SOLUCIONS DE LES ACTIVITATS D APRENENTATGE

Texto completo

(1)

em àt iq u es , C iè n ci a i T ec n o lo g ia 1. L A T E M P E R A T U R A U N IT A T 1 S O L U C IO N S A C T IV IT A T S D ’A P R E N E N T A T G E

27

SOLUCIONS DE LES ACTIVITATS D’APRENENTATGE

Activitat 1

Segur que alguna vegada has fet servir una cullera metàl·lica per remenar la sopa que tens al foc. Si no ho has fet mai, fes-ho ara i respon les preguntes següents:

a) Què li passa a la mà que aguanta la cullera?

La calor és conduïda per metalls. Això explica que la cullera faci de conduc-tor i permeti que a través d’ella la calor passi de la sopa a la mà.

b) Li hauria passat el mateix si haguessis fet servir una cullera de fusta? Per què?

Si la cullera hagués estat de fusta, la calor no hauria passat de la sopa a la mà perquè la fusta és un material aïllant. Els aïllants són materials que fan de barrera i no permeten la transmissió de la calor.

c) Com definiries la calor?

La calor és l’energia que intercanvien dos cossos que estan en contacte i tenen diferent temperatura. En la nostra experiència la sopa té temperatura més alta que la mà i la calor passa de la sopa a la mà a través de la cullera.

Activitat 2

Omple un vas de vidre amb aigua a temperatura ambient.

Amb un termòmetre mesura la temperatura de l’aigua. Anota’t aquesta tempe-ratura.

Tot seguit escalfa aigua fins a la temperatura d’ebullició (100oC) en un

recipi-ent. Quan el termòmetre t’indiqui que ja has arribat a aquesta temperatura, introdueix un clau dins l’aigua sense deixar d’escalfar-la.

Passats 5 minuts, agafa el clau amb unes pinces (ves alerta, no et cremis!) i introdueix-lo en el vas que conté aigua a temperatura ambient.

Posa un termòmetre en el vas i observa el que passa (és important que el termòmetre no estigui en contacte amb el clau, sinó que estigui en contacte amb l’aigua).

a) Què t’indica el termòmetre?

El termòmetre indica que la temperatura de l’aigua va augmentant. b) Pots justificar aquest fet?

L’aigua augmenta de temperatura perquè rep calor del ferro. c) La temperatura s’estabilitza en algun moment?

Sí, arriba un moment en què la temperatura de l’aigua ja no augmenta més. d) Pots explicar aquest fet?

En aquest moment s’ha arribat a l’equilibri tèrmic, és a dir, en aquest mo-ment la temperatura de l’aigua i la temperatura del clau són iguals; per tant, ja no intercanvien calor.

(2)

28

em àt iq u es , C iè n ci a i T ec n o lo g ia 1. L A T E M P E R A T U R A U N IT A T 1 S O L U C IO N S A C T IV IT A T S D ’A P R E N E N T A T G E

e) Per què el termòmetre que has utilitzat per a l’experiència ha estat un ter-mòmetre de laboratori i no un terter-mòmetre clínic?

Perquè el termòmetre de laboratori permet mesurar temperatures de 100oC

i superiors, mentre que el clínic només permet mesurar com a màxim

tem-peratures properes als 42oC.

Activitat 3

Introdueix la mà dreta en un recipient amb aigua freda i la mà esquerra en un recipient amb aigua calenta. Al cap d’una estona introdueix les dues mans en un recipient amb aigua tèbia.

a) Quina sensació tens?

La mà dreta nota que l’aigua és calenta i l’esquerra que és freda.

b) Algunes persones fan servir els sentits com a termòmetre, però són termò-metres fiables els nostres sentits?

L’experiència ens ha demostrat que els nostres sentits no són termòmetres fiables ja que no ens han donat la temperatura real de l’aigua, que és tèbia.

Activitat 4

a) Explica com ho faries a casa per comprovar que el punt de fusió del gel és 0ºC.

Per comprovar el punt de fusió del gel pots introduir uns glaçons en un recipient i mesurar la temperatura amb un temòmetre. Quan vegis que en té lloc la fusió apunta el valor de la temperatura que marca el termòmetre. b) I per comprovar el punt d'ebullició de l’aigua?

Per comprovar el punt d’ebullició de l’aigua pots posar aigua en un recipient i escalfar-la al foc. Quan vegis que comença a bullir, mesures la temperatura de l’aigua. Aquesta temperatura correspon al punt d’ebullició. Apunta el seu valor.

c) Podries utilitzar el termòmetre clínic per fer aquestes comprovacions? Per què?

El termòmetre clínic té una escala graduada entre 35oC i 42oC; per tant, no

és vàlid per mesurar les temperatures de la nostra experiència, ja que es trencaria.

d) Quin tipus de termòmetre utilitzaries?

El termòmetre adequat per determinar les temperatures de la nostra expe-riència és un termòmetre de laboratori que permeti mesurar des de

tempe-ratures inferiors als 0oC fins a temperatures superiors als 100oC.

Activitat 5

a) Què entenem per equilibri tèrmic? Equilibri tèrmic vol dir igual temperatura.

(3)

em àt iq u es , C iè n ci a i T ec n o lo g ia 1. L A T E M P E R A T U R A U N IT A T 1 S O L U C IO N S A C T IV IT A T S D ’A P R E N E N T A T G E

29

b) Podem evitar que dos cossos que es posen en contacte i estan inicialment a

diferent temperatura arribin a l’equilibri tèrmic?

No, en la natura tot tendeix a l’equilibri. Per tant, sempre que posem en contacte dos cossos que es troben a diferent temperatura, el cos que es troba a més temperatura cedirà energia en forma de calor al que es troba a menys temperatura i aquest absorbirà aquesta energia. El procés s’acabarà quan s’hagi arribat a l’equilibri tèrmic, és a dir, quan els cossos hagin igualat les seves temperatures.

Activitat 6

Coneixes, a més del mercuri, alguns altres líquids termomètrics? En quins ca-sos ens són d’utilitat?

L’alcohol i el toluè són també líquids termomètrics que ens són especialment útils quan volem mesurar baixes temperatures.

Activitat 7

Inventa la teva escala de temperatura.

1r) Dóna nom a l'escala (pot ser un nom qualsevol).

2n) Indica el valor que dones als dos punts fixos en la teva escala (recorda que ens referim al punt de fusió del gel i al d’ebullició de l'aigua). Dóna’ls va-lors diferents de 0 i 100.

3r) Col·loca el valor dels punts fixos sobre el gràfic. Punt d’ebullició de l’aigua

Punt de fusió del gel

a) Quantes divisions has fet entre els dos punts fixos?

El nombre de divisions està en funció de l’escala que has inventat. b) Per què els punts han de ser fixos?

Els punts han de ser fixos perquè es necessita un sistema de referència. Si els punts canviessin cada vegada de valor també canviaria l’escala de tem-peratures indicada pel termòmetre. Això vol dir que un mateix punt corres-pondria a valors diferents de temperatura i això faria impossible l’ús d’aquest termòmetre.

c) Si la televisió utilitzés la teva escala per donar la temperatura d'avui de Barcelona, tothom sabria si fa calor o fred? Per què?

Els espectadors no sabrien si fa calor o fred. Necessitarien saber la relació de la teva escala amb l’escala centígrada que és coneguda per tothom.

(4)

30

em àt iq u es , C iè n ci a i T ec n o lo g ia 1. L A T E M P E R A T U R A U N IT A T 1 S O L U C IO N S A C T IV IT A T S D ’A P R E N E N T A T G E

d) Es podria fer servir aquesta escala per donar dades científiques?

L'escala no serviria per donar dades científiques perquè els científics fa temps que van adoptar per conveni la utilització de l'escala Kelvin que té el zero absolut com a referència. Seria necessari saber la relació de la teva escala amb l’escala Kelvin.

Activitat 8

Com funciona un termòmetre de mercuri?

En entrar en contacte amb el cos que volem mesurar, el mercuri del termòme-tre assoleix la mateixa temperatura que aquest, ja que s’estableix l’equilibri tèrmic. En escalfar-se o refredar-se, el mercuri es dilata o contrau la qual cosa fa que pugi o baixi pel tub capilar fins a assenyalar la temperatura a què es troba el cos que volem mesurar.

Activitat 9

Què són els punts fixos d’un termòmetre?

Els punts fixos d’un termòmetre són les temperatures que es fan servir de referència per graduar un termòmetre. Se sol escollir la temperatura de fusió del gel i la temperatura d’ebullició de l’aigua.

Activitat 10

Té temperatures negatives l’escala centígrada? Justifica la teva resposta. L’escala centígrada situa el 0 de temperatura (0ºC) a la temperatura de fusió del gel i qualsevol temperatura inferior a aquesta l’expressa amb signe nega-tiu. Per tant, l’escala centígrada té temperatures negatives.

Activitat 11

Representa les següents temperatures amb nombres enters.

a) 20 graus centígrads sota zero: —20oC

b) 20 graus centígrads sobre zero: +20oC

c) 15 graus centígrads sota zero: —15oC

d) 30 graus centígrads sobre zero: +30oC

Activitat 12

a) Segur que a casa tens un termòmetre per mesurar la temperatura del car-rer. Mira la temperatura del carrer en aquest moment i expressa-la en graus Kelvin.

A la lectura que llegeixes en el termòmetre del carrer, que està expressada en graus centígrads, li has d'afegir 273 a fi de tenir-la expressada en graus Kelvin.

Per exemple, si la temperatura del carrer és 21ºC, 21 + 273 = 294 K

(5)

em àt iq u es , C iè n ci a i T ec n o lo g ia 1. L A T E M P E R A T U R A U N IT A T 1 S O L U C IO N S A C T IV IT A T S D ’A P R E N E N T A T G E

31

b) Agafa un termòmetre clínic i mira quina és la teva temperatura. Dóna el

valor en graus centígrads i en Kelvin.

El mateix es fa amb la mesura del termòmetre clínic. Si has llegit que la teva temperatura és de 36,7ºC,

36,7 + 273 = 309,7 K

La teva temperatura és de 309,7 K.

Activitat 13

Omple el següent quadre de temperatures. Recorda les equivalències entre les escales.

Aplicant l’equivalència entre les dues escales (K = oC + 273) obtenim els

resul-tats següents:

Centígrada (oC) —200 100 77 15

Kelvin (K) 73 373 350 288

Activitat 14

Expressa les següents temperatures en graus Celsius. 0 K, 500 K, 67 K, 1.000 K

De l’equivalència entre les dues escales K = oC + 273 aïllem els graus centígrads

i ens queda l’expressió següent: oC = K — 273.

Substituïm ara els K en l’expressió i fent els càlculs obtenim les temperatures en graus Celsius:

0 — 273 = —273 oC

500 — 273 = 227 oC

67 — 273 = —206 oC

1.000 — 273 = 727 oC

Les temperatures en graus Celsius són les següents: —273 oC, 227 oC, —206 oC,

(6)

32

em àt iq u es , C iè n ci a i T ec n o lo g ia 1. L A T E M P E R A T U R A U N IT A T 1 S O L U C IO N S A C T IV IT A T S D ’A V A L U A C

SOLUCIONS DE LES ACTIVITATS D’AVALUACIÓ

Activitat 1

Què és la calor?

Anomenem calor a l’energia que intercanvien dos cossos que estan en contac-te i contac-tenen diferent contac-temperatura. El cos que té més contac-temperatura cedeix energia en forma de calor al que en té menys, el qual absorbeix aquesta calor. El procés finalitza quan s’arriba a l’equilibri tèrmic, és a dir, quan s’igualen les dues tem-peratures.

Activitat 2

Expressa en oC, en K i en oF les temperatures de fusió del gel i d’ebullició de

l’aigua.

Temperatura de fusió del gel = 0oC, 273 K, 32oF

Temperatura d’ebullició de l’aigua = 100 oC, 373 K, 212 oF

Activitat 3

Representa amb nombres enters els següents valors de temperatura:

a) 25ºC sobre zero b) 18ºC sota zero c) 30ºC sobre zero

a) +25ºC b) —18ºC c) +30ºC

Activitat 4

Digues dues característiques del termòmetre clínic.

Sol tenir una escala compresa entre 35oC i 42oC, temperatures extremes del

cos humà.

És un termòmetre de màxima perquè, gràcies al seu disseny, el mercuri es manté sense baixar després d’haver arribat a la temperatura del malalt. Per fer baixar el mercuri cal sacsejar el termòmetre.

Activitat 5

Té temperatures negatives l’escala Kelvin? Justifica la teva resposta.

No, l’escala Kelvin no té temperatures negatives perquè situa el 0 de tempera-tura en el límit inferior de temperatures o zero absolut.

Activitat 6

Omple el següent quadre de temperatures. Recorda les equivalències entre les escales.

Centígrada (oC) —20 60 -23 150

Figure

Actualización...

Referencias

Actualización...

Related subjects :