• No se han encontrado resultados

effect Annealing on the mechanical properties of ultrafine WC–Co materials Technology Journal of Applied Researchand

N/A
N/A
Protected

Academic year: 2023

Share "effect Annealing on the mechanical properties of ultrafine WC–Co materials Technology Journal of Applied Researchand"

Copied!
6
0
0

Texto completo

(1)

Availableonlineatwww.sciencedirect.com

Journal of Applied Research and Technology

www.jart.ccadet.unam.mx JournalofAppliedResearchandTechnology15(2017)396–401

Original

Annealing effect on the mechanical properties of ultrafine WC–Co materials

Yigao Yuan

, Lanping Fu, Jianpeng Li

CollegeofMechanicalEngineering,DonghuaUniversity,201620Shanghai,China Received6July2016;accepted21March2017

Availableonline26August2017

Abstract

Indrymachining,thetool-chipinterfacetemperatureisacriticalfactoraffectingtheengineeringperformanceofWC–Cotools.Asthetemperature variationofthecuttingtoolindrymachiningissimilartothatinannealingprocess,theeffectoftool-chipinterfacetemperatureonthemechanical propertiesofcuttingtoolmaterialsindrymachiningcanbestudiedbymeansofannealingexperiment.Inthispaper,aseriesofannealingexperiments ofultrafine-grainedWC–Comaterialswereconducted,andtheeffectsoftheannealingtemperatureandholdingtimeonthemechanicalproperties ofWC–Comaterials,includingflexuralstrength,hardnessandfracturetoughness,wereinvestigated.Theresultsshowthatundertheexperimental conditions,theannealingtemperaturedominatesthemechanicalpropertiesofWC–Comaterials.Theflexuralstrengthandfracturetoughnessof theultrafine-grainedWC–Comaterialsdecreaseindifferentextentwithincreasingofannealingtemperature,whereasthehardnessdoesnotchange obviously.Themeasurementsofthe microstructuresandresidualstressesrevealedthatthedeteriorationofmechanicalpropertiesofWC–Co materialsafterannealingcanbeattributedtotherelaxationofcompressiveresidualstress.

©2017UniversidadNacionalAutónomadeMéxico,CentrodeCienciasAplicadasyDesarrolloTecnológico.Thisisanopenaccessarticleunder theCCBY-NC-NDlicense(http://creativecommons.org/licenses/by-nc-nd/4.0/).

Keywords: Ultrafinecementedcarbides;Annealing;Mechanicalproperties;Residualstress

1. Introduction

Withtherapiddevelopmentofmodernmanufacturingindus- try,highspeedmachiningandprecisionmachininghavebeen usedextensivelyinstructuralpartsmanufacturing.Additionally, drymachiningwithoutcuttingfluidorwithminimalquantityof lubricant(MQL)canobviouslyreducetheharmofcoolantsto theenvironment,whichisproducedmainlyinwetmachining (Hadad&Sharbati,2016).Inviewofthe abovereasons,it is veryimportantfor cuttingtoolstohavegoodtribologicaland thermalpropertiesatseveremachiningconditions.

Inthepastdecades,theultrafine-grainedWC–Cocemented carbideswithgrainsizelessthan0.6␮mhavebeenwidelyused as cuttingtools in machining processes, owing totheir high hardnessandwearresistance(Jia,Fischer,&Gallois,1998;Shi, Shao,Duan,Yuan,&Lin,2005).Indrymachiningprocesses, cuttingtoolsaregenerallysubjectedtoseveremechanicaland thermalconditions,andtheheatproducedduringthemachining

Correspondingauthor.

E-mailaddress:yuanyg@dhu.edu.cn(Y.Yuan).

PeerReviewundertheresponsibilityofUniversidadNacionalAutónomade México.

process is critical for tool life andworkpiece surface quality (Nouari,List,Girot,&Coupard,2003).Accordingtoprevious works (Ezugwu&Wang,1997;Jiang,2005),thetemperature along the tool-chipinterface canreach ashighas 1000Cin cuttinghard-to-machinematerials,suchastitaniumalloysand nickelalloys.Suchahightemperaturewillresultinnotonlytool wearsuchasabrasion,adhesionanddiffusion,butalsothedete- riorationofmechanicalpropertiesofcuttingtoolmaterials.List etal.(2005)describedtoolwearmechanismindrymachining ofacommonAl-CualloywithanuncoatedWC–Cotool.They foundthat toolwearbehaviorisprimarilydependent ontool- chipinterfacetemperature.Atconventionalcuttingconditions, theinterfacetemperatureislow(150–180C)andtheadhesion of built-up edge(BUE)isprincipallymechanical,continuous sliding of BUEfragments betweentool and chipcauses tool wearincreasingly.Onthecontrary,atseverecuttingconditions, temperature is higher (245–310C) and mechanisms of tool wear involvechemicalactionanddiffusion. Kagnaya,Boher, Lambert, Lazard, and Cutard (2009) have studied the wear mechanism of WC–Co cutting tools from high-speed tribo- logicaltests.TheyfoundthatWC–Cotribologicalpinsexhibit different wear mechanisms: abrasion, adhesion,transgranular WC micro-cracking and WC/WC debonding. At low sliding

http://dx.doi.org/10.1016/j.jart.2017.03.005

1665-6423/©2017UniversidadNacionalAutónomadeMéxico,CentrodeCienciasAplicadasyDesarrolloTecnológico.Thisisanopenaccessarticleunderthe CCBY-NC-NDlicense(http://creativecommons.org/licenses/by-nc-nd/4.0/).

(2)

speeds,thewearmechanismsof thepinincludeplasticdefor- mation and microcracking of WC grains, fragmentation and debondingofWCgrainsandpolishingofthepincontactsurface.

But, athigh slidingspeeds,88.5% of the mechanical energy dissipated inthe pin is transformed into thermal energy and adhesionplaysanimportantpartinthetoolwearmechanisms.

Althoughtherehasbeenconsiderableresearchreportedover thelasttwodecadesonthecorrelationbetweentool-chipinter- facetemperatureandthewearbehaviorofWC–Cotoolsindry machining,theresearchontheinfluenceoftool-chipinterface temperature onthe mechanical propertiesof WC–Co materi- als,tothebestoftheauthor’sknowledge,hasnotbeendeeply reportedinthe openliteratureuptonow.In fact,variationof temperatureof thecuttingtool indrymachining issimilarto thatinannealing process,i.e., thetemperature ofcuttingtool graduallyrisesatthebeginningofmachining,andthenremains atastabletemperaturefor aperiodof time, finallydecreases slowly to room temperature after machining, thus the effect of tool-chip interface temperature on the mechanical proper- tiesofcuttingtoolmaterialsindrymachiningcanbestudied bymeansofannealingexperimentsofWC–Comaterials.Inthe presentstudy,aseriesofannealingexperimentsoftheultrafine- grainedWC–Comaterialswereconductedtoevaluatetheeffect ofannealingtemperatureandholdingtimeonthemechanical propertiesoftheWC–Comaterials.

2. Experimental

2.1. Materialsandsamplepreparation

The materials used in this work were ultrafine-grained WC–Co cemented carbides with nominal composition of 12wt.%CoandmeanWCgrainsizeof0.4␮m.Theprepara- tionofsampleswascarriedoutasfollows:TheWC–12wt.%Co mixed powder was milled in alcohol for 72h in a ball mill.

Themilledpowderwasdriedat95Candthencoldpressedat 200MPaintogreencompactsof21mm×6.5mm×5.25mmin dimensions.Finally,thegreencompacts weresintered invac- uumat1400Cfor1h,andthenthehotisostaticpressing(HIP) technologywasusedtominimizepores,consideringthefactthat mechanicalpropertiesoftheWC–Comaterialsareverysensitive toporositylevels.Theopticalmicrographof polishedsurface oftheultrafine-grainedWC–ComaterialsisshowninFigure1.

AscanbeseenfromFigure1,thesampleisdenseenoughand porositiescanbenegligible.

Aftersintering,allsamplesweregroundtodimensionsusing aresin-bonded diamondstraight wheelanda M7120surface grinder,subsequentlywerepolishedwith10␮mdiamondpaste toachievedimensionalaccuracyaswellasgoodsurfacefinishes.

Itshouldbenotedthatsurfaceroughness(Ra)ofaspecimenmust belessthan0.4␮m,oritwouldnotbeusedforthisstudy.The dimensionsofthewheelswere250mmindiameter,12mmin width,and8mminthethicknessofthediamondlayer.Grinding wascarriedonthe21mm×6.5mmsurfaceofthesamples.Prior tobeginningtheexperiments,thesamplesweregluedonasteel platewithhotwax.Then,thesteelplatewasfixedonthegrinding machineasparallelaspossiblewiththeabrasivewheeltoavoid

50 μm 100X Fig.1.Surfacemorphologyofthematerialsinvestigated.

Table1

Grindingparametersusedduringgrinding.

Wheelspeed,m/s Tablespeed (workpiece), m/min

Averagesizeofthe abrasivegrains,␮m

Depthofcut,

␮m

20 30 109 10

Table2

Annealingheattreatmentparameters.

Annealing temperature,C

Holdingtime,min Heatingrate,

C/min

Cooling method 300,500,700,900

and1100

30 5 Furnace

coolinga

900 10,20,30,40and80

aAfterholdingtheannealingtemperatureforaprescribedtime,thenturning offthepower,thesampleswerecooledslowlytoroomtemperatureinthefurnace.

avariationofdepthofcutoverthesurfaceofthesample.Water- oilemulsionwasusedasacoolantduringthegrindingprocessto avoidburningoutandthermaldamage.Thegrindingparameters wereusedlistedinTable1.

Aftergrinding,allsampleswereultrasonicallycleanedwith acetone,andthensomesampleswereannealedinavacuumsin- teringfurnace.Inthisstudy,therangeofannealingtemperatures wasselectedfrom300to1100C,whichisbasedonthehighest temperature of tool-chipinterfaceindrymachining ofdiffer- entmaterialsprovidedin(Ezugwu&Wang,1997;Jiang,2005;

List et al., 2005).During the annealing experiments,various parameterswereusedaslistedinTable2.

2.2. Characterizationofmechanicalproperties

The surfaces of samples before and after annealing were investigated using an X-ray microstress analyzer (LXRD, Canada) to measure the residual surface stresses by sin2ψ method.Thestressesinthesurfaceofsamplesweremeasured usingthe(301)reflectionofWCwithCuKaradiation.Thefull widthhalfmeanpeakpositionwasdeterminedforarangeofψ

(3)

angles(−25,−16.78,−5.85,0,5.85,16.78and25).The residualstressmeasurements wererepeatedsixtimesoneach sampletoimproveaccuracyandtoobtainthemeanvalue.

Mechanical properties of the specimens before and after annealing, including flexural strength, hardness and fracture toughness,weremeasuredandcompared.Theflexuralstrength was measured on the ground specimens by universal testing machines according to ASTM B406 standard. The hardness wasmeasuredbyVickershardnesstesterwithaloadof30kgf accordingtoASTMB294standard.Thefracturetoughnesswas obtainedbymeasuringthecracklengthgeneratedatthevertices ofVickersindentationusingtheequation(Schubert,Neumeister, Kinger,&Lux,1998):

K1C=0.0028

HP L

1/2

(1)

whereHistheindentationhardness(N/mm2),Pistheinden- tationload(N),and

Listhesumofcracklengths(mm).At leasttenspecimensweretestedforthe measurementsofeach property,andtheaveragevaluewasfinallydetermined.

In addition, microstructure of samples before and after annealing werealsoinvestigated by scanningelectron micro- scope (SEM) and X-ray diffraction (XRD) to find whether any growth of WC grain or phase transformation of the Co phase has taken place during annealing. The average grain size of WC was measured based on the backscattered elec- tron(BSE) images of themicrostructure andIMAGEJimage analysis software (Yuan, Zhang, Ding, & Ruan, 2013). The CophasecompositionofthespecimenswasdetectedbyX-ray diffractometrywithCuKaradiation.InordertodecreaseWC phasediffractionpeakinterferencetoCo-phase X-raydiffrac- tion analysis, specimens wereetched by Murakami’s reagent (K3Fe(CN)6:KOH:H2O=1:1:10)for24hbeforeXRDexami- nation,consideringthatCocontentislowerinWC–Comaterials.

3. Resultsanddiscussion

3.1. Effectofannealingtemperature

Cementedcarbidesaredifficulttomachinebecauseoftheir extremehardness,sogrindingwithdiamondwheelstodateis stillthe mostimportantmachiningmethodintheindustryfor variousWC–Comaterials.Ingrinding,duetothe mechanical interactionsofdiamondabrasiveswiththecarbidematerials,sig- nificantresidualstress,namely,grinding-induceresidualstress orgrindingresidualstresswasgeneratednearthegroundsurface ofsample.Theexistingworkhasshownthatthegrinding-induce residualstressinthegroundcarbidematerialsiscompressivein WCandtensileinCo(Hegeman,DeHosson,&DeWith,2001;

Yinetal.,2004),anditcanberelievedeffectivelybyanneal- ingheattreatment(Yang,Odén,Johansson-Jõesaar,&Llanes, 2014).Relaxationdegreeofresidualstressescanbedefinedas therelaxationrate,anditcanbeexpressedas(Yuan&Xu,2012):

σrelr =σbrσar

σrb ×100% (2)

whereσrelr istherelaxationrateofresidualstresses,σbr,σar are themagnitudesofresidualstressesingroundsurfacebeforeand aftertreated,respectively.

Afterannealedat300,500,700,900and1100Cwiththe holding time of 30min respectively, the variations of relax- ation rate of residualstresses, flexural strength, hardnessand fracture toughness of ultrafine-grained WC–Co materials are showninFigure2.Itcanbeclearlyseenthattheannealingtem- peratureshaveasignificantinfluenceontherelaxationrate of residual stressesandflexural strength of theultrafine-grained WC–Comaterials.Relaxationrateofresidualstressesincreases almostlinearlywithincreasingofannealingtemperaturesfrom 300 to 900C, then decreases suddenly at temperature over 900C (as shown in Fig. 2a). By contrast, flexural strength oftheultrafine-grainedWC–Comaterialsdecreasesobviously withincreasingofannealingtemperaturesfrom300to900C.

Onlywhenannealingtemperatureexceeds900C,willflexural strength rebound slightlybut still lowerthan that of samples untreated(asshowninFig.2b).

Itcanalsobeseenthatthefracturetoughnessofthesamples afterannealingdecreasedslightlycomparedwiththatofsamples untreated,butitvariesslightlywithannealingtemperature(as showninFig.2c).AstohardnessofWC–Comaterials,itseems thattheannealingtemperatureshavenoobviousinfluence.The measurements of the hardness showthat thereis onlyalittle difference betweenthe samplesof beforeandafter annealing (asshowninFig.2d).

3.2. Effectofholdingtime

Thegroundsampleswereannealedat900Cwiththeholding timeof10,20,30,40and80minrespectively.Figure3displays the variations of relaxation rate of residual stresses, flexural strength, hardnessandfracture toughness ofultrafine-grained WC–Comaterialswiththeholdingtime.AsseenfromFigure3, although thereareslight decreaseinthe flexuralstrengthand fracturetoughnessoftheannealedsamplesincomparisonwith thatofsamplesuntreated,noobviousdifferencewereobserved between the different holdingtimes. Also, the measurements show that the holding time has no obvious influence on the residualstressesandhardnessoftheultrafine-grainedWC–Co materials.Theseresultssuggestthatannealingtemperaturedur- ingannealingprocessmaydominatethemechanicalproperties ofWC–Comaterials,insteadofholdingtime.

3.3. Microstructure

Figure4showstheX-raydiffractionpatternsofthesamples beforeandafterannealing.ComparingwiththeX-raypatternsof theuntreatedsample,itcanbeclearlyseenthatthecharacteristic diffractionpeaksoftheannealedoneshavenoobviouschange, whether atannealing temperature900Cor at1100C,indi- catingnophasetransformationofCofrom␣→␧occursduring annealingprogress.

Figure5revealsthemicrostructuresoftheultrafine-grained WC–Co materials before and after annealing, in which the whitecrystalsaretheWCphase,andtheblackcontrastregions

(4)

Relaxation rate of residual stress,%

80

60

40

20

0

0 200

200 200

400 200

400 400

600 400

600 600

800 600

800 800

1,000 800

1,000 1,000

1,000 1,200

1,200 1,200

1,200 Annealing temperature,°C

Annealing temperature,°C Annealing temperature,°C

Annealing temperature,°C

Holding time:30 min Holding time:30 min

Holding time:30 min

Holding time:30 min

Fracture toughness, MPa.m1/2

12

10

8

6

4

2

0 0

a

d b

c

5,000

4,000

3,000

2,000

2,000

1,000

0

0 0

0 1,800 1,600 1,400 1,200 1,000 800 600 400 200

Flexural strength, MPa Hardness, HV

Fig.2. VariationofmechanicalpropertiesofWC–Comaterialswithannealingtemperatures.(a)Residualstress,(b)flexuralstrength,(c)fracturetoughnessand(d) hardness.

100

100

100 100

100 80

80

80 80

80 60

60

60 60

60 40

40

40 40

40 20

20

20 20

20 0

0 0

0 12

10

8

6

4

2

2,000

200 400 600 800 1,000 1,200 1,400 1,600 1,800

1,000 2,000 3,000 4,000 5,000

0

0 0

0 Annealing temperature: 900°C

Annealing temperature: 900°C

Annealing temperature: 900°C

Annealing temperature: 900°C

Relaxation rate of residual stress,% Fracture toughness, MPa.m1/2

Holding time, min

Holding time, min

Holding time, min

Holding time, min

Flexural strength, MPa Hardness, HV

a

b d

c

Fig.3.MechanicalpropertiesofWC–Comaterialsversusholdingtime.(a)Residualstress,(b)flexuralstrength,(c)fracturetoughnessand(d)hardness.

(5)

α - Co(201)

Intensity (cps)

untreated annealed at 900°C annealed at 1100°C

120 100 80 60 40 20

30 32 34 36 38 40 42 44 46 48 50 52 54 56 2Theta(deg)

58 60 62 64 66 68 70

Fig.4.X-raydiffractionspectrumofultrafinecementedcarbides.

Table3

MeasurementresultsofWCgrainsizesinsamples.

Samples AveragegrainsizeofWC(␮m)

Beforeannealing 0.465

Afterannealing

Annealingtemperature:900C,holding time:80min

0.497

Annealingtemperature:1100C,holding time:80min

0.526

betweentheWCgrainsarethecobaltbinderphase.Themea- surementresultsofWCgrainsizesinsamplesbeforeandafter annealingarelistedinTable3.ItcanbeseenthattheWCgrain sizesoftheannealedsamplesarelargerthanthatoftheuntreated ones,butthedifferenceisquitesmall.ItillustratesthattheWC grainshaveatendencytogrowupduringannealingprocess,but thegrowthrateisverysmall.

Ingeneral,themechanicalpropertiesoftheWC–Comateri- alsareprimarilydependentontheirmicrostructuralparameters, i.e.,cobalt(Co)contentandWCgrainsize.WithsmallerWC particle size atfixed Co content,WC–Co has ahigher hard- ness,higherflexuralstrengthandlowertoughness.Conversely, WC–Co would havea higher toughness,lower hardness and lowerflexuralstrength(Akhtar,Humail,Askari,Tian,&Guo, 2007; Okamoto, Nakazono, Otsuka, Shimoitani, & Takada, 2005).Accordingtothemeasurementsofmicrostructureofthe samples before and after annealing, and taking into account thestabilityofCocontentinWC–Comaterialsduringvacuum annealing,theflexuralstrengthandhardnessofultrafine-grained WC–Comaterialsafterannealingshoulddecreaseslightly,while thefracturetoughnessshouldincreaseslightlyduetotheslight growthofWCgrainsizes.However,ourexperimentsshowthat afterannealingprocess,theflexuralstrengthofultrafine-grained WC–Comaterialsdecreasessignificantlyandthefracturetough- nessdecreasesslightly,thisisnotinaccordancewiththetheories mentionedabove,indicatingthatsomeotherfactorsmayplay important role in affecting the mechanical properties of the WC–Comaterialsduringannealing.

Besides microstructuralparameters, the natureandmagni- tudeofresidualsurfacestresshavealsosignificanteffectsonthe mechanicalpropertiesofWC–Comaterials.ByinhibitingWC particle pull-out and by introducingstresses that closecrack tips, compressive surface stresses can retard crack initiation

det BASED

det BASED

det BASED

High vaccum vacMode

vacMode High vacuum

vacMode High vacuum

HV 15.00kV

HV 15.00kV

HV 15.00kV

5 μm 1

5 μm 2

5 μm 3

c b a

mag 10 000 x mag 10 000 x mag 10 000 x

Fig.5.SEMbackscatteredelectronimagesofthematerialsinvestigated.(a) Untreated,(b)annealedat900C,80minand(c)annealedat1100C,80min.

(6)

and propagation, and thus increasing the fracture toughness of WC–Co materials (Lambropoulos, 1991). Meanwhile, a compressiveresidualstresscanalsobeappliedtoimprovethe strengthofgroundspecimens,sincethetotalstrengthScanbe estimatedbyXu,Jahanmir,andIves(1997):

S=SG+Sσ (3)

whereSGisthestrengthof thematerialgoverned byintrinsic flaws only, and Sσ is the extra stress that must be added to compensateforcompressiveresidualstress.

From Figure 2a, the relaxation rate of residual stresses increases almost linearly with increasing of annealing tem- peraturesfrom 300 to900C, that is tosay, the magnitudes of surface compressive residual stress of annealed samples decreasequicklywithincreasingofannealingtemperaturesfrom 300to900Ccomparewiththatofsamplesuntreated.Accord- ing to formula (3), the flexural strength of ultrafine-grained WC–Co materials after annealing will decrease significantly with increasing of annealing temperatures, which is just the measuredresultshowninFigure2b.Relaxationrateofresidual stresses of WC–Co materials decreases obviously at anneal- ingtemperatureabove900Cmayattributetoresidualthermal stress,inducedbylargertemperaturegradientuponcoolingfrom annealingtemperaturebacktoroomtemperature.Accordingly, the flexural strength of WC–Co materials after annealing at 1100Creboundsslightly.Similarly,duetorelaxationofcom- pressive residual stresses, the fracture toughness of WC–Co materialsafterannealingdecreasesslightly.

TherelaxationprocessofgrindingresidualstressinWC–Co alloyswouldbecompletedinashortperiodoftime,forthesize ofsampleswassmall.Asaresult,holdingtimewasfoundtohave littleinfluenceontherelaxationrateofresidualstresses.Accord- ingly,themechanicalpropertiesofultrafineWC–Comaterials afterannealinghavenoobviouschangeunderdifferentholding timeconditions.

4. Conclusion

Inthisstudy, theeffectof annealingheattreatment onthe mechanical properties of ultrafine-grained WC–Co materials was examined through a series of annealing experiments. It wasfound that under thecondition of this study,the anneal- ing temperature plays an important part on the mechanical properties of WC–Co materials, but the influence of hold- ingtimeisrelativelysmall.Theflexuralstrengthandfracture toughnessofthe ultrafine-grainedWC–Comaterialsdecrease in different extent withincreasing of annealing temperature, and the hardness almost remain unchanged during anneal- ing.

From the investigation of microstructures and residual stresses of WC–Co materials,it can be found that the dete- rioration of mechanical properties of WC–Co materials after annealingtreatmentcanbeattributedtotherelaxationofcom- pressiveresidualstress.

Conflictofinterest

Theauthorshavenoconflictsofinteresttodeclare.

Acknowledgement

ThisworkissupportedbyShanghaiNaturalScienceFoun- dation(No.13ZR1401300).

References

Akhtar,F.,Humail,I.S.,Askari,S.J.,Tian,J.,&Guo,S.(2007).Effectof WCparticlesizeonthemicrostructure,mechanicalpropertiesandfracture behaviorofWC–(W,Ti,Ta)C–6wt%Cocementedcarbides.International JournalofRefractoryMetals&HardMaterials,25(5–6),405–410.

Ezugwu, E. O., & Wang, Z. M. (1997). Titanium alloys and their machinability—A review. Journal of Materials ProcessingTechnology, 68(3),262–274.

Hadad,M.,&Sharbati,A.(2016).Thermalaspectsofenvironmentallyfriendly- MQLgrindingprocess.ProcediaCIRP,40,509–515.

Hegeman,J.B.J.W.,DeHosson,J.Th.M.,&DeWith,G.(2001).Grindingof WC–Cohardmetals.Wear,248(1–2),187–196.

Jia, K.,Fischer,T. E., &Gallois,B. (1998).Microstructure,hardnessand toughnessofnanostructuredandconventionalWC–Cocomposites.Nano- structuredMaterials,10(5),875–891.

Jiang,H.(2005).Acobaltdiffusionbasedmodelforpredictingcraterwearof carbidetoolsinmachiningtitaniumalloys.JournalofEngineeringMaterials

&Technology,127(1),136–144.

Kagnaya,T.,Boher,C.,Lambert,L.,Lazard,M.,&Cutard,T.(2009).Wear mechanismsofWC–Cocuttingtoolsfromhigh-speed tribologicaltests.

Wear,267(5),890–897.

Lambropoulos,J.C.(1991).Tougheningandcracktipshieldinginbrittlemateri- alsbyresiduallystressedthinfilms.JournalofVacuumScience&Technology AVacuumSurfaces&Films,9(4),2503–2509.

List,G.,Nouari,M.,Géhin,D.,Gomez,S.,Manaud,J.P.,&LePetitcorps, Y.(2005).Wearbehaviourofcementedcarbidetoolsindrymachiningof aluminiumalloy.Wear,259(7–12),1177–1189.

Nouari,M.,List,G.,Girot,F.,&Coupard,D.(2003).Experimentalanalysis andoptimisationoftoolwearindrymachiningofaluminiumalloys.Wear, 255(7–12),1359–1368.

Okamoto,S.,Nakazono,Y.,Otsuka,K.,Shimoitani,Y.,&Takada,J.(2005).

MechanicalpropertiesofWC/CocementedcarbidewithlargerWCgrain size.MaterialsCharacterization,55(4–5),281–287.

Schubert,W.D.,Neumeister,H.,Kinger,G.,&Lux,B.(1998).Hardnessto toughnessrelationshipoffine-grainedWC–Cohardmetals. International JournalofRefractoryMetals&HardMaterials,16(2),133–142.

Shi,X.L.,Shao,G.Q.,Duan,X.L.,Yuan,H.Z.,&Lin,H.H.(2005).Mechan- icalproperties,phasesandmicrostructureofultrafinehardmetalsprepared byWC–6.29Conanocrystallinecompositepowder.MaterialsScience&

EngineeringA,392(1–2),335–339.

Xu,H.H.,Jahanmir,S.,&Ives,L.K.(1997).Effectofgrindingonstrength oftetragonalzirconiaandzirconia-toughenedalumina.MachiningScience andTechnology,1(1),49–66.

Yang,J.,Odén,M.,Johansson-Jõesaar,M.P.,&Llanes,L.(2014).Grinding effectsonsurfaceintegrityandmechanicalstrengthofWC–Cocemented carbides.ProcediaCIRP,13,257–263.

Yin,L.,Spowage,A.C.,Ramesh,K.,Huang,H.,Pickering,J.P.,&Vancoille, E.Y.J.(2004).Influenceofmicrostructureonultraprecisiongrindingof cementedcarbides.InternationalJournalofMachineTools&Manufacture, 44(5),533–543.

Yuan,Y.G.,&Xu,C.H.(2012).Influenceofcryogenictreatmentongrinding residualstressofWC–Cocementedcarbides.AdvancedMaterialsResearch, 538–541,1746–1750.

Yuan,Y.G.,Zhang,X.X.,Ding,J.J.,&Ruan,J.(2013).Measurementof WC grainsizeinultrafinegrainedWC–Co cementedcarbides.Applied Mechanics&Materials,278–280,460–463.

Referencias

Documento similar

Therefore, the improvement of the device interfaces (increase of the thickness of MoSe 2 layer at the back and reduction of the GeSe 2 secondary phase at the front) and the

On the other hand at Alalakh Level VII and at Mari, which are the sites in the Semitic world with the closest affinities to Minoan Crete, the language used was Old Babylonian,

Abstract: Transepidermal water-loss (TEWL), stratum-corneum hydration (SCH), erythema, elas- ticity, pH and melanin, are parameters of the epidermal barrier function and

The authors described first the methods based on the use of Simulated Annealing and generic finite elements to improve the identification of prestressing force

In this paper, the CMOL cell assignment problem using a hybrid of particle swarm optimization (PSO) technique and the simulated annealing (SA) algorithm is investigated.. The

The Dwellers in the Garden of Allah 109... The Dwellers in the Garden of Allah

The composite having similar composition does consist of a lean aluminum–copper alloy matrix and the copper particulates as reinforcements with an interface, comprising a series

teriza por dos factores, que vienen a determinar la especial responsabilidad que incumbe al Tribunal de Justicia en esta materia: de un lado, la inexistencia, en el