

T emper atur a Hielo + líquido de H2O de la sal Tf Tf 100% de H2O 100% de sal E

(32)

Representación de procesos

19

Como la presión tiene poco efecto sobre las fases condensadas, su efecto sobre el diagrama de fases en equilibrio sólido-líquido es despreciable. Por esa razón, la representación en un gráfico de temperatura frente a concentración es suficiente para un sistema binario. Sin em-bargo, la representación de sistemas de tres o más componentes es más compleja, y se requie-ren varios gráficos para representar completamente el sistema.

222

2....3333

R

EPRESENTACIÓN DE PROCESOS

Los diagramas de fases son en muchos casos adecuados para representar procesos, por lo cual son ampliamente utilizados tanto en el control de la operación de procesos de cris-talización como en el diseño de estos procesos. Por ejemplo, la figura 2.2 muestra el pro-ceso de enfriamiento de una disolución de concentración x. Inicialmente, en el punto A, la disolución no está saturada, pero a medida que se enfría, al llegar al punto B la disolu-ción se satura en la sal. Si se continúa enfriando, la sal cristalizará, y coexistirán una di-solución saturada y una fase sólida formada por cristales de la sal. Por ejemplo, en el punto C coexisten una disolución saturada, Cd, y cristales de la sal, Cs. La línea que une los puntos Cd y Cs se conoce como línea de reparto. Si se continúa enfriando, la concen-tración de la disolución continuará en dirección hacia el punto E. Una vez alcanzado el punto D, la disolución eutéctica estará saturada en la sal y en hielo. Si se continúa reti-rando calor, la cantidad de hielo y sal que cristalizan aumentará hasta que toda la disolu-ción eutéctica se solidifique y se obtenga una mezcla de sólidos con la composidisolu-ción global del punto D. Si se continúa enfriando, los sólidos remanentes simplemente se en-friarán sin cambiar su composición.

La figura 2.3 muestra otro ejemplo de representación de un proceso. En este caso el obje-tivo es purificar una sal que tiene impurezas no solubles. El proceso se inicia lixiviando a

TH la sal impura con una disolución de reciclado D. Se añade agua para compensar las pér-didas que se producen a causa de la humedad residual de la sal cristalizada. Si se logra el equilibrio, la disolución se saturará en la sal, y alcanzará el punto A. Esta disolución es en-friada hasta el punto B, y a medida que se enfría se producirá el nacimiento y crecimiento de los cristales de la sal. La distribución de tamaño de los cristales dependerá, entre otras variables, de la velocidad de enfriamiento empleada. Así, el punto B representa una pulpa formada por cristales de la sal y una disolución saturada C. Una vez separada la sal crista-lizada de la disolución C, mediante del sistema de filtrado, la disolución C es calentada y reciclada a la etapa de lixiviación. El diagrama de fases puede ser útil para analizar las con-diciones de operación o de diseño. Por ejemplo, la cantidad de sal cristalizada, para una cantidad fija de disolvente, aumenta a medida que ocurre lo mismo con la distancia BC. Así, si se aumenta la temperatura TH, la producción de sal aumentará, pero la energía ne-cesaria para calentar la disolución C será mayor y, por lo tanto, existirá un valor óptimo de temperatura de operación.

La representación de procesos en diagramas de fases también tiene algunos inconvenientes. Por ejemplo, la división o mezcla de corrientes de la misma composición son representadas por un punto dentro del diagrama, de modo que no es posible distinguir las cantidades

(33)

relati-20

ASPECTOSBÁSICOSDELOSDIAGRAMASDEFASES

vas de cada corriente. Además, en sistemas de más de tres componentes es necesario excluir del diagrama a alguno de ellos, con lo cual no es posible observar la cantidad relativa de ese componente en cada corriente. Como por lo general el componente excluido es el agua, la cantidad de disolvente presente en cada corriente es desconocida y se pueden cometer graves errores al tomar decisiones.

FIGURA 2.2 Proceso de enfriamiento de una disolución.

FIGURA 2.3A Representación de proceso de purificación de una sal.

FIGURA 2.3B Proceso de purificación de una sal. T emper atur a A B C D E x Cd Cs A B C D E Tc % en peso de la sal TH A Agua a TH impuraSal Disolución saturada Pulpa Sal purificada Disolución saturada Calentamiento Filtración Cristalización por enfriamiento Lixiviación a TH B C D

(34)

Representación de procesos

21

Ejemplo

2.1

Los datos de la tabla 2.1 corresponden a la solubilidad del perborato de sodio en agua a dife-rentes temperaturas. Construya un gráfico con estos datos y represente un proceso para la pu-rificación de Na2B4O7 que opere entre 10 ºC y 60 ºC. Suponga que no hay pérdidas de disolvente.

En la figura 2.4 se representan los datos y el proceso de purificación. El Na2B4O7 impuro es lixiviado a 60 ºC con una disolución reciclada (A) hasta lograr su saturación (B). Una vez fil-trada para eliminar las impurezas no solubles, la disolución es enfriada hasta 10 ºC para lograr la sobresaturación y, por lo tanto, la cristalización del Na2B4O7 libre de impurezas. Una vez separados los cristales se obtiene una disolución saturada a 10 ºC (D), la cual es calentada y reciclada al lixiviador.

Tabla 2.1 Datos para el ejemplo 2.1.

Temperatura ºC 0 1,2 20 2,7 40 6 60 20,3 80 31,5 100 52,5

FIGURA 2.4A Proceso de purificación de Na2B4O7. g de Na2B4O7 100 g de H 2O ---Cristalización a 10 ºC Lixiviación a 60 ºC impuro Na2B4O7 Na2B4O7 A B D

(35)

222

2....4444

B

ALANCES DE MATERIA

En un diagrama de fases es posible hacer gráficamente un balance de materia utilizando la regla de la palanca. La figura 2.5 muestra la conocida obra “En la playa” de Édouard Manet en donde para mantener el equilibrio se aplica claramente la ley de composición de masas. Al igual que en una balanza romana, para compensar debidamente la diferencia de peso (masa), se debe situar el elemento de mayor peso más cerca del fulcro y el peso menor a mayor dis-tancia del mismo.

La figura 2.6a muestra la representación de un proceso de mezclado de A y B para dar C. El punto

C siempre estará en la línea recta que une A y B, más cerca del punto que está en mayor proporción.

Matemáticamente se tiene

(2.1)

Es decir, la masa de B es a la masa de A como la distancia entre los puntos A y C es a la distancia entre los puntos C y B. Con la ayuda de un balance de materia del mezclador y utilizando la rela-ción 2.1, también se puede decir

FIGURA 2.4B Solución al ejemplo 2.1.

% en peso de Na2B4O7 T emper atur a, ° C 100 80 60 40 20 0 −10 10 20 30 40 50 60 60 ºC 100 ºC A’ B’ A B C’ C D Masa de B Masa de A --- AC CB ---=

(36)

Balances de materia

23

(2.2)

Además es posible demostrar que la relación entre las masas se puede expresar por las distan-cias entre los puntos leídos en la abscisa o en la ordenada, así:

(2.3)

Observe que las restas en la ecuación 2.3 representan distancias entre los puntos A y C o C y B. Del mismo modo, la figura 2.6b representa la división de una corriente C en dos corrientes A y B. Todas las relaciones anteriores son también válidas en este caso.

FIGURA 2.5 La obra “En la playa” de Édouard Manet, mantiene el equilibrio por la ley de composición de masas.

FIGURA 2.6A Regla de la palanca para un proceso de mezclado.

FIGURA 2.6B Regla de la palanca para un proceso de división. Masa de C Masa de A --- AB CB ---= Masa de B Masa de A --- xCxA xBxC --- yAyC yCyB ---= = A B C A C B A B C A C B

(37)

Las dificultades que se pueden encontrar en el desarrollo de balances de materia en un diagra-ma de fases están relacionadas con tres aspectos. En primer lugar, el error cometido en la lec-tura de las distancias produce, en muchos casos, errores significativos en los balances de materia e inconsistencia en los mismos cuando hay datos redundantes. Por ejemplo, si se uti-lizan las ecuaciones 2.1 y 2.2 cuando las distancias entre todos los puntos se miden con un cierto error, el cual existirá si se utiliza una regla graduada en milímetros, los balances serán mutuamente inconsistentes. En segundo lugar, si se divide una corriente en dos o más corrien-tes con la misma composición, todos los puntos estarán ubicados en un solo punto del diagra-ma, y por lo tanto no será posible conocer las cantidades relativas de cada una de ellas. Lo mismo es válido para la mezcla de corrientes de igual composición. Finalmente, si se mezclan simultáneamente tres o más corrientes, será necesario imaginar el proceso de mezclado como constituido por varios procesos de mezcla de pares de corrientes. Por ejemplo, la figura 2.7 muestra el proceso de mezcla de las corrientes A, B y C para dar la corriente D. Este proceso de mezcla simultáneo se puede imaginar como constituido por dos procesos de mezclado, pri-mero la mezcla de A y B para dar el punto r y luego la mezcla de r con C para dar el punto D. También se permite cualquier otro camino. Lo mismo ocurre en el caso de la separación de

D en A, B y C. Por ejemplo, un posible camino sería la separación de D en C y en la mezcla r, para posteriormente separar la mezcla r en A y B.

Ejemplo

2.2

Si las distancias entre los puntos A, B y C de la figura 2.6a son: = 1,9 cm, = 1,2 cm y = 3 cm, determine las cantidades de las disoluciones A y B necesarias para obtener 100 kg de la disolución C. Observe que existe un error en las lecturas de las distancias y que existe redundancia de datos.

De la ecuación 2.1 se tiene:

(2.4) FIGURA 2.7 Aplicación de la regla de la

palanca a la mezcla de A, B y C para dar D.

D r A C B AC CB AB Masa de B Masa de A --- AC BC --- 1,5833 = =

(38)

Balances de materia

25

y como la masa de B más la masa de A debe ser igual a 100 kg, se tiene que A = 38,7 kg y

B = 61,3 kg.

Por otra parte, también se puede utilizar la ecuación 2.2, porque hay redundancia de datos:

y como la masa de C es 100, se puede determinar de forma directa la masa de A = 40 kg. Por diferencia, la masa de B = 60 kg. Observe que existe una discrepancia entre los resultados cuando se utiliza la ecuación 2.1 o la 2.2 a causa de los errores de lectura de las distancias. Concretamente, el error en la masa de A es del 3,3%.

Ejemplo

2.3

Considerando el ejemplo 2.1, realice los balances de materia para la producción de 100 kg de cristales de Na2B4O7.

La relación entre la disolución D y los cristales de Na2B4O7 se pueden obtener por la regla de la palanca, es decir,

donde x representa la composición en porcentaje en peso de Na2B4O7. Luego la disolución A o D corresponde a 553,3 kg. Por simple inspección se puede determinar que la cantidad de Na2B4O7 lixiviado es de 100 kg y que la disolución B corresponde a 653,3 kg.

Ejemplo

2.4

Analice la conveniencia de lixiviar a 100 ºC en vez de a 60 ºC.

Ahora los nuevos valores de B y C en la figura 2.4b corresponden a los puntos B′ y C′. Apli-cando nuevamente la regla de la palanca, pero esta vez con xc = 52,5, se obtiene:

con lo cual A o D corresponden a 94,1 kg y la disolución B a 194,1 kg para el mismo nivel de producción de Na2B4O7. Claramente, la operación a mayor temperatura reduce los niveles de flujo en el proceso. Masa de C Masa de A --- AB CB --- 3 1,2 ---= = Masa de A Masa de Na2B4O7 alimentado --- 100–xB xBxA --- 100–17 17–2 --- 5,533 = = = Masa de A Masa de Na2B4O7 alimentado --- 100–xB xBxA --- 100–52,5 52,5–2 --- 0,941 = = =

(39)

222

2....5555

R

EGLA DE LASFASES DE

G

IBBS

Una relación importante en el estudio de diagramas de fases es la regla de las fases de Gibbs. Esta regla relaciona el número de componentes, C, el número de fases, F, y el número de re-laciones adicionales (por ejemplo reacciones químicas), N, con los grados de libertad, L, o número de variables a especificar para poder conocer las características de un sistema en equilibrio. Esta relación es

L = C – F – N + 2 (2.5)

Por ejemplo, para el diagrama de fases binario (C = 2) isobárico (N = 1, puesto que la presión es constante) de la figura 2.1, los grados de libertad cambian con el número de fases según la siguiente relación:

L = 2 – F – 1 + 2 = 3 – F (2.6)

Esto significa que para la región líquida (F = 1) se tienen dos grados de libertad, y esto significa que es necesario especificar la temperatura y la composición para definir el sis-tema. La curva de saturación (F = 2) tiene un solo grado de libertad, y por lo tanto si se conoce la temperatura o la composición se definirá el sistema. Por último, el punto E, en donde F = 3, tiene cero grados de libertad.

Si se utilizara los iones como componentes, el sistema tendría tres componentes en vez de dos, pero como la disolución debe ser neutra, se tiene una relación adicional. Con ello la re-lación 2.4 daría los mismos resultados.

En general, para representar un sistema acuoso salino en forma isobárica e isotérmica se re-quiere especificar C variables (F = C).

222

2....6666

C

ONGRUENCIA E INCONGRUENCIA

Cuando un sistema forma compuestos pueden darse dos casos, dependiendo de si el compuesto formado es estable o si se descompone, y por lo tanto no se funde como com-puesto puro. La figura 2.8 muestra un sistema binario con la formación de un comcom-puesto

AxBy que es estable y por lo tanto se funde formando una disolución cuya composición es igual a la del compuesto. En este caso se dice que la sal AxBy es congruentemente soluble, o que su fusión es congruente. Para este tipo de sistemas las líneas de tres fases son del tipo eutécticos, es decir, los puntos eutécticos E son puntos finales en los pro-cesos de enfriamiento.

(40)

Congruencia e incongruencia

27

FIGURA 2.8 Sistema binario con formación de un compuesto AxBy que funde congruentemente.

FIGURA 2.9 Sistema binario con formación de compuesto AxBy que funde incongruentemente.

Sólido B + líquido 100% de B T emper atur a Sólido B + sólido Ax By Sólido Ax By + sólido A % en peso de A Ax By 100% de A E Sólido Ax By + disolución saturada Disolución líquida Sólido A + disolución saturada E Sólido B + líquido 100% de B T emper atur a Sólido B + sólido Ax By Sólido Ax By + sólido A % en peso de A Ax By 100% de A F Sólido Ax By + disolución saturada Disolución líquida Sólido A + disolución saturada E H G P I J K

(41)

La figura 2.9 representa un sistema binario con la formación de un compuesto AxBy que es inestable, y por lo tanto no se funde formando una disolución de composición igual a la del compuesto. En este caso se dice que la sal AxBy es incongruentemente soluble, o que su fusión es incongruente. Es decir, los puntos de transición P no son puntos fi-nales en los procesos de enfriamiento. Por ejemplo, si la disolución del punto F es en-friada, ésta se saturará en la sal A en el punto G, y en el punto H existirá una pulpa formada por una disolución saturada y cristales de la sal A. Al alcanzar el punto I, el sistema se saturará en la sal A y en la sal AxBy, y coexistirán simultáneamente tres fases: las dos fases sólidas y la disolución del punto de transición P. Aunque este punto tiene cero grados de libertad al igual que el punto E, éste no corresponde a un punto final del proceso de enfriamiento. Si se continúa retirando calor, la sal A empezará a disolverse mientras continúa la cristalización de la sal AxBy. Después de un tiempo sólo existirá la disolución P y los cristales de AxBy. Al continuar el proceso de enfriamiento se seguirá a través del punto J hasta terminar en el punto K. En este último punto la disolución del punto eutéctico E se encontrará saturada en B y AxBy. Si se continúa retirando calor, la composición de la disolución se mantendrá en el punto E mientras el sistema se solidi-ficará totalmente.

Ejemplo

2.5

Para el diagrama de la figura 2.10, indique la diferencia en el proceso de enfriamiento de la disolución C y H.

Cuando la disolución C es enfriada, ésta se saturará en el punto D en el compuesto B. Si se con-tinúa enfriando, el compuesto B cristalizará y se mantendrá en equilibrio con la disolución. En el punto F la mezcla está formada por la disolución del punto de transición P, los cristales de B y los cristales de AxBy. Si el proceso continúa, los cristales de B se disolverán, mientras que los cristales de AxBy aumentarán hasta que todos los cristales de B desaparezcan. Luego el proceso de enfriamiento continuará a través de la curva PE hasta alcanzar el punto G, en donde los

cris-FIGURA 2.10 Diagrama de fases para el ejemplo 2.4.

T emper atur a Ax By B A E G F K J I H D C P

(42)

Comentarios finales

29

tales de AxBy se encuentran en equilibrio con la disolución eutéctica E y cristales de A. Si el pro-ceso continúa, se producirán cristales de A y AxBy hasta que toda la disolución E se solidifique.

Por su parte, la disolución H seguirá un camino semejante a la disolución C hasta llegar al

punto K. A diferencia del caso anterior, si el proceso continúa, se producirá la cocristalización

de B y AxBy hasta que toda la disolución P se solidifique.

222

2....7777

C

OMENTARIOSFINALES

Hemos revisado los aspectos básicos de los diagramas de fases. Sus ventajas y desventajas se resumen en la tabla 2.2. Del mismo modo, en la tabla 2.3 se indican las ventajas y desventajas de la aplicación de la regla de la palanca.

En los capítulos siguientes profundizaremos en estos temas, primero sobre el tipo de diagramas más comunes y luego en la representación y diseño de procesos. Pondremos el énfasis en los sis-temas de tres o más componentes, puesto que éstos son los más útiles en los procesos industriales.

Tabla 2.2 Ventajas y desventajas de los diagramas de fases.

Ventajas Desventajas Se puede observar el comportamiento

de equilibrio de fases de un sistema.

Es difícil representar sistemas de más de tres componentes.

Se pueden representar condiciones operacionales o diseñar procesos.

Para sistemas de tres o más componentes es difícil trabajar con más de dos temperaturas.

Es posible realizar balances de materia o al menos conocer aproximadamente las cantidades relativas de los flujos.

Algunas operaciones no quedan bien

representadas en el diagrama de fases y es posible cometer errores en los balances de materia.

Tabla 2.3 Ventajas y desventajas de la regla de la palanca.

Ventajas Desventajas

Los balances se pueden realizar en forma sencilla. Existen errores e inconsistencias en los balances si las distancias entre los puntos se miden con una regla.

Con sólo mirar el diagrama de fases es posible conocer, de forma cualitativa, las cantidades relativas de los flujos en cada corriente.

No es posible aplicarla a la división o mezcla de corrientes de igual composición.

Si se conoce la composición en cada uno de los puntos, se pueden hacer balances exactos.

Si se mezclan más de dos corrientes, si hay reciclado o se separa una corriente en más de dos corrientes, hay que imaginar un camino para poder aplicarla.

(43)

B

IBLIOGRAFÍA

ADAMSON A.W., 1979, A textbook of Physical Chemistry, 2da. Edición, Academic Press.

HOUGEN O.A., K.M. WATSON y R.A. RAGATZ, 1982, Principios de los procesos químicos. Parte I. Balances de materia y energía. Ed. Reverté S.A.

NYVLT J., 1977, Solid-liquid phase equilibria, Elsevier Scientific publishing company.

THOMPSON E.V., CECKLER W.H., 1979, Introducción a la Ingeniería Química, Ed. McGraw-Hill.

E

JERCICIOSPROPUESTOS

2.1. Construya un diagrama de fases a partir de la siguiente tabla de datos, representando la

solubilidad del sulfato de magnesio en agua a distintas temperaturas. Identifique las diferentes zonas de equilibrio.

2.2. Los datos de la siguiente tabla corresponden a la solubilidad del nitrato de calcio a

diferentes temperaturas. Construya un diagrama, e identifique las diferentes zonas de equilibrio.

t ºC % peso Fase sólida t ºC % peso Fase sólida

0 0 hielo 50 33,4 MgSO4.6H2O

–2,5 12 hielo 55 34,3 MgSO4.6H2O

–3,5 17 hielo + MgSO4.7H2O 60 35,3 MgSO4.6H2O

0 18 MgSO4.7H2O 65 36,3 MgSO4.6H2O

10 22 MgSO4.7H2O 69 37,1 MgSO4.6H2O + MgSO4.H2O 20 25,2 MgSO4.7H2O 80 35,8 MgSO4.H2O 25 26,7 MgSO4.7H2O 90 34,6 MgSO4.H2O 30 28 MgSO4.7H2O 100 33,5 MgSO4.H2O 35 29,3 MgSO4.7H2O 120 30 MgSO4.H2O 40 30,8 MgSO4.7H2O 140 24 MgSO4.H2O 45 32,3 MgSO4.7H2O 160 13 MgSO4.H2O

(44)

Ejercicios propuestos

31

2.3. A partir de la tabla de datos del ejercicio 2.1, realice los balances de materia para

produ-cir 100 kg de cristales de MgSO4.H2O a partir de MgSO4.7H2O impuro que opere entre 0 ºC y 170 ºC.

2.4. A partir de la tabla de datos del ejercicio 2.2, realice los balances de materia para producir

100 kg de cristales de Ca(NO3)2·4H2O a partir de Ca(NO3)2·4H2O impuro que opere entre

10 ºC y 40 ºC.

t ºC % en peso Fase sólida t ºC % en peso Fase sólida

–0,4 1,4 hielo 30 60,41 Ca(NO3)2.4H2O –1,4 4,78 hielo 35 62,88 Ca(NO3)2.4H2O –1,9 6,53 hielo 40 66,22 Ca(NO3)2.4H2O –3,05 10 hielo 42 68,7 Ca(NO3)2.4H2O –4,15 12,98 hielo 42,5 70,8 Ca(NO3)2.3H2O –15,7 33,13 hielo 45 71,45 Ca(NO3)2.3H2O –21,7 38,7 hielo 50 73,79 Ca(NO3)2.3H2O –28,7 42,7 hielo + Ca(NO3)2.4H2O 51 74,73 Ca(NO3)2.3H2O

–20,7 43,37 Ca(NO3)2.4H2O 49 77,49 Ca(NO3)2.3H2O +Ca(NO3)2.2H2O –10 47,31 Ca(NO3)2.4H2O 51 78,05 Ca(NO3)2.2H2O 0 50,5 Ca(NO3)2.4H2O 55 78,16 Ca(NO3)2 5 51,97 Ca(NO3)2.4H2O 80 78,2 Ca(NO3)2 10 53,55 Ca(NO3)2.4H2O 100 78,43 Ca(NO3)2 15 54,94 Ca(NO3)2.4H2O 125 78,57 Ca(NO3)2 20 56,39 Ca(NO3)2.4H2O 147,5 78,8 Ca(NO3)2 25 57,98 Ca(NO3)2.4H2O 151 79 Ca(NO3)2 MgSO4.H2O Lixiviación A E G F H B C Evaporador Cristalización MgSO4.7H2O impuro D

(45)

Ca(NO3)2.4H2O Lixiviación D A B Cristalización B’ Ca(NO3)2.4H2O impuro

(46)

33

333

3

R

R

e

e

p

p

r

r

e

e

s

s

e

e

n

n

t

t

a

a

c

c

i

i

ó

ó

n

n

d

d

e

e

d

d

i

i

a

a

g

g

r

r

a

a

m

m

a

a

s

s

d

d

e

e

f

f

a

a

s

s

e

e

s

s

333

3....1111

C

ONSTRUCCIÓN DE DIAGRAMAS DE FASES

Un diagrama de fases es en definitiva una representación gráfica, y por lo tanto es posible uti-lizar, en principio, cualquier tipo de representación. Producto de sus virtudes, el diagrama más utilizado es el triangular equilátero; sin embargo, no es la única alternativa, como com-probaremos a medida que profundicemos en este tema. En este capítulo estudiaremos los di-ferentes tipos de representaciones, las alternativas disponibles, sus propiedades y forma de construcción. El estudio estará centrado en sistemas multicomponentes, puesto que son los de mayor interés práctico y en donde pueden existir algunas dificultades para su representación. Para construir un diagrama de fases es necesario establecer tres aspectos: 1) el tipo de repre-sentación gráfica que se desea realizar, siendo la más común el diagrama triangular; 2) el tipo de coordenadas a utilizar en la representación, siendo los porcentajes en peso o moles de las especies moleculares o iónicas las más comunes; y 3) como están unidos los diferentes vérti-ces del diagrama.

Referencias

Documento similar

Monte el carril DIN (elemento que se muestra en el diagrama “Montaje de la unidad”) que sostendrá el dispositivo UV con dos tornillos para madera n. 1) en la línea de agua

Aplicación: En la parte interior del antebrazo, a tres dedos de la unión de la muñeca con la mano, en línea recta con el dedo medio...

(a) Complete el diagrama siguiente para mostrar la posición del bloque semicircular cuando la mancha se encuentra en el punto B. La posición original del bloque se muestra como

En esta sección se analizan los tres programas para el caso de conductividad finita de 0.001 S/m en una línea recta de 1km de longitud y punto de observación P1 tal como se muestra

 A medida que transcurre el tiempo de aireación la concentración de OD en la muestra de agua aumenta hasta llegar al punto de saturación, una vez llegado a este valor los

En tres instantes diferentes, un estudiante dibuja el diagrama de cuerpo libre para una piedra que cae en un estanque de agua, como se muestra en la siguiente

En esta propuesta de rediseño se pretende transportar 1 lps de agua por la línea del camino y 5 lps de agua por la línea de abastecimiento hasta un punto de unión como se muestra en