• No se han encontrado resultados

Analytical and experimental investigation of a turbulent mixing layer of different gases in a pressure gradient

N/A
N/A
Protected

Academic year: 2020

Share "Analytical and experimental investigation of a turbulent mixing layer of different gases in a pressure gradient"

Copied!
154
0
0

Texto completo

(1)

O F D I F F E R E N T GASES IN A PRESSURE GRADIENT

T h e s i s by Manuel R. Rebollo

In P a r t i a l F u l f i l l m e n t of the R e q u i r e m e n t s F o r the D e g r e e of

Doctor of P h i l o s o p h y

C a l i f o r n i a I n s t i t u t e of Technology P a s a d e n a , California

1973

(2)

ACKNOWLEDGMENTS

The a u t h o r w i s h e s to e x p r é s s h i s a p p r e c i a t i o n to h i s a d v i s o r , P r o f e s s o r Anatol R o s h k o , for h i s guidance and d i r e c t i o n of the p r e s e n t r e s e a r c h . In a d d i t i o n , the t i m e l y a d v i c e of P r o f e s s o r Donald Coles i s gratefully acknowledged.

Special thanks go to D r . G. L . B r o w n for h i s a s s i s t a n c e during the e a r l y p a r t of the e x p e r i m e n t s . The author a p p r e c i a t e s the c o o p e r a t i o n of M r . J i m é n e z Sendin on the d e v e l o p m e n t of the a s y m p -totic b e h a v i o r of the n u m e r i c a l solution.

It i s a p l e a s u r e to thank M r s . G e r a l d i n e K r e n t l e r for typing the m a n u s c r i p t .

The author i s indebted to the California I n s t i t u t e of T e c h -nology, the E u r o p e a n Space R e s e a r c h O r g a n i z a t i o n , the National A e r o n a u t i c s and Space A d m i n i s t r a t i o n , and the Spanish G o v e r n m e n t for their financial a s s i s t a n c e . The r e s e a r c h was s u p p o r t e d by the D e p a r t m e n t of the Navy, Office of Naval R e s e a r c h .

(3)

ABSTRACT

An a n a l y t i c a l and e x p e r i m e n t a l study h a s b e e n m a d e of the t u r b u l e n t mixing l a y e r in a p r e s s u r e g r a d i e n t . T h e o r y p r e d i c t s the p o s s i b l e e x i s t e n c e of e q u i l i b r i u m flows, and this was c o n f i r m e d e x p e r i m e n t a l l y for t u r b u l e n t s h e a r l a y e r s b e t w e e n s t r e a m s of h e l i u m and n i t r o g e n .

T h e only c a s e for which s i m i l a r i t y is p o s s i b l e is for

p2U2 2 = pi Ui2 , s i n c e then P2 (x) = P i (x). T h e s e e q u i l i b r i u m flows a r e

(y x d U

of the f o r m Ui ~ x and 6 ~ x , w h e r e a - 77—-r-3*" is a n o n - d i m e n s i o n a l

Ui dx p r e s s u r e g r a d i e n t p a r a m e t e r .

The e x p e r i m e n t a l i n v e s t i g a t i o n was conducted in the facility d e s i g n e d by B r o w n to p r o d u c e t u r b u l e n t flows at p r e s s u r e s up to 10 a t m o s p h e r e s . The a d j u s t a b l e w a l l s of the t e s t s e c t i o n of the a p p a r a t u s w e r e modified in o r d e r to s e t the p r e s s u r e g r a d i e n t .

Shadowgraphs of the m i x i n g zone for a - 0 and a - - 0. 18, at different Reynolds n u m b e r s , r e v e a l e d a l a r g e s c a l e s t r u c t u r e n o t i c e -ably different for e a c h a.

The s i m i l a r i t y p r o p e r t i e s of the s h e a r l a y e r w e r e e s t a b l i s h e d f r o m m e a n p r o f i l e s of total head and d e n s i t y . In addition, the r m s d e n s i t y fluctuations w e r e found to be s e l f - p r e s e r v i n g . F r o m the m e a n p r o f i l e s , the s p r e a d i n g r a t e , t u r b u l e n t m a s s diffusion, Reynolds s t r e s s and Schmidt n u m b e r d i s t r i b u t i o n s w e r e c a l c u l a t e d f r o m the equations of m o t i o n .

(4)

m á x i m u m s h e a r i n g s t r e s s i s 7 0 $ l a r g e r and the m á x i m u m valué of the t u r b u l e n t m a s s diffusion i s 2 0 $ l a r g e r than t h e i r a = 0 c o u n t e r p a r t s . The m á x i m u m r m s d e n s i t y fluctuations a r e a p p r o x i m a t e l y 0. 2 in both flows.

(5)

T A B L E O F CONTENTS T I T L E

Acknowledgme nts A b s t r a c t

T a b l e of Contents N o m e n c l a t u r e L i s t of T a b l e s L i s t of F i g u r e s I n t r o d u c t i o n

1. 1 P r e v i o u s I n v e s t i g a t i o n s 1. 2 Goals of the P r e s e n t Study 1. 3 E x p e r i m e n t a l T e c h n i q u e s

A n a l y t i c a l Study of E q u i l i b r i u m F l o w s

2. 1 D e r i v a t i o n of the Equations of Motion for H e t e r o g e n e o u s Flow

2. 2 H e t r o g e n e o u s T u r b u l e n t Mixing L a y e r : E q u i l i b r i u m F l o w in a P r e s s u r e G r a d i e n t 2. 3 S h e a r S t r e s s and T u r b u l e n t M a s s Diffusion

Di s t r i b u tions

2. 3a L o c a t i o n of the Dividing S t r e a m l i n e 2. 3b M a s s F l o w E n t r a i n m e n t

N u m e r i c a l Solution of the E q u a t i o n s

3. 1 Eddy V i s c o s i t y and Eddy Diffusivity Model 3. 2 Z e r o P r e s s u r e G r a d i e n t C a s e : a - 0

3. 3 P r e s s u r e G r a d i e n t C a s e : a 4 0

PAGE

í i

m

IX X I

X l l

13

(6)

T A B L E O F CONTENTS (cont'd. )

P A R T T I T L E IV. E x p e r i m e n t a l F a c i l i t y , I n s t r u m e n t a t i o n and

Equipme nt

4. 1 F l o w A p p a r a t u s 4. 2 I n s t r u m e n t a t i o n

4. 2a Static and P i t o t Tubes 4. 2b A s p i r a t i n g P r o b é

4. 3 D e s c r i p t i o n of the E x p e r i m e n t a l E q u i p m e n t 4. 3a E l e c t r o n i c M a n o m e t e r and C o n s t a n t

T e m p e r a t u r e A n e m o m e t e r

4. 3b A / D C o n v e r t e r and C o n t r o l E q u i p m e n t 4. 3c M a g n e t i c T a p e R e c o r d e r s

V. E x p e r i m e n t a l P r o c e d u r e s 5. 1 F a c i l i t y T e s t s

5. 2 P r o c e d u r e to Set Up the E q u i l i b r i u m F l o w 5. 3 S e l e c t i o n of F l o w and T r a v e r s i n g P r o c e d u r e s 5. 4 D y n a m i c P r e s s u r e T r a v e r s e

5. 5 D e n s i t y T r a v e r s e VI. P h o t o g r a p h i c I n v e s t i g a t i o n

6. 1 F l o w S t r u c t u r e

6. 2 F l o w S t r u c t u r e at Different Reynolds N u m b e r Z e r o and A d v e r s e P r e s s u r e G r a d i e n t s

(7)

T A B L E O F CONTENTS (cont'd. )

T I T L E PAGE

Data P r o c e s s i n g 47 7. 1 P r e s s u r e M e a s u r e m e n t s 47

7. 2 D e n s i t y M e a s u r e m e n t s 49

R e s u l t s 51 8. 1 A d v e r s e P r e s s u r e G r a d i e n t E x p e r i m e n t 51

8. l a D y n a m i c P r e s s u r e P r o f i l e s 51

8. Ib D e n s i t y P r o f i l e s 53 8. l e M e a s u r e m e n t s at Different R e y n o l d s N u m b e r s 55

8. Id C a l c u l a t i o n of Reynolds S t r e s s and 56 T u r b u l e n t M a s s Diffusion

8. 2 Z e r o P r e s s u r e G r a d i e n t 59 8. 2a D y n a m i c P r e s s u r e and D e n s i t y P r o f i l e s 59

8. 2b C a l c u l a t i o n of T u r b u l e n t T e r m s 60

D i s c u s s i o n and Conclusión 62 9. 1 C o m p a r i s o n with. N u m e r i c a l Solutions 62

9. 2 D i s c u s s i o n of the R e s u l t s 63 9. 2a Effect of D e n s i t y on Spreading R a t e and 64

Eddy V i s c o s i t y

9. 2b D e n s i t y M e a s u r e m e n t s and L a r g e 66 S t r u c t u r e Model

9. 2c Effect of A d v e r s e P r e s s u r e G r a d i e n t 68 on the L a r g e S t r u c t u r e

(8)

T A B L E O F CONTENTS (cont'd. )

P A R T T I T L E A p p e n d i c e s

A. A s y m p t o t i c B e h a v i o r of N u m e r i c a l Solution B . A S m a l l , F a s t R e s p o n s e P r o b é to M e a s u r e

C o m p o s i t i o n of a B i n a r y Gas M i x t u r e

C. An E s t i m a t e of the E r r o r in the M e a s u r e m e n t s of D y n a m i c P r e s s u r e

(9)

N O M E N C L A T U R E

C , c o n s t a n t i n e q u a t i o n ( 3 . 1. 2)

C c o n s t a n t i n e q u a t i o n ( 3 . 1.2)

&, e d d y d i f f u s i v i t y

f n o r m a l i z e d n o n - d i m e n s i o n a l p r o f i l e of m e a n v e l o c i t y U

h d i m e n s i o n l e s s m á x i m u m s l o p e t h i c k n e s s ( e q u a t i o n ( 9 . 2 . 1))

p p r e s s u r e

P m e a n p r e s s u r e

^/v72*

p v

5 n o n - d i m e n s i o n a l t u r b u l e n t m a s s diffusion = " TT

v P iUi

v t

Sc„_ t u r b u l e n t S c h m i d t n u m b e r = -r—

u v e l o c i t y i n d i r e c t i o n x

y] u '3 r m s v e l o c i t y f l u c t u a t i o n i n d i r e c t i o n x

U m e a n v e l o c i t y i n d i r e c t i o n x

Uio h i g h s p e e d v e l o c i t y a t t h e e x i t of t h e n o z z l e

Ugo l o w s p e e d v e l o c i t y a t t h e e x i t of t h e n o z z l e

v v e l o c i t y i n d i r e c t i o n y

r m s v e l o c i t y f l u c t u a t i o n i n d i r e c t i o n y

V m e a n v e l o c i t y i n d i r e c t i o n y

x s t r e a m w i s e c o o r d i n a t e

x d i s p l a c e m e n t of v i r t u a l o r i g i n f r o m c o o r d i n a t e o r i g i n

y t r a n s v e r s e c o o r d i n a t e

a n o n - d i m e n s i o n a l p r e s s u r e g r a d i e n t p a r a m e t e r = y^—-r-1

3 c o n s t a n t i n e q u a t i o n (2. 2 . 8) = -r— •y c o n s t a n t = —g—

77-8 u ^

(10)

NOMENCLATURE (cont'd. )

6X t h i c k n e s s i n t h e d y n a m i c p r e s s u r e p r o f i l e ; d e f i n e d b y d i s t a n c e

b e t w e e n m á x i m u m a n d m i n i m u m

52 t h i c k n e s s i n t h e d e n s i t y p r o f i l e ; d e f i n e d b y d i s t a n c e b e t w e e n

p o i n t s c o r r e s p o n d i n g to —*— - 1 . 6 0 a n d -*— = 6 . 4 0

F P i P i

AU r e f e r e n c e v e l o c i t y d i f f e r e n c e = Ux - U3

TI s i m i l a r i t y v a r i a b l e = / 3~~

T\ l o c a t i o n of t h e d i v i d i n g s t r e a m l i n e

X c o n s t a n t i n e q u a t i o n (2. 2 . 9) = jz —-r-^

[i viscosity

£ similarity variable = -^•

3 7 x

p density

VplS rms density fluctuation

non-dimensional Reynolds shear stress = -°—TTS

PIUI

non-dimensional stream function =

6piU! Y stream function

Subscripts and Superscripts

i free stream conditions on high speed side

2 free stream conditions on low speed side

' fluctuating quantity about the time average

time average

(11)

LIST O F T A B L E S

I. S u m m a r y of flow conditions for e x p e r i m e n t s . U10 H e l i u m v e l o c i t y at the nozzle exit.

Ugo N i t r o g e n v e l o c i t y at the nozzle exit.

II. A s p i r a t i n g p r o b é t r a v e r s e ; different p o s s i b i l i t i e s with.

- the Data S l i c e r .

(12)

LIST O F FIGURES 1. Mixing l a y e r m o d e l .

2. N u m e r i c a l solution for a - 0 (piUi = p2U2 c a s e ) Se = 0. 1,

0 . 2 , 0 . 3 , 0 . 4 , 0. 5, 1. 0.

3. C o m p a r i s o n of n u m e r i c a l solutions for f a v o r a b l e and a d v e r s e p r e s s u r e g r a d i e n t s for Se = 0 . 3 0 .

4. Sketch of the t e s t s e c t i o n .

5. Adjustable s l a t s and p e r f o r a t e d p í a t e . 6. A r r a y of s t a t i c p r e s s u r e t u b e s .

7. Sketch of the new p r o b é .

8. A p p a r a t u s r i s e t i m e : o s c i l l o s c o p e photo of the r e s p o n s e of a hot w i r e and pitot tube to s t a r t i n g p r o c e s s . H o r i z o n t a l s c a l e : 100 m s e c / d i v ; V e r t i c a l s c a l e : l v o l t / d i v . Tank p r e s s u r e = 7 a t m .

9. T i m e r e s p o n s e of the pitot tube and S c a n i v a l v e . H o r i z o n t a l s c a l e : 20 m s e c / d i v ; V e r t i c a l s c a l e : . 5 v o l t / d i v . Tank p r e s s u r e = 6 a t m .

10. T w o - d i m e n s i o n a l i t y t e s t : o s c i l l o s c o p e photos of the r e s p o n s e of two hot w i r e s 2 " a p a r t aligned s p a n w i s e at s e v e r a l down-s t r e a m l o c a t i o n down-s . T a n k p r e down-s down-s u r e = 3 a t m .

11. Block d i a g r a m of the set up to w r i t e p r e s s u r e data on tape. 12. T i m i n g of o p e r a t i o n to w r i t e p r e s s u r e data on t a p e .

13. P h o t o g r a p h i c c o m p a r i s o n of mixing l a y e r s for a < 0 and

a - 0. LiOwer(U2o= 393 c m / s e c ) s t r e a m i s 3NL; u p p e r

(U10 = 1040 c m / s e c ) s t r e a m is He. Tank p r e s s u r e = 4 a t m .

14. Shadowgraphs of mixing l a y e r for a - 0 at different Reynolds n u m b e r s . (piU12= p2U22 c a s e . ) L o w e r (low s p e e d ) s t r e a m i s

N~; u p p e r (high speed) s t r e a m i s H e .

15. Shadowgraphs of mixing l a y e r for a < 0 at different Reynolds n u m b e r s . L o w e r (low speed) s t r e a m i s N?; u p p e r (high

speed) s t r e a m i s He.

(13)

17. A s p i r a t i n g p r o b é c a l i b r a t i o n c u r v e at 4 a t m .

18. D y n a m i c p r e s s u r e t r a v e r s e s a t s e v e r a l s t a t i o n s . Tank p r e s s u r e = 4 a t m ; a = - 0. 18; (a) x = 0. 7 5 " ; (b) x = 1. 00"; (c) x = 1. 50"; (d) x = 2. 00".

19. D y n a m i c p r e s s u r e t r a v e r s e s at s e v e r a l d o w n s t r e a m s t a t i o n s . T a n k p r e s s u r e = 4 a t m ; a = - 0. 18; (e) x = 2.5 0"; (f) x = 3. 00"; ( g ) x = 3 . 2 5 " .

20. V a r i a t i o n of m i x i n g l a y e r t h i c k n e s s with x c o o r d i n a t e . Tank p r e s s u r e = 4 a t m ; a - - 0. 18.

2 1 . F r e e s t r e a m v e l o c i t y d e c a y a s a function of d o w n s t r e a m p o s i t i o n . Tank p r e s s u r e = 4 a t m ; a - - 0. 18.

22. S i m i l a r i t y profile for d y n a m i c p r e s s u r e . Tank p r e s s u r e = 4 a t m ; a = - 0 . 18; x = 0 . 7 5 " .

o

23. D e n s i t y t r a v e r s e ; a s p i r a t i n g p r o b é voltage a s a function of t i m e , and p r o b a b i l i t y d i s t r i b u t i o n at four data p o i n t s . Tank p r e s s u r e =• 4 a t m ; a - - 0. 18; x = 3. 00".

24. S i m i l a r i t y profile for d e n s i t y . T a n k p r e s s u r e = 4 a t m ;

a = - 0 . 18; x = 0. 7 5 " . o

25. S e l f - p r e s e r v a t i o n for r m s d e n s i t y fluctuations. Tank p r e s s u r e = 4 a t m ; a - - 0. 18; x = 0. 7 5 " .

v o

26. F r e e s t r e a m v e l o c i t y d e c a y a s a function of d o w n s t r e a m p o s i t i o n . T a n k p r e s s u r e = 7 and 2 a t m ; a - - 0 . 18.

27. S i m i l a r i t y profile for d y n a m i c p r e s s u r e . Tank p r e s s u r e = 7 a t m ; a = - 0 . 18; x = 0. 6 5 " .

o

28. S i m i l a r i t y profile for d e n s i t y . Tank p r e s s u r e = 7 a t m ;

a = - 0 . 18; x = 0. 6 5 " . o

29. S e l f - p r e s e r v a t i o n for r m s d e n s i t y f l u c t u a t i o n s . Tank p r e s s u r e = 7 a t m ; a - - 0. 18; x = 0. 6 5 " .

30. S i m i l a r i t y profile for d y n a m i c p r e s s u r e . Tank p r e s s u r e = 2 a t m ; a - - 0 . 18; x = 0 . 82".

o

31. S i m i l a r i t y profile for d e n s i t y . Tank p r e s s u r e = 2 a t m ;

(14)

LIST O F FIGURES (cont'd. )

32. S e l f - p r e s e r v a t i o n for r m s d e n s i t y fluctuations. Tank p r e s s u r e = 2 a t m ; a - - 0. 18; x = 0. 8 2 " .

o 33. Velocity p r o f i l e ; a = - 0 . 18.

34. Shear s t r e s s d i s t r i b u t i o n ; a = - 0 . 18.

35. T u r b u l e n t m a s s diffusión d i s t r i b u t i o n ; a - - 0 . 18.

36. Eddy diffusivity, eddy v i s c o s i t y , and Schmidt n u m b e r d i s t r i -butions a c r o s s the mixing l a y e r ; a - - 0. 18.

37. V a r i a t i o n of m i x i n g l a y e r t h i c k n e s s with x c o o r d i n a t e ; Tank p r e s s u r e = 4 a t m ; a - 0.

38. S i m i l a r i t y profile for d y n a m i c p r e s s u r e . Tank p r e s s u r e = 4 a t m ; a = 0, x = - 0 . 2 0 " .

o

39. S i m i l a r i t y profile for d e n s i t y . Tank p r e s s u r e = 4 a t m ;

a = 0; x = - 0 . 2 0 " . o

40. S e l f - p r e s e r v a t i o n for r m s d e n s i t y fluctuations. Tank p r e s s u r e = 4 a t m ; a = 0; x = - 0. 20".

r o

4 1 . Velocity p r o f i l e ; a = 0.

42. Shear s t r e s s d i s t r i b u t i o n ; a - 0.

4 3 . T u r b u l e n t m a s s diffusion d i s t r i b u t i o n ; a = 0.

44. Eddy diffusivity, eddy v i s c o s i t y , and S c h m i d t n u m b e r d i s t r i -butions a c r o s s the mixing l a y e r ; a - 0.

4 5 . C o m p a r i s o n of n u m e r i c a l solutions with e x p e r i m e n t a l r e s u l t s ; d y n a m i c p r e s s u r e p r o f i l e s ; a - - 0 . 18.

46. C o m p a r i s o n of n u m e r i c a l solutions with e x p e r i m e n t a l r e s u l t s ; d y n a m i c p r e s s u r e p r o f i l e s ; a - 0.

47. D e n s i t y t r a v e r s e ; a s p i r a t i n g p r o b é voltage a s a function of t i m e , and p r o b a b i l i t y d i s t r i b u t i o n at data points 1, 2, 3 and 4. Tank p r e s s u r e = 4 a t m ; a = 0.

48. D e n s i t y t r a v e r s e ; a s p i r a t i n g p r o b é voltage a s a function of t i m e , and p r o b a b i l i t y d i s t r i b u t i o n at data points 5, 6, 7 and 8. Tank p r e s s u r e = 4 a t m ; a - 0.

(15)

I. INTRODUCTION

The p r e s e n t w o r k had i t s p r i m e m o t i v a t i o n f r o m a continuing effort a t the California I n s t i t u t e of Technology d i r e c t e d t o w a r d s the u n d e r s t a n d i n g of h e t e r o g e n e o u s t u r b u l e n t m i x i n g .

"Within the f r a m e w o r k of that a i m a new facility was c o n s t r u c t e d s e v e r a l y e a r s a g o , and the f i r s t i n v e s t i g a t i o n s w e r e c a r r i e d out by

B r o w n and R o s h k o (Ref. 1) on t u r b u l e n t mixing l a y e r s b e t w e e n two s t r e a m s of different g a s e s .

During the c o u r s e of those i n v e s t i g a t i o n s it was r e a l i z e d that i t should be p o s s i b l e to e s t a b l i s h e q u i l i b r i u m t u r b u l e n t mixing l a y e r s in p r e s s u r e g r a d i e n t s , for p a r t i c u l a r c o m b i n a t i o n s of the f r e e s t r e a m p a r a m e t e r s . T h i s led to the p r e s e n t r e s e a r c h .

1. 1 P r e v i o u s I n v e s t i g a t i o n s

E q u i l i b r i u m flows a r e r a t h e r s c a r ce due to the fact that they e x i s t only for p r o p e r l y adjusted e x t e r n a l p r e s s u r e g r a d i e n t s , and for s p e c i a l c o m b i n a t i o n s of the p a r a m e t e r s involved in the p r o b l e m . Two e x a m p l e s a r e well known in the c a s e of b o u n d a r y l a y e r s :

a) In the l a m i n a r b o u n d a r y l a y e r c a s e the o r d i n a r y differential equation was f i r s t deduced by F a l k n e r and Skan, and is wldely r e p o r t e d in the l i t e r a t u r e ; i t s s o l u t i o n s w e r e l a t e r i n v e s t i g a t e d in d e t a i l by

D. R. H a r t r e e (Ref. 2).

(16)

F o r t u r b u l e n t j e t s and w a k e s in p r e s s u r e g r a d i e n t s the t h e o r e t -i c a l cond-it-ions for the e x -i s t e n c e of s -i m -i l a r -i t y solut-ions of the boundary l a y e r e q u a t i o n s w e r e s e t out by Townsend (Ref. 4), Wygnanski and F i e d l e r (Ref. 5), and G a r t s h o r e and N e w m a n (Ref. 6), but the only r e l e v a n t e x p e r i m e n t s w e r e c a r r i e d out by G a r t s h o r e (Ref. 7) on a two-d i m e n s i o n a l w a k e , antwo-d F e k e t e (Ref. 8) on a t w o - two-d i m e n s i o n a l j e t in

s t r e a m i n g flow.

V e r y l i t t l e r e s e a r c h h a s been done on the c a s e of a h o m o g e -neous mixing l a y e r in a p r e s s u r e g r a d i e n t . One of the few w o r k s in this á r e a h a s b e e n that of Sabin (Ref. 9) who found "a s e l f - s i m i l a r solution to an a p p r o x i m a t e equation which is not dependent upon a p a r t i c u l a r choice of e i t h e r the eddy v i s c o s i t y or p r e s s u r e g r a d i e n t " . It should be noted h e r e that no e q u i l i b r i u m flow o r s i m i l a r i t y solution, in the p r e c i s e s e n s e of the w o r d , e x i s t s for the p l a ñ e , h o m o g e n e o u s , t u r b u l e n t mixing l a y e r in any type of p r e s s u r e g r a d i e n t . T h e r e a s o n for this i s that the only c a s e for which s i m i l a r i t y i s p o s s i b l e i s for P2^22 = P i ^ i2, which can occur only for p2/ px*.

During the c o u r s e of B r o w n and R o s h k o ' s i n v e s t i g a t i o n s on the c a s e p2U22 = piUj2 for z e r o p r e s s u r e g r a d i e n t it w a s r e a l i z e d , by

a r g u i n g in p h y s i c a l t e r m s , that the only way an e q u i l i b r i u m mixing l a y e r in a p r e s s u r e g r a d i e n t could be e s t a b l i s h e d w a s by having p2U22 = PiUi2, s i n c e then P2(x) = Pi(x) and the r a t e of change of the

free s t r e a m v e l o c i t i e s with the d o w n s t r e a m c o o r d í n a t e is s u c h that

YT,—v = c o n s t a n t for all x. Doing the t h e o r e t i c a l a n a l v s i s on the U ^ x )

(17)

e q u a t i o n s of motion* it t u r n s out that t h e s e e q u i l i b r i u m flows a r e of

c¿

the f o r m X5 X ~ x and 6 ~x, w h e r e 6 is a c h a r a c t e r i s t i c t h i c k n e s s ; i. e. , the s h e a r l a y e r still g r o w s l i n e a r l y in x. The n o n d i m e n s i o n a l p r e s

-, . -, . x d U i x d U p i. . i-i i

s u r e g r a d i e n t p a r a m e t e r i s° a - rr~ J - Tf ~¿ - c o n s t a n t . C l e a r l y ,

c Ui dx U2 dx J

for a - 0, Ux = c o n s t and U2 = const ( z e r o p r e s s u r e g r a d i e n t ) ; for a > 0

trié'"fiow i s a c c e l e r a t e d (favorable p r e s s u r e g r a d i e n t ) ; and for a < 0 the flow is d e c e l e r a t e d ( a d v e r s e p r e s s u r e g r a d i e n t ) .

1. 2 Goals of the P r e s e n t Study

Much attention h a s been given to the p r o b l e m of f r e e turbulent m i x i n g , due to the fact that a l a r ge n u m b e r of flow configurations of e n g i n e e r i n g significance a r e r e l a t e d to this p r o c e s s , a s i s the c a s e for fully s e p a r a t e d flows, w h e r e an i m p o r t a n t e l e m e n t i s the s h e a r l a y e r which develops behind the s e p a r a t i o n point. T u r b u l e n t m i x i n g with l a r g e d e n s i t y n o n u n i f o r m i t i e s p l a y s a v e r y i m p o r t a n t r o l e in c o m b u s tión, c h e m i c a l mixing of different s p e c i e s , and m o r e r e c e n t l y in c h e m -i c a l l á s e r s . In m o s t of t h e s e -i m p o r t a n t flows the p r e s s u r e v a r -i e s along the s t r e a m w i s e d i r e c t i o n ; t h e r e f o r e the a n a l y s i s of t h e s e c a s e s r e q u i r e s knowledge of the p r o p e r t i e s of the h e t e r o g e n e o u s t u r b u l e n t mixing l a y e r in a p r e s s u r e g r a d i e n t .

Our m a i n i n t e r e s t was in trying to find e q u i l i b r i u m s o l u t i o n s , s i n c e the study of t h e s e configurations i s s i m p l e r than that of

non-p r e s e r v i n g flows; the f o r m e r a r e of fundamental i m non-p o r t a n c e to non-p r o v i d e i n s i g h t for the m o r e c o m p l i c a t e d flow c a s e s .

(18)

F r o m the equations of m o t i o n we found the conditions for the e x i s t e n c e of s i m i l a r i t y . Once the b o u n d a r y - l a y e r equations w e r e r e d u c e d to o r d i n a r y d i f f e r e n t i a l equations we obtained n u m e r i c a l s o l u -tions by using the h y p o t h e s e s of c o n s t a n t eddy v i s c o s i t y and eddy diffu-sivity. The p r o c e d u r e contains two e m p i r i c a l c o n s t a n t s left free to be adjusted f r o m e x p e r i m e n t .

In the e x p e r i m e n t a l w o r k , e x t e r n a l p r e s s u r e g r a d i e n t of the f o r m p r é s c r i b e d by the t h e o r y was i m p o s e d upon a t w o - d i m e n s i o n a l t u r b u l e n t mixing l a y e r between s t r e a m s of n i t r o g e n and h e l i u m with equal d y n a m i c p r e s s u r e s , with the following goals in m i n d . F i r s t , p r o f i l e s of m e a n total head and d e n s i t y a t s e v e r a l d o w n s t r e a m s t a t i o n s w e r e d e s i r e d so that the p o s s i b l e s i m i l a r i t y flow found a n a l y t i c a l l y could be v e r i f i e d ; m e a s u r e m e n t s of r m s d e n s i t y fluctuations w e r e sought to the end that s e l f - p r e s e r v a t i o n of the t u r b u l e n t q u a n t i t i e s a s s e t out by T o w n s e n d ' s c r i t e r i a could be e s t a b l i s h e d . Second, a d e t e r -m i n a t i o n of the b a s i c flow p a r a -m e t e r s , e. g. , s p r e a d i n g r a t e , s h e a r

s t r e s s , t u r b u l e n t m a s s diffusion and S c h m i d t n u m b e r d i s t r i b u t i o n s w e r e r e q u i r e d . F i n a l l y , m e a s u r e m e n t s for the c a s e of z e r o p r e s s u r e g r a d i e n t w e r e d e s i r e d for r e a s o n s of completen.ess.

(19)

1. 3 E x p e r i m e n t a l T e c h n i q u e s

The e x p e r i m e n t a l i n v e s t i g a t i o n was c a r r i e d out in the facility d e s i g n e d by B r o w n to p r o d u c e t u r b u l e n t flows at p r e s s u r e up to 1 0 a t m o s p h e r e s with v e r y s h o r t running t i m e s .

B e c a u s e of the s h o r t d u r a t i o n of the flow, only a few s e c o n d s , h i g h - s p e e d m e a s u r e m e n t t e c h n i q u e s w e r e u s e d .

The side w a l l s of the t e s t s e c t i o n of the a p p a r a t u s (Ref. 1) w e r e changed for a d j u s t a b l e s l a t s and a p e r f o r a t e d p í a t e was added at the channel exit.

The h i g h e s t s p e e d s w e r e 1000 c m / s e c for the light gas and 378 c m / s e c for the h e a v y one. E x p e r i m e n t s w e r e m a d e at t h r e e dif-f e r e n t tank p r e s s u r e s (7, 4 and 2 a t m o s p h e r e s ) to study the b e h a v i o r

of the mixing l a y e r at different R e y n o l d s n u m b e r s . Mean d y n a m i c p r e s s u r e p r o f i l e s w e r e obtained a t s e v e r a l d o w n s t r e a m l o c a t i o n s u s i n g a f a s t e l e c t r o n i c m a n ó m e t e r ( B a r o c e l ) and a pitot tube. Analog s i g n á i s f r o m the B a r o c e l w e r e c o n v e r t e d through an A / D c o n v e r t e r , to digital f o r m and w r i t t e n on m a g n e t i c t a p e . A Kennedy I n c r e m e n t a l Tape R e c o r d e r was u s e d for this p u r p o s e .

C o m p o s i t i o n m e a s u r e m e n t s of the b i n a r y m i x t u r e w e r e m a d e a t s e v e r a l d o w n s t r e a m l o c a t i o n s u s i n g an a s p i r a t i n g p r o b é developed by B r o w n and Rebollo (Ref. 10)*. A v e r y fast data a c q u i s i t i o n s y s t e m (Data S l i c e r ) , d e s i g n e d by C o l e s , was u s e d ; f i r s t , to t r a v e r s e the a s p i r a t i n g p r o b é a c r o s s the s h e a r l a y e r ; s e c o n d , to c o m m a n d the A / D c o n v e r s i ó n of the analog voltage coming f r o m the feedback b r i d g e of

(20)

the hot w i r e ; and t h i r d , to c o n t r o l the w r i t i n g of the digital s i g n a l on m a g n e t i c tape for l a t e r c o m p u t e r p r o c e s s i n g . The r e c o r d i n g of the data was by m e a n s of a Kennedy Synchronous Tape R e c o r d e r .

(21)

2. 1 D e r i v a t i o n of the Equations of Motion for H e t e r o g e n e o u s F l o w

The equations of m o t i o n for an i n c o m p r e s s i b l e , t w o - d i m e n s i o n a l flow in a n o n - u n i f o r m m é d i u m can be w r i t t e n as follows:

x- m o m e n t u m

9t 3x 8y 3x ox r9 x 9y ro y

y - m o m e n t u m

(2. 1.1)

t + 8x 9v 3 v+3 x V + 8v V [ ' L ' '

Continuity

^ + ^ + ^ = 0 ( 2 . 1 . 3 )

G r a v i t a t i o n a l f o r c e s have b e e n neglected in the m o m e n t u m equation. Following Reynolds (1895) we divide the flow q u a n t i t i e s into t h e i r m e a n and fluctuating p a r t s :

u = U + u' v = V + v1

p = P + p!

p = p + p'

(22)

• ^ ( p U2) + | - ( p U V + Up'v') = - | | - A - ( p u ' v ' ) (2.1.4) ap

^ ( p v '2) = - w (2.1.5)

8

• ^ ( p U ) + ^ (PV + p'v') = 0 ( 2 . 1 . 6 )

after the following approximations have been made:

a) gradients in x a r e small compared -with gradients in y

(boundary layer approximation) i. e. , I Q /Q 1 < < : 1

b) valúes o í ^ u '2 and'y/v'2 a r e comparable

cj —\l \—¿ >> x^ where 6(x) is a m e a s u r e of the width of the

shear zone, and AU(x) is a reference velocity difference at

each c r o s s section.

As a consequence of the above assumptions, the Reynolds

s t r e s s e s a r e supposed to be very large relative to the viscous s t r e s s

for sufficiently high Reynolds numbers.

The only remaining equation is the diffusion equation which

reduces to

9x oy '

if the molecular diffusion is neglected, which is consistent, for a

turbulent flow, with the approximations already made (Ref. 1). F r o m

equation (2. 1. 5) we get

(23)

| - ,

p

t f » ,

+

^ ,

p

„ V ) = - ^ i S Í . . ^ ( ¿ 5 ^ r , (3.1.9

)

^ ( PU ) + | - ( p V ) = 0 ( 2 . 1 . 1 0 )

9 x oy dy p v '

w h e r e pV = pV + p ' v ' (2. 1. 12)

I t s h o u l d b e n o t e d t h a t w i t h t h i s s u b s t i t u t i o n t h e e q u a t i o n of

c o n t i n u i t y r e c o v e r s i t s n o r m a l f o r m , b u t a m a s s - w e i g h t e d t u r b u l e n t

m a s s d i f f u s i o n t e r m a p p e a r s i n t h e r i g h t h a n d s i d e of t h e d i f f u s i o n

e q u a t i o n .

2 . 2 H e t e r o g e n e o u s T u r b u l e n t M i x i n g L a y e r : E q u i l i b r i u m F l o w i n a

P r e s s u r e G r a d i e n t

L e t u s c o n s i d e r t h a t a t x = 0 t h e r e i s a m e e t i n g of two p a r a l l e l

s t r e a m s of d i f f e r e n t g a s e s , d e n s i t i e s px a n d p2 , w h o s e v e l o c i t i e s a r e

U-L a n d U2 r e s p e c t i v e l y , i t b e i n g a s s u m e d t h a t l ^ > U2 . D o w n s t r e a m

of t h e p o i n t of e n c o u n t e r t h e s t r e a m s w i l l f o r m a m i x i n g z o n e s u b j e c t

to a p r e s s u r e g r a d i e n t i n t h e s t r e a m w i s e d i r e c t i o n ( F i g . 1). d P (x)

T o find t h e c o n d i t i o n s f o r s i m i l a r i t y w h e n ^!p—• 4 0, w e

a s s u m e f o l l o w i n g T o w n s e n d (Ref. 4 ) , t h a t

(24)

u

u

2

_P_ Pi

p u ' v ' P i Ux y

= Mr\)

= PÍTl)

=

T{T\)-1-T7-I

( 2 . 2 . 1)

(2. 2.2 )

(2.2. 3 )

¡*Tr = S ( n ) ( 2 . 2 . 4 ) P iui

w h e r e U 1 - Ux(x)

TI = y / 6(x )

6(x) i s a c h a r a c t e r i s t i c d i m e n s i ó n i n t h e t r a n s v e r s e d i r e c t i o n , i . e . ,

a m e a s u r e of t h e w i d t h of t h e m i x i n g r e g i ó n .

T h e b o u n d a r y c o n d i t i o n s a r e a s f o l l o w s

ÍU(T1) -• 1

'p(Tl) -• 1

U ( n ) -> YT2

(pin) ^ - e a .

P l

H e n e e f r o m t h e b o u n d a r y c o n d i t i o n s w e d e d u c e t h a t -=r^¡ —7 h a s Ui(x)

to b e a c o n s t a n t .

W i t h i n t h e b o u n d a r y l a y e r a p p r o x i m a t i o n , w e w i l l h a v e o u t s i d e

t h e l a y e r , w h e r e -K— i s v e r y s m a l l , _ ¿ P l (x) . p u d l i

d x ~ P l U l d x

(25)

After i n t e g r a t i o n

U T3( X ) , U£_. \ (Pi " P2 ü ^ ") = C

w h e r e C i s a c o n s t a n t ; but s i n c e \3± - U^x) and ye2 = c o n s t , this i m p l i e s

ui

that C = 0; t h e r e f o r e in o r d e r to have P3(x) = P ^ x )

PiU1» = P aU8 a , or ^ » = ^ ( 2 . 2 . 5 )

In h o m o g e n e o u s flow, px = p2 , the only way to s a t i s f y this

condition i s with Ux = U2 , i. e. , "no s h e a r b e t w e e n the two s t r e a m s . If

L e t us define a s t r e a m function Y(x, y ) , such that the continuity equation is i d e n t i c a l l y s a t i s f i e d .

TT 9 Y

v 9 Y

PV = - K

w h e r e Y(x, y) i s m a d e d i r a e n s i o n l e s s , and a s s u m e d to be only a function of r\, by the s u b s t i t u t i o n

* / i Y ( x , y )

x)

C o n s e q u e n t l y , the r e l a t i o n between the v e l o c i t y c o m p o n e n t s and §(r|) i s given by

# = pu ( 2 . 2 . 6 ) a n d

pv = (S) n p u - y - g £ - «(Tí ( 2 . 2 . 7 )

(26)

~ V where v = j=-

ui

Introducing the non-dimensional quantities from (2. 2. 1),

(2. 2. 2), (2. 2. 3), and (2. 2. 4) into the equations of motion, and after

replacing v for its expression in (2. 2. 7) we obtain

6(x) dU x(x) , a n rd5(x) 6(x) d ü1( x )1I d u _ dr

Ux(x) dx v p u " l) " L dx Ui(x) dx •'Idn ~ dn

Ldx Ux(x) dx Ji d«n d r ]l i > / p j

Similarity solutions exist only if

- ^ ^ = const = B (2.2.8)

6W d ^ í x )

= c o n s t = x ( 2 > 2 - 9 )

Ui(x) dx

From these two equations the potential velocity U^x) and the

scale factor 6(x) for the ordinate can be evaluated.

6(x) - x (2.2. 10)

Ui(x) - Xa (2. 2. 11)

where a = \/f3

x dUn Ux dx

In conclusión, the only case for which similarity is possible

is when pgUg2 = piUi3 and the equilibrium flows are of the form given

by the equations (2.2. 10) and (2.2. 11).

(27)

d(pu) , 1 d(pv) . _ ._ _ , _ .

*-&r 8 d ^- °P U = (2.2.12)

.. ¿(pu3) , 1 d(puv) 2 1 dT , , , , , ,

1 1 ^ " + B~V + f f ( 2 p U " 1 ) = B d ^ ( 2 . 2 . 1 3 )

^ + 0 d^ + «U =B d ^( S / p ) ( 2 . 2 . 1 4 )

2. 3 S h e a r S t r e s s and T u r b u l e n t M a s s Diffusion D i s t r i b u t i o n s I n t e g r a t i n g the equation (2. 2. 6) we find that

f (TI) = J pu dx o

w h e r e at ri = 0 , $(r| ) = 0

and v(n ) = 0 'o

n is the dividing s t r e a m l i n e of the flow. A c r o s s this line the t r a n s -'o °

p o r t of m a s s is equal to z e r o .

To get the d i s t r i b u t i o n s of s h e a r s t r e s s and t u r b u l e n t m a s s diffusion a c r o s s the l a y e r we i n t é g r a t e the s i m i l a r i t y e q u a t i o n s .

Continuity y i e l d s

- (§u + v) p + (1 + a) J pu dx = 0 (2. 3. 1)

o w h e r e 5 = y /x •

F r o m the m o m e n t u m equation (2. 2. 13) and after u s i n g continuity we ha ve

? ? ? - (1+or) u P pudx + (1+a) J pu2dx + a \ (pu2-l) dx

\ =0 § =0 \ =0

o °o ^o

(28)

S i m i l a r l y , i n t e g r a t i n g (2. 2. 14) a n d a f t e r u s i n g e q u a t i o n (2. 3 . 1),

w e o b t a i n f o r t h e t u r b u l e n t m a s s d i f f u s i o n d i s t r i b u t i o n

- (r+or) J p u d x + (1+a?) f u d x = ( S / p ) - ( S / p ) ( 2 . 3 . 3 ) 5 =0 § - 0 5 = 0

°o °o °o

H e n e e , if w e m e a s u r e t h e v e l o c i t y a n d d e n s i t y p r o f i l e s , a n d l ó c a t e

t h e d i v i d i n g s t r e a m l i n e on t h e m , t h e s h e a r s t r e s s a n d t u r b u l e n t m a s s

d i f f u s i o n c a n b e c a l c u l a t e d f r o m e q u a t i o n s (2. 3 . 2) a n d (2. 3 . 3 ) .

We s h o u l d n o t e t h a t s i n c e

(|£) = a (pu2 - 1) 1 (2.3.4 )

s§ = 0 k = 0

3 o ° o

T h e m á x i m u m s h e a r i n g s t r e s s o c e u r s o n t h e d i v i d i n g s t r e a m

-l i n e o n -l y f o r two c a s e s : e i t h e r

a - 0, o r (pu2 - 1)_ _ Q = 0

o~

h o w e v e r

(d (^p )) = 0 f o r a n d ( 2 . 3 . 5 )

Úl ?o=0 atO

p v

A m a s s - w e i g h t e d t r a n s v e r s e v e l o c i t y f l u c t u a t i o n i s a

m á x i m u m a t £ = § i n d e p e n d e n t l y of t h e p r e s s u r e g r a d i e n t .

2- 3 a L o c a t i o n of t h e D i v i d i n g S t r e a m l i n e

C o n s i d e r i n g t h a t T ( ? ) s h o u l d t e n d t o w a r d s z e r o a t b o t h e d g e s

of t h e m i x i n g l a y e r ; w e d e d u c e f r o m e q u a t i o n (2. 3 . 2) t h a t : a s

(29)

T ( ? )F _ = (1 + or) T pu (u - f f ) d x + a [ (pu2 - 1 )dx (2. 3 . 6)

° ^ o "U E =0c; = 0 ~ U lx F =0 §

^o ^ o

a n d w h e n ? -• +0 0

00

- T ( 5 ) - = n = ( l + a ) J pu(u - l ) d x + <* f ( p u2- l ) d x ( 2 . 3 . 7 ;

° 9o 5 =0 5 =0

o o

C o n s e q u e n t l y

00 c o

(1 + a) [ pu(u - l ) d x + a J (pu2 - l ) d x

? = 0 § = 0

o o

— oo — oo

= (1 + a) f pu(u - ^ ) d x + a P (pu2 - l ) d x ( 2 . 3 . 8)

? =0 U* J§ =0

o 3o

w i l l d e f i n e ^ =0 i n o u r e x p e r i m e n t a l p r o f i l e s .

F o l l o w i n g t h e s a m e p r o c e d u r e a n e q u a t i o n f o r § =0 c a n a l s o b e

f o u n d f r o m e q u a t i o n (2. 3 . 3)

- ( S / p ) - = n= (1 +<*) I* u ( l - p)dx ( 2 . 3 . 9 )

So U ? = 0 •

^o

- 0 0

- ( S / p ) - _n = (1 + a ) J u ( l - ( - t - ) ) d x (2. 3 . 10)

H e n e e

00 ^ o = 0

u ( p - l ) d x = f u ( l -, —?—r)dx ( 2 . 3 . 1 1

o

i s a l s o a n e q u a t i o n f o r d e t e r m i n i n g t h e p o s i t i o n of § =0 f r o m o u r

(30)

Naturally both equations ought to give the same location for £ •

2. 3b Mass Flow Entrainment

We can define the m a s s entrainment as pv(5) when | ^ | -* oo ,

but subtracting from it the valué which exists in conjunction with the

p r e s s u r e gradient. ' '

F r o m equation (2. 3. 1) we ha ve

pv = § pu - (1 + a) \ pudx

5 =0 ^o

as ^ -• ± oo and taking into account the boundary conditions we a r r i v e

at

. 0 0 0 0

p l V ( +° ° ) = - r (pu - l ) d x - a f pudx (2.3.12)

pi U l J? =0 ? =0

^o ^o Entrainment

- 0 0 _„ . - o o

p8V(-oo) = _ f ( £ s ¿ k) d x_ „ r pudx (2.3.13)

Pi ui ¿ P -nF =0 P iui - ~

P l l £ =0

^o ^o Entrainment

The last t e r m in each equation is connected with the existence

of the p r e s s u r e gradient, and is left out of our definition of mass

(31)

III. NUMERICAL SOLUTION O F THE EQUATIONS 3. 1 Eddy V i s c o s i t y and Eddy Diffusivity Model

In o r d e r to p r e d i c t any t u r b u l e n t flow a c e r t a i n n u m b e r of a s s u m p t i o n s have to be m a d e about the Reynolds t r a n s p o r t t e r m s . A c c u r a c y and scope of the p r e d i c t i o n s a r e n o r m a l l y dependent upon the equations c h o s e n for the c l o s u r e of the s y s t e m .

During the L a n g l e y Working Conference on T u r b u l e n t F r e e S h e a r F l o w s in 1972 a wide and r e p r e s e n t a t i v e s p e c t r u m of t u r b u l e n c e m o d e l s w e r e p r e s e n t e d * . Two g e n e r a l t e c h n i q u e s that h a v e b e e n u s e d e x t e n s i v e l y to e v a l ú a t e the needed t u r b u l e n c e input a r e the

eddy-v i s c o s i t y and the t u r b u l e n t k i n e t i c e n e r g y a p p r o a c h e s .

Of the c u r r e n t a l t e r n a t i v e s a v a i l a b l e for m o d e l i n g the t u r b u l e n t t r a n s p o r t t e r m s we should i n d i c a t e t h a t , s i n c e our p r i m a r y i n t e r e s t i s devoted to e s t a b l i s h i n g the p o s s i b i l i t y of e q u i l i b r i u m flows which have b e e n found in s e c t i o n II, we have u s e d a v e r y s i m p l e eddy v i s c o s i t y and diffusivity m o d e l in o r d e r to give us a q u a l i t a t i v e i d e a of what to e x p e c t f r o m the e x p e r i m e n t s . N a t u r a l l y , the e l e c t i o n of this or any o t h e r t u r b u l e n t m o d e l would yield the s a m e f o r m of the g r o w t h laws for the e q u i l i b r i u m flows.

We t h e r e f o r e a s s u m e

(a)

JW^=-

»f £

y ( 3 . 1 . 1 )

I t T - t

p u ' V = - p v

au

t 8y

(32)

(b) fi = C , 6 AU t a v = C 6 AU

t p,

(3. 1.2;

Substituting t h e s e a s s u m p t i o n s into the s i m i l a r i t y f o r m of the equations we g e t :

Continuity

AX + A' + u (1 + a) = 0 (3. 1. 3)

M o m e n t u m

C

AY + a(pM3 - l ) = - J i - ^ y Y' ( 3 . 1 . 4 )

Diffusion

A ' + u ( l +a) = - ( - J L ^ S - ) - i - X' ( 3 . 1 . 5 )

w h e r e

/~*J

A = - n u + | ( 3 . 1 . 6 )

X = - 3£- ( 3 . 1 . 7 )

Y = p | H ( 3 . 1 . 8 )

v t

S ct = r— (turbulent Schmidt n u m b e r )

t At

with b o u n d a r y conditions (P - • ! fu -4 1

( p -*P3/Pl

n - > -oo s .

1 u -^Ua/Ux

(33)

3 . 2 Z e r o P r e s s u r e G r a d i e n t C a s e : a - 0

W h e n no p r e s s u r e g r a d i e n t i s i m p o s e d u p o n t h e m i x i n g l a y e r ,

Ui = c o n s t a n t a n d a = 0, h e n e e , r e p l a c i n g t h i s v a l u é of a i n t o t h e

e q u a t i o n s a n d a f t e r e l i m i n a t i n g A ' + u (1 + a) o u t of t h e c o n t i n u i t y a n d

d i f f u s i o n e q u a t i o n s w e find

w h e r e

A X = r L X ' S ct

A Y = V Y '

C AU

y = —^3 Ui

C o n s e q u e n t l y

S ct — X ' X

I n t e g r a t i n g t w i c e , a n d a f t e r u s i n g t h e b o u n d a r y c o n d i t i o n s to c a l c ú l a t e

t h e t w o c o n s t a n t s of i n t e g r a t i o n , w e w i l l h a v e a d i r e c t r e l a t i o n s h i p

b e t w e e n p{r\) a n d u(rj); if w e n o w s e t

U(T}) = o T T ( 1 + T r 2 ~

2 Ui Ux + U2 f(Tl))

w e f i n a l l y a r r i v e a t

-Se. - 1 / S <

p(*n) =

(•fia) - 1 oo Sct

l+£z S e — - J C f * ( x ) ] d x J [ f ( x ) l t d x T]

( 3 . 2 . 1)

F r o m t h e m o m e n t u m e q u a t i o n , a n d t a k i n g i n t o a c c o u n t t h a t

1 r»

A(rj) = - - J P ^ d x

(34)

w e d e d u c e

«J = 0 P [ Ux + U2 ^ x ^a x ¿ 8 lUx+ U2 ' d nl p ;

After multiplying and dividing the left hand side by p(r|),

defining |3 such that,

_ J L /ui - US N _ i

B VUX + Ua ; 2

and integrating we get

T) , X

T) = 0 r O x 3

d x

t

' h ) = ™ e " ° ,3.2.2

)

We should note that the linearized result * ~ jr ?i << 1 for

p = const reduces to the solution obtained by Gdrtler (Ref. 23); if

our definition of 3 is made compatible with his, namely

fk.

(

ui

-

v*

)

=

I

3 ^ + U2 4

t h e n

f'(ri) = f'(0) e_ r i

* - x 2

f(r]) = f(0) + f'(0) f e ~ * d x Jo

and from the boundary conditions

(35)

w e g e t

f(0) = O

f'(0)=-¿-• /T T

T h e r e f o r e when (Ui - U2) -> 0 and p = const the solution i s given by the

e r r o r function

f(Tl) = J- Jo e " d x

To solve our p r o b l e m for a - 0 we t r y an i t e r a t i v e p r o c e d u r e ; f i r s t , we i n t r o d u c e f(r|) = e r f (r\) into (3. 2. 1); s e c o n d , with the c a l c u -l a t e d profi-le p{r\) we go to (3. 2. 2) and compute V{r^ which i s i n t e g r a t e d and back again to the s a m e loop till c o n v e r g e n c e is a c h i e v e d .

A s an i l l u s t r a t i o n of the s o l u t i o n s , the c a s e p2U22 =• piU]3 for

different v a l ú e s of the t u r b u l e n t Schmidt n u m b e r i s shown in figure 2.

3. 3 P r e s s u r e G r a d i e n t C a s e : a 4 0

In our f i r s t a t t e m p t to solve this p r o b l e m we m a d e the a s s u m p -tion that the v e l o c i t y profile would n e v e r e x c e e d its f r e e s t r e a m valué in a s i m i l a r i t e r a t i o n p r o c e d u r e to the one a l r e a d y followed in s e c t i o n 3. 2. T h i s s u p p o s i t i o n p r o v e d to be f a l s e , a s shown in Appendix A. F o r the c a s e - 1 < a < 0, and Se < 1, the v e l o c i t y will a p p r o a c h a s y m p t o t i c a l l y i t s low speed side f r o m below, and that of high speed f r o m abo v e .

With this knowledge of the a s y m p t o t i c behavior a different p r o c e d u r e was adopted, w h e r e i n no r e s t r i c t i o n s w e r e i m p o s e d upon the i t e r a t i v e p r o c e d u r e .

(36)

we have

X' S ct

X y A

TI

But A(n) = - ( 1 + a) J pu dx

p

Integrating twice and using the boundary conditions to find the

constants, this expréssion yields

00

-B(x)

J e -

B W

d x

i n ( ^ ) \ R, , (3.3.1)

p l

J e "

B ( x )

d x

Ph) = e

where, as before

JL ,U* - U ^ = 1

3 VUX + U2 ' 2

a n d

x

B(x

> =

Sc

tI

0

{

(

wr J

0

p<

1 +

ttfto*}<c

The momentum equation can be put in the form

y, _ A. y = £ (pu2 - 1)

and multiplying left and right hand sides by

1 ^

- - \ A(x) dx

(37)

we get

TI T I

- • i j1 A(x) dx - I j A(x) dx

Yri =0 .. Y = 0

b i a , Q ' o

*[*•

v

K

(pu¿ - 1) e

We can now i n t é g r a t e to a r r i v e at

f'(Ti) = D(Ti){p(0)f'(0) + - ^ ü - F ( T I ) } ( 3 . 3 . 2 )

w h e r e B(n)

"S ct

D(T

»

-

^

r

a n d

B(x) (pu2 - 1) e

F(n) = J (pu2 - 1) e dx

We s t a r t our i t e r a t i v e p r o c e d u r e i n t r o d u c i n g p{r\) and í{r\) f r o m the

<x - 0 solution into (3. 3. 1). Getting a new f'(r|) f r o m equation (3. 3. 2) and i n t e g r a t i n g we will have f i r s t i t e r a t i o n p r o f i l e s for p(r)) and í{r\) which, s u b s t i t u t e d back into the e x p r e s s i o n s for p(r\) and f'(r|) will give us a second a p p r o x i m a t i o n , and so on till c o n v e r g e n c e i s a c c o m p l i s h e d .

(38)

Taking into a c c o u n t the w o r k of o t h e r i n v e s t i g a t o r s , e. g. , B r o w n and R o s h k o (Ref. 1), Way and Libby (Ref. 24), we deduced that a v e r y p l a u s i b l e t u r b u l e n t S c h m i d t n u m b e r for our e x p e r i m e n t s was going to be about 0. 3 0. Having this in m i n d we k e p t c o n s t a n t Se and c o m p a r e d our n u m e r i c a l solutions for different v a l ú e s of a. F r o m t h e s e c o m p a r i s o n s i t can be c l e a r l y s e e n that the effect of an a d v e r s e p r e s s u r e g r a d i e n t (a < 0) is far m o r e p r o n o u n c e d than that of a

f a v o r a b l e one {a > 0).

B a s e d upon this finding we d e c i d e d to c o n c é n t r a t e our e x p e r i -m e n t s on the a d v e r s e p r e s s u r e g r a d i e n t .

F i g u r e 3 shows a c o m p a r i s o n for the u and pu2 p r o f i l e s

(39)

IV. EXPERIMENTAL, F A C I L I T Y , I N S T R U M E N T A R O N , AND E Q U I P M E N T

4. 1 Flow A p p a r a t u s

The e x p e r i m e n t s w e r e p e r f o r m e d in the h i g h - p r e s s u r e flow facility (Ref. 1) d e s i g n e d to p r o d u c e a t u r b u l e n t s h e a r flow between two s t r e a m s of different g a s e s .

B a s i c a l l y it c o n s i s t s of two supply u n e s e a c h one coming f r o m eight 2000 p s i b o t t l e s ; the gas s t r e a m s a r e b r o u g h t t o g e t h e r at the exit of two 4 " x 1" n o z z l e s in the t e s t s e c t i o n ; a s c h e m a t i c r e p r e s e n t a t i o n is shown in figure 4. T h e t e s t s e c t i o n i s e n c l o s e d by a cylinder which s l i d e s over and s e á i s a g a i n s t O - r i n g s p l a c e d on c i r c u l a r p l a t e s at both ends of the s e c t i o n , and the whole tank can then be p r e s s u r i z e d up to

10 a t m o s p h e r e s . The u p s t r e a m and d o w n s t r e a m r e g u l a t o r s and v a l v e s which c o n t r o l the flow r a t e s and p r e s s u r e s in the tank ha ve v e r y fast t i m e r e s p o n s e c h a r a c t e r i s t i c s . O p e r a t i n g the s y s t e m at 7 a t m ,

s t e a d y flow in the t e s t s e c t i o n is e s t a b l i s h e d in about 150 m i l l i s e c o n d s with v e l o c i t i e s up to 50 f t / s e c . N o r m a l running t i m e s v a r y f r o m 1 to 3 s e c o n d s . The t u r b u l e n c e l e v e l is l e s s than 0. 5 ^ . Reynolds n u m b e r

5

at 10 a t m o s p h e r e s can be as high as 10 / c m . Adjustable side w a l l s which span the t e s t s e c t i o n a r e u s e d to adjust or r e m o v e p r e s s u r e g r a d i e n t s in the flow.

(40)

The t h i c k n e s s of the s p l i t t e r p í a t e , which s e p a r a t e s the two s t r e a m s till they m e e t at the nozzles exit, is a p p r o x i m a t e l y . 002" at i t s d o w n s t r e a m end.

Some m o d i f i c a t i o n s w e r e m a d e in the t e s t s e c t i o n in o r d e r to i m p o s e an a d v e r s e p r e s s u r e g r a d i e n t on the m i x i n g l a y e r . The 4 " x 1" n o z z l e s w e r e r e p l a c e d by 4 " x-|", so that the t r a n s i t i o n r e g i ó n needed in adjusting the flow to the d e s i r e d free s t r e a m conditions would be s h o r t e n e d . The side w a l l s of the working s e c t i o n , u s e d for the z e r o p r e s s u r e g r a d i e n t c a s e , h a d b e e n a solid wall for the high v e l o c i t y side and a l O ^ s l o t t e d wall for the o t h e r s i d e . To set the a d v e r s e p r e s s u r e g r a d i e n t (cf. F e k e t e , Ref. 8), we changed the se w a l l s for ones with adjustable s l a t s and i n s t a l l e d a p e r f o r a t e d p í a t e at the d o w n s t r e a m exit of the channel (Fig. 5).

4. 2 I n s t r u m e n t a t i o n

B e c a u s e of the v e r y s h o r t d u r a t i o n of the flow and the i n t r i n s i c difficulties of unknown c o m p o s i t i o n , high t u r b u l e n c e l e v é i s and f r e -q u e n c i e s , v e r y s o p h i s t i c a t e d and fast d a t a a c -q u i s i t i o n s y s t e m s w e r e u s e d for the c o l l e c t i o n of the d a t a ; this e q u i p m e n t , d e s c r i b e d in

s e c t i o n 4. 3, h a n d l e d the i n f o r m a t i o n coming f r o m t h r e e different types of p r o b e s : an a r r a y of s t a t i c p r e s s u r e t u b e s , a pitot t u b e , and an a s p i r a t i n g p r o b é .

4. 2a Static and P i t o t T u b e s

The a r r a y of s t a t i c p o r t s c o n s i s t s of six s t a t i c p r e s s u r e

(41)

the s e n s o r h o l e s of the l o n g e s t tube as r e f e r e n c e , e a c h of the s u c c e s -sive ones i s 1" l o w e r so that, by placing the a r r a y in the free s t r e a m of our t w o - d i m e n s i o n a l t u r b u l e n t s h e a r l a y e r o r i e n t e d in the s p a n w i s e d i r e c t i o n , the s t a t i c p r e s s u r e , or Ui(x) and U2(x), can be m e a s u r e d a t

e v e r y i n c h down to 5 " f r o m the s p l i t t e r p í a t e .

T h i s p r o b é w a s u s e d in the p r e l i m i n a r y m e a s u r e m e n t s m a d e to s e t up the d e s i r e d e x t e r n a l flow field; d u r i n g t h e s e m e a s u r e m e n t s one of the inputs of the p r e s s u r e t r a n s d u c e r w a s d i r e c t l y connected to the r e f e r e n c e tube; the o t h e r five s t a t i c p r e s s u r e tubes w e r e joined by m e a n s of p l á s t i c tubing to the e n t r i e s of a fast p r e s s u r e s c a n n e r

(Scanivalve), a device that s e q u e n t i a l l y c o m m u n i c a t e s e a c h one of the s t a t i c p o r t s to the c o l l e c t o r , which in t u r n goes to the o t h e r input of the p r e s s u r e t r a n s d u c e r .

The pitot t u b e , in connection with a D a t a m e t r i c s e l e c t r o n i c m a n o m e t e r and B a r o c e l differential p r e s s u r e s e n s o r , was u s e d to obtain d y n a m i c p r e s s u r e p r o f i l e s a c r o s s the mixing l a y e r , and to take the final m e a s u r e m e n t s in o r d e r to e s t a b l i s h an a d v e r s e p r e s s u r e g r a d i e n t .

4. 2b A s p i r a t i n g P r o b é

Due to the n e c e s s i t y of knowing the l o c a l c o m p o s i t i o n in our p l a ñ e t u r b u l e n t m i x i n g l a y e r , a novel p r o b é was developed for this study by B r o w n and Rebollo (Ref. 10). A c o m p l e t e a c c o u n t of the way i t w o r k s i s given in Appendix B .

(42)

figure 1 of Appendix B w e r e f i r s t , the r e p l a c e m e n t of the w i r e when-e v when-e r i t b r o k when-e ; s when-e c o n d , too l a r g when-e l when-e n g t h / d i a m when-e t when-e r r a t i o s whwhen-en using s m a l l e r w i r e s ; in addition, s o m e m i n o r p r o b l e m s w e r e r e l a t e d to the w a r m i n g u p of the g l a s s . B a s e d upon t h e s e c o n s i d e r a t i o n s our final d e s i g n was that of a n o r m a l hot w i r e i n s i d e a hollow h o l d e r . The hot w i r e is e n c l o s e d by a long tipped g l a s s hood which s l i d e s o v e r and is s e a l e d with epoxy a g a i n s t the outside s u r face of the h o l d e r (Fig. 7). To avoid flow i n s t a b i l i t i e s i n s i d e the p r o b é a v e r y g r a d u a l á r e a e x p a n -sión w a s c h o s e n for the g l a s s c o v e r , and in o r d e r to have f a s t e r t i m e r e s p o n s e * a s m a l l e r w i r e d i a m e t e r (. 0002") was u s e d .

4. 3 D e s c r i p t i o n of the E x p e r i m e n t a l E q u i p m e n t

T h e e q u i p m e n t u s e d d u r i n g the e x p e r i m e n t s could be divided into different c a t e g o r i e s a c c o r d i n g to i t s function. Some c o m p o n e n t s of the a p p a r a t u s r e c e i v e a p h y s i c a l signal f r o m the m e a s u r i n g p r o b e s and c o n v e r t i t into an analog v o l t a g e ; e. g. , e l e c t r o n i c m a n o m e t e r ( B a r o c e l ) , c o n s t a n t t e m p e r a t u r e a n e m o m e t e r ( T h e r m o - S y s t e m s ) ; that v o l t a g e is d i g i t i z e d by m e a n s of an A / D c o n v e r t e r , and it is d e l i v e r e d to an output unit; e. g. , i n c r e m e n t a l or s y n c h r o n o u s tape r e c o r d e r . A v e r y i m p o r t a n t function i s that of r e g u l a t i n g the flow of d a t a ; this t a s k i s p e r f o r m e d by the c o n t r o l e q u i p m e n t ; e. g. , Scanivalve and c o n t r o l l e r , e l e c t r o n i c pulsing c i r c u i t and c o u p l e r for the i n c r e m e n t a l tape r e c o r d e r , coupler (Data S l i c e r ) for the s y n c h r o n o u s tape r e c o r d e r .

(43)

4. 3a E l e c t r o n i c M a n o m e t e r and C o n s t a n t T e m p e r a t u r e A n e m o m e t e r -The b a s i c s y s t e m i s m a d e u p of the B a r o c e l p r e s s u r e differ-e n t i a l s differ-e n s o r and thdiffer-e Typdiffer-e 1014A D a t a m differ-e t r i c s differ-e l differ-e c t r o n i c m a n o m differ-e t differ-e r . The Type 1014A p r o v i d e s the e l e c t r i c a l e x c i t a t i o n for the p r e s s u r e s e n s o r and in t u r n a c c e p t s the p r e s s u r e g e n e r a t e d s i g n á i s for voltage c o n v e r s i ó n .

The B a r o c e l w a s u s e d to m e a s u r e the s t a t i c p r e s s u r e f r o m the a r r a y of tubes at s e v e r a l d o w n s t r e a m l o c a t i o n s in the f r e e s t r e a m when e s t a b l i s h i n g the p r e s s u r e g r a d i e n t , and to m e a s u r e the d y n a m i c p r e s s u r e a c r o s s the l a y e r when t r a v e r s i n g the pitot tube.

The a s p i r a t i n g p r o b é was u s e d in connection with a high

f r e q u e n c y and low n o i s e c o n s t a n t t e m p e r a t u r e a n e m o m e t e r Model 105 0 ( T h e r m o - S y s t e m s ) which p r o v i d e d the u s u a l feedback b r i d g e .

4. 3b A / D C o n v e r t e r and C o n t r o l E q u i p m e n t

The A / D c o n v e r t e r (Raytheon Model ADC M u l t i v e r t e r ) i s capable of o p e r a t i n g a t 3 3 , 000 c o n v e r s i o n s p e r s e c o n d while m u l t i -plexing up to 16 channels of analog data. The analog input via BNC

g

c o n n e c t o r s is b i p o l a r , + 1 0 v, into 10 o h m s . The r e s o l u t i o n i s 11 bits and sign; i. e. , 2048 counts on e i t h e r side of z e r o . T h e output i s

b i n a r y i n t e g e r , p o s i t i v e - t i m e l o g i c .

The Scanivalve is a scanning type p r e s s u r e s a m p l i n g valve for switching m ú l t i p l e p r e s s u r e p o i n t s . The p r e s s u r e t r a n s d u c e r is

s e q u e n t i a l l y connected to the v a r i o u s P p o r t s via a r a d i a l hole in the r o t o r which t e r m i n a t e s a t the c o l l e c t o r h o l e . As the r o t o r r o t a t e s , this c o l l e c t o r hole p a s s e s u n d e r the P p o r t s in the s t a t o r . Our

(44)

Scanivalve h a s a wafer s w i t c h with 24 e n t r i e s plus c o l l e c t o r , and it is d r i v e n by a L e d e x solenoid.

The solenoid c o n t r o l l e r r e g u l a t e s the stepping speed of our L e d e x solenoid d r i v e n S c a n i v a l v e . It will d r i v e the s o l e n o i d m o t o r a t any r a t e up to 20 s t e p s p e r s e c o n d . The c o m m a n d to a d v a n c e the Scanivalve one s t e p can be given r e m o t e l y , by an e x t e r n a l s w i t c h c l o s u r e of 5 m i l l i s e c o n d s m i n i m u m , or through a m a n u a l or l o c a l c o m m a n d p u s h button.

In o r d e r to c o n t r o l the flow of data coming f r o m the B a r o c e l , which is going to be w r i t t e n on tape by m e a n s of an i n c r e m e n t a l tape r e c o r d e r , a pulsing c i r c u i t , and an 8 b i t - 1 byte c o u p l e r b e t w e e n the R a y t h e o n M u l t i v e r t e r and the Kennedy i n c r e m e n t a l r e c o r d e r w e r e u s e d .

The e l e c t r o n i c p u l s i n g c i r c u i t p r o v i d e d the n e c e s s a r y p u l s e s to s t e p the stepping m o t o r , so that it would t r a v e r s e the pitot p r o b é a t any r a t e u p to 500 p u l s e s / s e c o n d (-¿ i n c h / s e c o n d ) , or 1000 p u l s e s / s e c -ond when slewing up the f r e q u e n c y of the p u l s e s ; t h e s e p u l s e s w e r e a l s o u s e d as a d o c k for the o p e r a t i o n of w r i t i n g the d a t a . The e l e c t r o n i c coupler s y n c h r o n i z e s the t r a v e r s i n g m e c h a n i s m with the R a y t h e o n M u l t i v e r t e r and the d i g i t a l i n c r e m e n t a l tape r e c o r d e r .

(45)

T h e c o u p l e r c o n t r o l s p r o v i d e a l i m i t e d choice of data w o r d l e n g t h , r e c o r d length, and file length. A s h o r t r e c o r d containing a t w o - d i g i t f i l e - i d e n t i f i c a t i o n n u m b e r m a y be w r i t t e n if d e s i r e d .

4. 3c M a g n e t i c Tape R e c o r d e r s

All data s i g n á i s w e r e w r i t t e n on a 9 t r a c k 800 B P I m a g n e t i c tape u s i n g two types of r e c o r d e r s . The Kennedy Model 1600/360 d i g i t a l i n c r e m e n t a l r e c o r d e d all p r e s s u r e m e a s u r e m e n t s . Data can be c o m m a n d e d to be w r i t t e n , by the c o u p l e r , at any r a t e u p to 500 b y t e s p e r s e c o n d , or 1000 b y t e s / s e c o n d if we s l e w up the frequency of the w r i t e p u l s e s coming f r o m the pulsing clock.

(46)

V. E X P E R I M E N T A L PROCEDURES

5. 1 F a c i l i t y T e s t s

A l a r g e n u m b e r of t e s t s w e r e p e r f o r m e d to know and, when-e v when-e r w a s p o s s i b l when-e , to i m p r o v when-e thwhen-e flow quality of thwhen-e t when-e s t s when-e c t i o n as well as s o m e of the c h a r a c t e r i s t i c s of the i n s t r u m e n t s we w e r e going to u s e .

During the e x p e r i m e n t s c a r r i e d out in r e f e r e n c e 1 the turbu-l e n c e turbu-l e v e turbu-l in the f r e e s t r e a m w a s thoroughturbu-ly m e a s u r e d and r e d u c e d f r o m about l 4 to 0. 3 $ u s i n g h o n e y c o m b s and s c r e e n s . A b s o r b i n g m a t e r i a l to d a m p the a c o u s t i c l e v e l w a s u s e d in the supply s e c t i o n of the s y s t e m . Side wall p o s i t i o n s to r e m o v e p r e s s u r e g r a d i e n t s w e r e i n v e s t i g a t e d for different v e l o c i t y r a t i o s .

To p r o v i d e a r e f e r e n c e e x p e r i m e n t for the e x p e r i m e n t s with two g a s e s , B r o w n and R o s h k o m a d e m e a s u r e m e n t s in the s h e a r l a y e r between two s t r e a m s of n i t r o g e n t r a v e r s i n g a pitot tube and a hot w i r e side by side {-¿ u a-part). Since a c c u r a t e e x p e r i m e n t a l m e a s u r e m e n t s for h o m o g e n e o u s flows had b e e n m a d e p r e v i o u s l y by L i e p m a n n and Laufer

(Ref. 25), S p e n c e r and J o n e s (Ref. 26), M i l e s and Shih (Ref. 27), and o t h e r s , sufficient c o m p a r a t i v e i n f o r m a t i o n e x i s t e d to v e r i f y the validity of the e x p e r i m e n t a l data p r o c e s s i n g p r o c e d u r e s . No significant differe n c differe s w differe r differe found b differe t w differe differe n thdiffere r differe s u l t s of B r o w n ' s and R o s h k o ' s h o m o -geneous e x p e r i m e n t s and those of o t h e r i n v e s t i g a t o r s .

F u r t h e r t e s t s of the facility have been u n d e r t a k e n during the p r e s e n t i n v e s t i g a t i o n and we s h a l l d e s c r i b e s o m e of t h e m .

(47)

hot w i r e (upper t r a c e ) and a pitot tube (lower t r a c e ) , p l a c e d side by s i d e , to the p r o c e s s of s t a r t i n g the flow in the t e s t s e c t i o n . The h o r i z o n t a l s c a l e is 100 m i l l i s e c o n d s / c m , v e r t i c a l s c a l e is 1 v o l t / c m . The t i m e needed to e s t a b l i s h s t e a d y flow is about 15 0 m i l l i s e c o n d s for a tank p r e s s u r e of 7 atm. and v e l o c i t i e s of 30 f t / s e c .

When m e a s u r i n g the s t a t i c p r e s s u r e in the f r e e s t r e a m s (Sec. 5. 2) a v e r y i m p o r t a n t q u e s t i o n a r i s e s : how long should we k e e p the Scanivalve connecting a c e r t a i n p r e s s u r e s t a t i c tube with the

p r e s s u r e t r a n s d u c e r ? A m i n i m u m valué is s e t by the t i m e r e s p o n s e of the line once the s t e p c o m m a n d h a s b e e n given to the S c a n i v a l v e , a m á x i m u m t i m e i s l i m i t e d by the d u r a t i o n of the flow.

To m e a s u r e the t i m e r e s p o n s e of the l i n e , the total head p r o b é w a s connected to, s a y , e n t r y No. 2 of the fluid wafer switch; the c o l l e c t o r joined to one of the inputs of the p r e s s u r e s e n s o r , and the o t h e r input was d i r e c t l y c o m m u n i c a t e d to the s t a t i c p r o b é ; the r o t o r of the p r e s s u r e s c a n n e r was facing e n t r y No. 1 at this t i m e .

(48)

t i m e r e s p o n s e of the line going through the Scanivalve i s a p p r o x i m a t e l y 100 m i l l i s e c o n d s when u s i n g a p l á s t i c tubing of 2 / l 6 " in d i a m e t e r .

Although the t w o - d i m e n s i o n a l i t y of the flow h a d a l r e a d y been shown in r e f e r e n c e 1, s e v e r a l t e s t s w e r e m a d e to c o n f i r m it.

Two p l a t i n u m hot w i r e s . 0002" in d i a m e t e r , and a l m o s t the s a m e cold r e s i s t a n c e , w e r e s e p a r a t e d 2 " a p a r t and o p e r a t e d at the s a m e o v e r h e a t r a t i o . The two w i r e s w e r e p l a c e d a p p r o x i m a t e l y in the m i d d l e of the m i x i n g l a y e r , and aligned in the s p a n w i s e d i r e c t i o n . The outputs f r o m a two channel c o n s t a n t t e m p e r a t u r e a n e m o m e t e r a r e

shown, for s e v e r a l d o w n s t r e a m locations, in the o s c i l l o s c o p e p i c t u r e s of figure 10. The p h o t o g r a p h s r e v e a l a high d e g r e e of c o r r e l a t i o n b e t w e e n the two s i g n á i s , as would be e x p e c t e d f r o m a t w o - d i m e n s i o n a l flow. The e x p e r i m e n t s w e r e p e r f o r m e d at a tank p r e s s u r e of 3 a t m . , but it should be noted that the s a m e t e s t s done by B r o w n and R o s h k o at 7 atm. c o r r e l a t e d equally well the outputs of the two p l a t i n u m h o t w i r e s .

5. 2 P r o ce d u r e to Set Up the E q u i l i b r i u m F l o w

P r e l i m i n a r y m e a s u r e m e n t s to s e t up the d e s i r e d p o t e n t i a l flow w e r e m a d e with the a r r a y of s t a t i c p r e s s u r e p r o b e s ; a s c h e m a t i c r e p r e s e n t a t i o n of the way this w a s done is shown in figure 11; the

r e q u i r e d timing of the o p e r a t i o n is p r e s e n t e d in figure 12. F i v e r e c o r d s w e r e w r i t t e n for e v e r y r u n , i. e. , one r e c o r d for e a c h s t a t i c p r e s s u r e tube; the i n t e r v a l of t i m e between r e c o r d gaps w a s 470 m i l l i

Figure

Fig. I Sketch of the probé.
Fig. 3 Density traverse across  the layer.
Fig. 5 Pressure vs time for Ar and He.
Table I.  S u m m a r y of flow conditions for  e x p e r i m e n t s  U l 0 H e l i u m velocity at the exit of the nozzle  UgoNitrogen  v e l o c i t y at the exit of the nozzle
+2

Referencias

Documento similar

It is generally believed the recitation of the seven or the ten reciters of the first, second and third century of Islam are valid and the Muslims are allowed to adopt either of

“ CLIL describes a pedagogic approach in which language and subject area content are learnt in combination, where the language is used as a tool to develop new learning from a

Although Eduardo Coutinho's filmography is especially known for its similarity to the position of Jean Rouch and Edgar Morin in Chronicle of a Summer, in which

In the “big picture” perspective of the recent years that we have described in Brazil, Spain, Portugal and Puerto Rico there are some similarities and important differences,

We derive a simple analytical closed expression for the dissipated power versus the oscillation amplitude which is in good agreement with the results of numerical simulations..

In the preparation of this report, the Venice Commission has relied on the comments of its rapporteurs; its recently adopted Report on Respect for Democracy, Human Rights and the Rule

More precisely, if the solution of the system of partial differential equations (1.1) is smooth enough and defined as the L 2 ( U ; R d )-gradient flow of the polyconvex

While in random data sets, the mean of the frequency dis- tribution is 23 pairs of proximal genes, the observed frequency in our experimental data set is 41.. The probability