• No se han encontrado resultados

Rift Valley fever in Mozambique

N/A
N/A
Protected

Academic year: 2021

Share "Rift Valley fever in Mozambique"

Copied!
7
0
0

Texto completo

(1)

ContentslistsavailableatSciVerseScienceDirect

Vaccine

jo u r n al h om ep a ge : w w w . e l s e v i e r . c o m / l o c a t e / v a c c i n e

Stability

of

a

formalin-inactivated

Rift

Valley

fever

vaccine:

Evaluation

of

a

vaccination

campaign

for

cattle

in

Mozambique

N.

Lagerqvist

a,b,∗,1

,

B.

Moiane

b,c,1

,

G.

Bucht

d

,

J.

Fafetine

c

,

J.T.

Paweska

e

,

Å.

Lundkvist

a,b

,

K.I.

Falk

a,b

aSwedishInstituteforCommunicableDiseaseControl,SE-17182Solna,Sweden

bDepartmentofMicrobiology,TumorandCellBiology,KarolinskaInstitutet,SE-17177Stockholm,Sweden cVeterinaryFaculty,EduardoMondlaneUniversity,C.Postal257,Maputo,Mozambique

dSwedishDefenseResearchAgency,DepartmentofCBRNDefenseandSecurity,SE-90182Umeå,Sweden

eNationalInstituteforCommunicableDiseasesoftheNationalHealthLaboratoryService,Sandrigham-Johannesburg,SouthAfrica

a

r

t

i

c

l

e

i

n

f

o

Articlehistory:

Received3May2012

Receivedinrevisedform18July2012 Accepted21August2012

Available online 2 September 2012 Keywords:

RiftValleyfever Virus

Formalin-inactivatedvaccine Bovine

Mozambique

a

b

s

t

r

a

c

t

InAfricaandtheArabianPeninsula,outbreaksofRiftValleyfever(RVF)arecharacterizedbyabortions

ingestatinganimalsandhighmortalityratesamongdomesticruminants.Animmunizationprogram

usingaformalin-inactivatedvaccinewasinitiatedinMozambiquein2002tocontrolRVFincattle.Inthis

intervention,thevaccinemustbetransportedformorethanaweekwithinthecountrybeforeitcanbe

administeredtotheanimals,anditispracticallyimpossibletomaintainlowstoragetemperaturesduring

thattime.Here,weevaluatedtheinfluenceoftransportationconditionsontheefficacyofthevaccine.

Sixty-threepreviouslyunvaccinatedandRVFvirusseronegativecattleweredividedintofourgroups,

whichweregivenvaccinethathadbeenstoredfor1weekat4◦C(n=9,groupA),at25◦C(n=8,group B),oralternatingbetween4and25◦C(n=8,groupC),orunderthetemperatureconditionsordinarily

occurringduringtransportationwithinMozambique(n=38,groupD).Theantibodyresponsesinduced

weremonitoredfor6–9monthsandinsomeanimalsupto21months.Twoimmunizations(3weeks

apart)withtheformalin-inactivatedvaccineinducedalong-lastingneutralizingantibodyresponsethat wasstilldetectableupto21monthslater.Theantibodytitersintheanimalsdidnotdiffersignificantly

betweenthetemperature-assignedvaccinegroupsA,B,andC,whereastheyweresignificantlyhigherin

groupD.Theseresultsshowthattheformalin-inactivatedRVFvirusvaccineisstable,and,importantly, itisnotadverselyaffectedbythevariationintemperaturethatordinarilyoccursduringtransportwithin Mozambique.

© 2012 Elsevier Ltd. All rights reserved.

1. Introduction

ThefirstreportofRiftValleyfever(RVF)amongsheepinKenya waspublishedin1930[1],andsincethenthediseasehasbecome widespreadandendemicinSub-SaharanAfricaandEgypt,andlater alsointheArabianPeninsula.ThecausativeagentistheRVFvirus (RVFV),whichbelongstothegenusPhlebovirusofthefamily Bun-yaviridae.Thetripartite RNAgenome(S,M,and Lsegments) is ofnegativeorambisense(Ssegment)polarityandencodesfour structuralproteins[2].Thehighlyimmunogenicnucleocapsid(N)

∗ Correspondingauthorat:Nobelsväg18,SE-17182Solna,Sweden. Tel.:+4684572472;fax:+468302566.

E-mailaddresses:nina.lagerqvist@smi.se(N.Lagerqvist),belisario.moiane@ki.se (B.Moiane),goran.bucht@foi.se(G.Bucht),jfafetine@yahoo.com(J.Fafetine), januszp@nicd.ac.za(J.T.Paweska),ake.lundkvist@smi.se(Å.Lundkvist), kerstin.falk@smi.se(K.I.Falk).

1 Theseauthorscontributedequallytothiswork.

protein,whichisencodedbytheSsegment,isincreasinglybeing used as the antigen of choice in serological assays [3,4]. The membrane-associatedGnandGcglycoproteinsareencodedbythe Msegment,andconstitutethetargetsforvirus-neutralizing anti-bodies[5].

RVFVcaninfectabroadrangeofanimalhosts,andoutbreaks of this diseaseoften occurafter heavyrains and flooding have generatedfavorablebreedingconditionsforthemosquitovectors [6,7].Viralinfectionsinhumansareusuallymanifestedasmild, self-limitingfebrileillness,althoughinsomecasestherearemore severesymptoms,suchasencephalitis,lossofvision,and hem-orrhagicfever [8]. In animals infected withRVFV, spontaneous abortionsarefrequentlyobservedamonggestatingdomestic rumi-nants,andthemortalityratecanreach100%amongnewbornand youngindividuals.RVFcanbesubclinicalinolderanimals,but clin-icalmanifestationsarealsooftensevereinadults,withmortality ratesrangingfrom10%to70%,dependingontheage,species,and breedoftheinfectedhost[9].EpizooticsofRVFhaveresultedin rigorousrestrictionsonthetradeofanimalsandanimalproducts, 0264-410X/$–seefrontmatter © 2012 Elsevier Ltd. All rights reserved.

(2)

whichinturnhavehadaconsiderablesocio-economicimpact,not onlyonlivestock keepersand foodproducers, buton the non-agriculturalsectoraswell[10].

Vaccinationoflivestockisthemainmeasureusedtocontrol RVF in endemic areas. Many promising vaccine candidates are underevaluation[11–13],although animalsarecurrentlybeing immunized with the live-attenuated Smithburn strain [14] or formalin-inactivatedRVFVvaccines[15].Unfortunately,the Smith-burnstrain hasretained teratogeniccharacteristics,asnoted in studiesofpregnantcowsandgoats[16,17].Comparedtothe live-attenuatedstrain,theformalin-inactivatedvaccinesaresaferfor useingestatinganimals,buttheyarealsolessimmunogenic,and annual boosters are required to maintainprotective immunity [18].

OutbreaksofRVFarereportedregularlyinseveralofthe Sub-Saharancountries[19,20], althoughthesituationregarding this diseaseinMozambiqueisunclear.StrongevidenceofRVFV trans-missioninMozambiquewasobtainedasearlyasthe1960s[21], andthiswasconfirmedinthe1980s,whenvirus-specific antibod-iesweredetectedin2%ofpregnantwomeninthecountry[22]. Furthermore,surveysofcattleinZambeziaProvince(thecentral regionofMozambique)revealedhighseropositivity,whichledto introductionofanimmunizationprogramin2002usinga formalin-inactivatedvaccine[23].

Inthepresentstudy,weinvestigatedwhetherdifferentstorage andtransportconditionsaffecttheabilityofformalin-inactivated RVFV vaccine to induce immune responses in cattle. For that purpose, a commercialvaccinewasstored under fourdifferent conditions:at4◦C,at25◦C,alternatingbetween4◦Cand25◦C,or accordingtothestandardproceduresstipulatedbythe Mozambi-canDirectorateofNationalVeterinaryServices(seeSection2.3). Theantibodyresponsesinducedbythevaccineweremonitored byELISAandplaquereductionneutralizationtests(PRNTs)for6–9 months,andinsomeanimalsupto21months.

2. Materialsandmethods

2.1. Cellsandviruses

Verocells(ATCCno.CCL-81)weregrowninMedium199(Gibco, LifeTechnologiesCorporation)supplementedwith100U/mL peni-cillin, 100␮g/mL streptomycin, and 5% heat-inactivated fetal bovineserum(FBS).Thecellswereculturedat37◦Cina humid-ifiedatmospherecontaining5%CO2.TheRVFVstrainZH548[24],

waspropagatedand titrated in Verocells beforebeingused in immunofluorescenceassays(IFAs)andPRNTs.

2.2. Animals

The experimental procedures using animals were approved bytheMozambicanBoardofAgriculture(ethicalpermissionno. 555/DNSV/2008,Maputo).Thirtymixedbreedcattlewereraised inafree-rangefeedingsystemintheNamaachaDistrict,Maputo Province(Fig.1), withthemaindiet basedongrass andhayto whichmineralsaltsandfoodsupplementswereaddedduringthe dryseason(March–August).Theseanimalsweredividedintothree groups(designatedA,B,andC)initiallywith10animalsineach. Anadditional41 headof mixed-breedcattle (designatedgroup D)were raisedintheAltoMolocue District,ZambeziaProvince (Fig.1),underconditionssimilartothosedescribedforgroupsA–C, butwithoutfoodsupplementsduringthedryseason.Twomore animalswerekeptasnegativecontrolsintheNamaachaDistrict, MaputoProvince.Noneofthecattlehadpreviouslybeen vacci-natedagainstRVFV. Characteristicsof the animalsare given in Table1.

Fig.1. MapofMozambiqueandneighboringcountries.Themapshowsthecapital cityofMaputo(italics)andtheprovincesreferredtointhearticle(boldcapital let-ters),aswellasthecityofQuelimaneandtheapproximatelocationsoftheNamaacha andAltoMolocueDistricts.

2.3. Vaccinationandsamplecollection

InMaputoProvince,vialscontainingformalin-inactivatedRVFV vaccineandaluminumhydroxidegeladjuvant(Onderstepoort Bio-logical Products,batchno.398) werestored for1 weekat4◦C (accordingtothemanufacturer’sinstructions),at25◦C,or alternat-ingbetween4and25◦C(at12-hintervals);thereafter,thevaccine wasadministeredtothecattleingroupsA,B,andC,respectively. ForgroupDinZambeziaProvince,vaccineinvialswastransported ascurrentlystipulatedbytheDirectorateofNationalVeterinary Servicesbeforeitwasadministeredtothecattle.Moreprecisely, thevialsweresentbyairfromMaputotoQuelimaneand there-afterbycartotheAltoMolocueDistrict(Fig.1),andthevaccine wassubsequentlygiventotheanimals.Thedeliverytook approx-imately1week,andthevialswerestoredoniceorat4◦Cwhen possible.

Theanimalswereinoculatedsubcutaneously(16G½in.needle) lateralontheneckwith2mLofvaccineonday0andboostedon day21,accordingtothemanufacturer’sinstructions.Bloodsamples werecollectedbyvenipunctureofthecoccygealveinonthedayof primaryvaccinationandthereafterfor287–630daysingroupsA–C andfor147daysingroupD.Samplescollectedondays45and48 wereanalyzedtogetherandarereferredtobelowashavingbeen takenonday45.Thebloodsampleswerestoredat4◦Candlater centrifugedat1500×gtoobtainsera,whichwerestoredat−20◦C

pendinganalysis.

2.4. Immunofluorescenceassay

Bovineserumsamplesdiluted1:40inPBSwereincubatedwith monolayersofacetone-fixedRVFV-infectedVerocellsfor30minat

(3)

Table1

Characteristicsofthecattle.

Group Province Animala Age(yr) Sex Weightb(kg) Samplingdaysc

0 10 20 30 45 87 117 147 207 267 630 A(4◦C) Maputo A1 5 F 300 x A2 4 F 260 • • • • • • • • • • • A3 3 F 250 • • • • • • • • • • • A5 8 F 400 • • • • • • • • • + + A6 8 F 380 • • • • • • • • • • • A7 8 F 380 • • • • • A8 8 F 360 • • • • • • • • x A9 8 F 360 • • • • • • • • • • • A10 8 F 300 • • • • • • • • • • • B(25◦C) Maputo B2 5 F 320 x B4 4 F 300 • • • • • • • x B5 5 M 340 • • • • • • • • • • • B6 6 F 320 • • • • • • • • B7 6 F 300 • • • • • • + • • • • B8 8 F 350 • • • • • • • • • • • B9 8 F 250 • • • • • • • • • • x B10 8 F 300 • • • • • • • • • • • C(4/25◦C) Maputo C1 8 M 280 • • • • • • • • • • • C2 4 F 260 • • • • • • • • • • • C3 6 F 340 • • • • • • • • • • • C5 5 F 350 • • • • • • • • • • • C6 5 F 300 • • • • • • • • • • • C7 8 F 260 • • • • • • • • x C8 8 F 250 • • • • • • • • • • x C10 8 F 400 • • • • • • • • • • • D (customary)d

Zambezia D1–D5 4–8 n/a n/a • • • • • • • •

D7 4–8 n/a n/a • • • • • • • + D8–D29 4–8 n/a n/a • • • • • • • • D30 4–8 n/a n/a • • • • • • • + D31 4–8 n/a n/a • • • • • • • • D33–D39 4–8 n/a n/a • • • • • • • • D41 4–8 n/a n/a • • • • • • • • Maputo ctrl1 6 F 300 • • • • • • • • • • • ctrl2 5 F 300 • • • • • • • • • • •

aAnimalsA4,B1,B3,C4,C9,D6,D32,andD40wereexcludedduetopre-exposuretoRiftValleyfevervirus. bWeightwasestimatedusingatapemeasure.

c Symbolsindicatesamplesthatcouldnotbecollected(+)orwerenotavailablebecauseananimaldied(†)orwasstolenorsold(x).

d VaccinewastransportedaccordingtothecustomaryproceduresoftheMozambicanDirectorateofNationalVeterinaryServices(seeSection2.3).F,female;M,male;n/a,

notavailable;ctrl,control.

37◦C.Next,thecellswerewashed3× 10minin0.9%NaClsolution, andthenfluorescein-conjugatedanti-bovineIgGantibody(Cappel, MPBiomedicalsInc.)wasaddedtoafinaldilutionof1:50. There-after,thesampleswereincubatedfor 30minat 37◦C and then washedasaboveandmounted.Thepresenceofanti-RVFV anti-bodieswasdeterminedbyfluorescencemicroscopy,andallserum sampleswereanalyzedinduplicate.

2.5. ELISA

Full-length RVFV N protein (GenBank ID: AF134534) [25] was produced from a prokaryotic expression vector pET14b (Novagen),andtherecombinantNproteinantigenwaspurified fromEscherichiacolicelllysatesundernativeconditionsusing Ni-NTAagarose(Qiagen),asdescribedelsewhere[26].IndirectELISA wasperformedasreportedbyotherauthors[27]withtheseminor changes: the plates were coated with 3␮g/mL recombinant N protein,andtheantigen-antibodycomplexeswerevisualizedby useofperoxidase-conjugatedanti-bovine IgGantibody(Jackson ImmunoResearchLaboratories)diluted1:5000andTMBsubstrate (3,3,5,5-tetramethylbenzidine,SigmaAldrich).Thereactionwas stoppedwith50␮Lof1MH2SO4,andtheabsorbancewas

mea-suredat450nm.TheELISAcut-offvaluewascalculatedusingthe resultsfor25negativebovineseraandtheStudentt-distribution

test with99%confidence intervals,asdescribedin detailin the literature[28].Negativeandpositivebovineserumcontrol sam-ples wereincludedineach plate.Allsampleswereanalyzedin duplicate,andthetitersweredeterminedasthereciprocalofthe highestserumdilutionthatresultedinareadingabovethecut-off value.

2.6. Plaquereductionneutralizationtest

Heat-inactivatedserumsampleswereseriallydilutedtwofoldin MinimalEssentialMedium(MEM,Invitrogen)supplementedwith 3%FBS,100U/mLpenicillin,and100␮g/mLstreptomycin,andthen incubatedwith60 PFUof RVFVfor30minat37◦C. Adsorption oftheserum-virusmixturetoVerocellswasallowedtoproceed for1.5hat37◦C,andthenthecellswerewashed,overlaidwith MEMmediumcontaining0.75%carboxymethylcellulose(Sigma Aldrich),andincubatedfor4daysat37◦Cunder5%CO2.Thecells

weresubsequentlyfixedin4%formaldehyde,andplaques were visualizedbycounterstainingwithcrystalviolet.The neutraliza-tiontitersweredeterminedasthereciprocalofthehighestserum dilutionthat reducedvirusinfectivityby80%.Atiterof20 was consideredpositiveafterevaluatingtheassayusing25negative bovinesera.AllproceduresusingviableRVFVwerecarriedoutina biosafetylevel3containmentlaboratory.

(4)

Fig.2.Percentageofseropositivecattleineachofthefourvaccinegroups.Formalin-inactivatedRVFVvaccinewasstoredfor1weekat4◦C,at25C,alternatingbetween4C

and25◦C,orinvialstransportedinthemannercustomaryinMozambiqueandthenadministeredtwice(3-weekinterval,day0andday21)toanimalsingroupsdesignated

A,B,C,andD,respectively.Thepercentageofseropositiveanimalswasdeterminedontheindicateddaysbyplaquereductionneutralizationtests(A)andindirectELISA againstNprotein(B).Arrowsalongthex-axisindicateimmunizationdays.NodatawereavailablefortheanimalsingroupDonthedaysmarkedwithasuperscript‘x’.

2.7. Statisticalmethods

Statisticalcorrelations wereanalyzedusing Spearman’srank test. TheKruskal–Wallis test wasappliedto achieve theinitial comparisonsoftheantibodyresponsesexhibitedbythefour vac-cination groups, and, if systematic variations were found, the Mann–WhitneyUtestwascarried outtocomparethe vaccine-inducedtitersoftheanimalsintheindividualgroups.Statistical analyseswereperformedwithStatisticaTM10(StatSoftInc.),and

graphswerevisualizedusingGraphPadTMPrism4(GraphPad

Soft-wareInc.).

3. Resultsanddiscussion

ThesporadicreportsofoutbreaksofRVFinneighboring coun-triesillustrate that there is a continuous risk to Mozambique, becauseitisoneofthemostfrequentlyfloodedcountriesinthe southernpartofAfrica[29].Notably,Mozambiquehasbeenspared fromRVFinhumansorlivestock,withtheexceptionofthe out-breaksthatoccurredin1969and1994,whichcausedabortionsand deathsincattleandwaterbuffalo[9,21,30].Nevertheless, surveil-lanceof cattle in ZambeziaProvince (Fig. 1)in 1996and 2001 revealedseroprevalenceof37%and53%,respectively[23]. Accord-ingly,in2002,avaccinationprogramwasinitiatedindistrictsin thatprovincetopreventRVFVinfectionsin cattle.Inasmuchas therewasconsideredtobeahighriskofRVFafterthefloodingthat hadaffectedthesouthernpartofthecountryin2000andthecentral regionin2001,thevaccinationprogramwasextendedinlate2002 toincludetheprovincesofGazaandManica(Fig.1)[31].However, after2004,vaccinationoflivestockwasonceagainlimitedtoonly afewdistrictsinZambeziaProvince.

Theantibodystatusofthecattletobeusedinourstudywas initially unknown, and thus, to start with, we assessed RVFV seronegativitybyIFA,andtheresultswerelaterconfirmedbyPRNT

(datanotshown).Aseropositivityrateof7%wasfoundamongthe 41animalskeptinZambeziaProvince(groupD),whichwasa rela-tivelylowlevelcomparedtothesero-surveillancedatapreviously recordedinthatprovince[23].Ontheotherhand,17%ofthe30 animalsinMaputoProvince(groupsA,B,andC)werepositivefor anti-RVFVantibodies,whichwasasurprisinglyhighrate.It was inthisregionthatthelastsmalloutbreaksofRVFincattlewere reportedin1969[21].TheseresultsindicatethatRVFVis circulat-inginMaputoProvince,butitiseithernotcausingmanifestclinical diseaseornotbeingdiagnosed.

CattlethatwerefoundtohaveelevatedRVFVantibodytiters beforetheprimaryimmunizationwerenotincludedinthestudy (Table 1). Furthermore, none of the negative control animals showedseroconversionovertheexperimentalperiod,analyzedas thepresenceofantibodiesagainsttheNproteinorbyvirus neu-tralizationtests(datanotshown).

TheabilityofthebovineantiseratoneutralizeRVFVinvitro wasanalyzedbyPRNT.Our datashowthat themajorityofthe animals in all four groups (78%, 88%, 88%, and 74% in A, B, C, and D, respectively) seroconverted rapidly in response to the primary vaccination (Fig. 2A). After the second immunization, allanimalsingroupsA,B,andChadelevatedPRNTtiters(≥80) (Figs.2Aand3A).However,fouroftheanimalsingroupD(n=38) failed to seroconvert 9 days after receiving the booster dose; threeofthosefourseroconvertedbyday45,whereasthefourth animaldidnotdevelopdetectableanti-Nproteinorneutralizing antibodiesovertheentireexperimentalperiod.Ingeneral, neu-tralizingantibodytitersshowedsmallpeaksondays30–45and thereafter declined relatively rapidlyin groups A–C but not in groupD(Fig.3A).Interestingly,theantibodytitersof thecattle ingroupDpeaked onday45 andremainedhighuntilday147 (Fig.3A).Furthermore,two-thirdsoftheanimalsingroupsA,B, andCstillhaddetectablelevelsofneutralizingantibodies267days aftervaccination(Fig.2A).It canbementionedthatcomparable

(5)

Fig.3. Barchartsshowingthemedianantibodytitersinthevaccinatedcattle.Fourgroupsofcattlewereimmunizedwithformalin-inactivatedRVFVvaccinethathadbeen storedat4◦C(groupA),25C(groupB),oralternatingbetween4Cand25C(groupC),orhadbeentransportedwithinMozambiqueaccordingtothepracticestipulatedin

thatcountry.Twodoseswereadministered(primaryvaccinationonday0andboosteronday21),andthevaccine-inducedneutralizingantibodyresponses(A)andanti-N antibodyresponses(B)weredeterminedbyaplaquereductionneutralizationtestandindirectELISA,respectively.Serumsampleswerecollectedfromtheanimalsonthe indicateddays.NodatawereavailableforgroupDonthedaysmarkedwithasuperscript“x”.Arrowsalongthex-axisindicateimmunizationdays.Bracketsandasterisks indicatevaluesfoundtobesignificantlydifferentbytheMann–WhitneyUtest(*p<0.05;**p≤0.01;***p≤0.001).

long-lastingtitersofneutralizingantibodieshadpreviouslybeen observed by other researchers in a study using a comparable formalin-inactivatedRVFVvaccine[32].Wealsonotedthat73% oftheanimalsinourinvestigationstillhadneutralizingantibody titersintherangeof40–320(median40)(Figs.2Aand3A)630days aftertheinitialvaccination.Theextentanddurationofthe pro-tectiveimmunityinducedbyformalin-inactivatedRVFVvaccines are considered to be “short termed”, and consequently annual boosterimmunizationsaregiventocattletomaintainimmunity. However,ourobservationsindicatethattheneutralizingantibody responsesinducedbytheformalin-inactivatedRVFVvaccinesmay bemorerobustandlong-lastingthanexpected.

IndirectELISAbasedonrecombinantNproteinhasthe poten-tialforuseinroutinediagnosticsandepidemiologicalstudiesof RVF[33].Therefore,wedecidedtomonitorthelevelsof anti-N-proteinantibodyinserumsamplesofthevaccinatedcattle.Anti-N antibodyresponsesweredetectedinaboutone-thirdoftheanimals aftertheprimaryvaccination,andnearly80%oftheanimalswere seropositiveninedaysaftertheboosterimmunization,regardless oftreatmentgroup(Fig.2B).Incontrasttotheneutralizingantibody responses,circulatinganti-Nantibodiescouldonlybedetectedfor ashortperiodoftime.Onday147aftertheprimary immuniza-tion(126daysafterbooster),themajority(74%)oftheanimalsin groupsA–Cwerenegativeforantibodiesagainsttherecombinant Nprotein(Fig.2B),whereassuchseronegativitywasobservedin only14%oftheanimalsingroupDatthattime(Fig.2B).Bythe endofthestudyperiod,allbutfouroftheinvestigatedanimals

hadexhibitedanti-Nantibodyresponsesafterthetwo immuniza-tions.

Wealsonotedthat,afterreceivingtheimmunizations,the ani-malsthathadlowvaccinationanti-Nproteintiters(≤100)showed neutralizingantibodytiterssimilartothoseseenintheanimalsthat hadstrongervaccinationanti-Nantibodyresponses.TheELISAused inthisstudymeasuresantibodiesdirectedtowardtheNprotein, whilethePRNTmainlymeasuresneutralizingantibodiesdirected towardtheglycoproteins.Thusthelevelofanti-Nantibodiesmay notberelevantasanindicatorofvaccinationstatus. Itis possi-blethatthelackofarelationshipbetweenanti-Nandneutralizing antibodytiters(groupA,Spearman’sranktest)canbeexplained bydifferencesinassaysensitivity,howeverouranalysesindicate thatserologybasedontheresponsetoNproteinmaynotbethe methodofchoiceforevaluatingtheefficacyofimmunizationwith formalin-inactivatedRVFVvaccines.

Formalin-inactivatedvaccinesareingeneralmorestablethan attenuatedvaccines[34].Effortshavebeenmadetoincreasethe stability of formalin-inactivated RVFV vaccines even furtherby lyophilization[35],butthepreparationsusedinourstudywere in fluidform,and,toourknowledge,noevaluationshave been performed to determine the efficacy of that type of formalin-inactivatedRVFVformulaafterstorageortransportationatambient temperatures.

In our investigation, analysis of the impact of the differ-ent vaccine storage conditions on neutralizing antibody titers measured after immunization (Fig. 3A) revealed no significant

(6)

differences betweenthe four experimental groups ondays 10, 20, and 45, or between groups A, B, and C on days 207, 267 and630(Kruskal–Wallistest).However,theneutralizingantibody responsesdifferedsignificantlybetweenthefourgroupsondays 30,87,117, and147afterthefirstvaccination(p=0.023,0.004, 0.000,and0.001,respectively;Kruskal–Wallistest).Accordingly, theindividualgroupsofanimalsweresubjectedtofurtheranalysis usingtheMann–WhitneyUtest.Onday30,neutralizingantibody titerswerehigherin groupBthan ingroupD,which mightbe explainedbytheearlierantibodypeak(Fig.3A).However,from day45andonward,theresultswerereversed,thatis,thetitersin groupDwereelevated(albeitonlyslightly)comparedtothosein groupB(Fig.3A).Furthermore,somewhatsurprisingly,the anti-bodytitersobservedondays87,117,and147werehigheringroup DthaningroupsAandC(Fig.3A).

Asimilarpatternwasobservedconcerningthelevelsofanti-N proteinantibody(Fig.3B),whichdifferedbetweenthegroupson days10,20,87,117,and147(p=0.035,0.006,0.001,0.000,and 0.000,respectively;Kruskal–Wallis).Comparisonsofthe individ-ualgroupsregardingtheresultsfortheindicatedsamplingdays revealedthatthetitersmeasuredingroupDwerehigherthanthose ingroupsAandC,andalsohigherthanthoseingroupBonsomeof thedays(Mann–WhitneyUtest)(Fig.3B).Asfortheneutralizing antibodytiters,theanti-Nproteinantibodyresponsesdidnot dif-fersignificantlybetweengroupsA,B,andCondays207,267,and 630aftervaccination.Severalunrelatedfactors,suchasthebreed andthenutritionalstatusoftheanimalsmayinfluence vaccine-inducedimmuneresponses[36],whichmightexplainthehigher antibodytitersweobservedintheanimalsingroupD.Moreover, ingeneral,thevaccinefromvialsstoredattherecommended tem-perature(4◦C)inducedequivalentorslightlylowerantibodylevels comparedtothevaccinestoredatambienttemperatures (alternat-ingbetween4and25◦C)orat25◦C.Theseeffectswerenotedin cattlebelongingtothesameherd(groupsA,BandC),which sug-geststhatstoragefor1weekunderadverseconditionsdoesnot impairtheabilityofthevaccinetoinducethehumoralantibody responses.

Insummary, oftheanimalsincludedin thisstudy,only one failedtoacquireadetectableantibodyresponseaftertwo vacci-nations.Furthermore,theantibodyresponseswerestilldetectable up to 21 months after the immunizations. Based on the data presentedhere,weconcludethatthestorageandtransport con-ditionsused in Mozambique do not have anadverse effecton theantibodyresponsesinducedbytheformalin-inactivatedRVFV vaccine.

Acknowledgements

WegratefullyacknowledgetheSwedishInternational Devel-opment Cooperation Agency (SIDA) and the Swedish Civil Contingencies Agency (MSB) for their support. We also thank Dr.LarsEriksson(KarolinskaInstitutet,Sweden)forvaluable sta-tistical advice, LouiseTreiberg Berndtsson (National Veterinary Institute,Sweden)forprovidingbovineserum,andtheDirectorate ofNationalVeterinaryServices(DNSV,Mozambique)forfurnishing thevaccine.

Conflictofinterest: Thefunders hadno rolein study design, datacollectionandanalysis,orpreparationofthemanuscript. Con-tributions: K.F. initiated the study concept and design. N.L. did theserologicalanalysisandshecarriedoutworksrelatedtothe interpretationofdataandthepreparationofthemanuscriptwith thehelpofK.F.WhilehelpingK.F.andN.L.forthepreparationof themanuscript,Å.L.effectedsomevaluablescientificdiscussions. Besides,B.M.endeavouredvaccinationandsamplecollection,and J.F.wasresponsibleforinitialprojectdesign.ThoughG.B.prepared

thecontent,hewashelpedbyJ.P.forthecriticalrevisionofthe manuscript.

References

[1]DaubneyR,HudsonJR,GarnhamPC.EnzootichepatitisorRiftValleyfever:an undescribeddiseaseofsheep,cattleandmanfromEastAfrica.JPatholBacteriol 1931;34:545–79.

[2]BouloyM,WeberF.MolecularbiologyofRiftValleyfevervirus.OpenVirolJ 2010;4:8–14.

[3]PaweskaJT,JansenvanVurenP,SwanepoelR.ValidationofanindirectELISA basedonarecombinantnucleocapsidproteinofRiftValleyfevervirusforthe detectionofIgGantibodyinhumans.JVirolMethods2007;146:119–24. [4] PaweskaJT,vanVurenPJ,KempA,BussP,BengisRG,GakuyaF,etal.

Recom-binantnucleocapsid-basedELISAfordetectionofIgGantibodytoRiftValley fevervirusinAfricanbuffalo.VetMicrobiol2008;127:21–8.

[5]BesselaarTG,BlackburnNK.ThesynergisticneutralizationofRiftValleyfever virusbymonoclonalantibodiestotheenvelopeglycoproteins.ArchVirol 1992;125:239–50.

[6]BicoutDJ,SabatierP.MappingRiftValleyfevervectorsandprevalenceusing rainfallvariations.VectorBorneZoonoticDis2004;4:33–42.

[7]DaviesFG,LinthicumKJ,JamesAD.RainfallandepizooticRiftValleyfever.Bull WorldHealthOrgan1985;63:941–3.

[8]Ikegami T, Makino S. The pathogenesis of Rift Valley fever. Viruses 2011;3:493–519.

[9]SwanepoelR,CoetzerJAW.RiftValleyfever.In:CoetzerJAW,ThomsonGR, TustinRC,editors.Infectiousdiseasesoflivestock.CapeTown:Oxford Univer-sityPress;1994.p.688–717.

[10]RichKM,Wanyoike F.Anassessmentoftheregionalandnational socio-economicimpactsofthe2007RiftValleyfeveroutbreakinKenya.AmJTrop MedHyg2010;83:52–7.

[11]BouloyM,FlickR.ReversegeneticstechnologyforRiftValleyfevervirus: cur-rentandfutureapplicationsforthedevelopmentoftherapeuticsandvaccines. AntiviralRes2009;84:101–18.

[12]DunguB,LouwI,LubisiA,HunterP,vonTeichmanBF,BouloyM.Evaluation oftheefficacyandsafetyoftheRiftValleyfeverClone13vaccineinsheep. Vaccine2010;28:4581–7.

[13] MorrillJC,MebusCA,PetersCJ.Safetyandefficacyofamutagen-attenuated RiftValleyfevervirusvaccineincattle.AmJVetRes1997;58:1104–9. [14]SmithburnKC.RiftValleyfever;theneurotropicadaptationofthevirusand

theexperimentaluseofthismodifiedvirusasavaccine.BrJExpPathol 1949;30:1–16.

[15]BarnardBJ,BothaMJ.AninactivatedRiftValleyfevervaccine.JSAfrVetAssoc 1977;48:45–8.

[16]BotrosB,OmarA,ElianK,MohamedG,SolimanA,SalibA,etal.Adverse responseofnon-indigenouscattleofEuropeanbreedstoliveattenuated Smith-burnRiftValleyfevervaccine.JMedVirol2006;78:787–91.

[17]KamalSA.PathologicalstudiesonpostvaccinalreactionsofRiftValleyfeverin goats.VirolJ2009;6:94.

[18]The useofveterinary vaccinesfor prevention andcontrol ofRift Valley fever:memorandumfromaWHO/FAOmeeting.BullWorldHealthOrgan 1983;61:261–8.

[19]NderituL,LeeJS,OmoloJ,OmuloS,O’GuinnML,HightowerA,etal.Sequential RiftValleyfeveroutbreaksineasternAfricacausedbymultiplelineagesofthe virus.JInfectDis2011;203:655–65.

[20]PerezAM,MedanicRC,ThurmondMC.RiftValleyfeveroutbreaksinSouth Africa.VetRec2010;166:798.

[21]Valadão FG. Nota prévia sobre a ocorrência de uma nova doenc¸a em Moc¸ambique-A febre do Vale de Rift. Vet Moc¸amb Lourenc¸o Marques 1969;2:13–20.

[22]NiklassonB,LiljestrandJ,BergstromS,PetersCJ.RiftValleyfever:a sero-epidemiologicalsurveyamongpregnantwomeninMozambique.Epidemiol Infect1987;99:517–22.

[23]Direcc¸ãoNacionaldePecuáriaMinistériodeAgreculturaeDesenvolvimento Rural.Relatórioanual2001.Maputo;2002.p.32–3.

[24]MeeganJ.TheRiftValleyfeverepizooticinEgypt1977–78.1.Description oftheepizoticandvirologicalstudies.TransRSocTropMedHyg1979;73: 618–23.

[25]Sall AA,ZanottoPM,SeneOK,ZellerHG,DigoutteJP,ThionganeY,etal. GeneticreassortmentofRiftValleyfevervirusinnature.JVirol1999;73: 8196–200.

[26]Lindkvist M,LahtiK,LilliehookB, HolmstromA,AhlmC, BuchtG, etal. Cross-reactiveimmuneresponsesinmiceaftergeneticvaccinationwithcDNA encodinghantavirusnucleocapsidproteins.Vaccine2007;25:1690–9. [27]JansenvanVurenP,PotgieterAC,PaweskaJT,vanDijkAA.Preparationand

evaluationofarecombinantRiftValleyfevervirusNproteinforthedetection ofIgGandIgMantibodiesinhumansandanimalsbyindirectELISA.JVirol Methods2007;140:106–14.

[28] FreyA,DiCanzioJ,ZurakowskiD.Astatisticallydefinedendpointtiter deter-minationmethodforimmunoassays.JImmunolMethods1998;221:35–41. [29]Direcc¸ãoNacionaldeGestãoAmbiental,MinistérioParaaCoordenac¸ãoda

Acc¸ãoAmbiental.Avaliac¸ãodavulnerabilidadeasmudanc¸asclimáticas estraté-giasdeadaptac¸ão.Maputo;2005.p.7–8.

[30]McIntoshBM.RiftValleyfever,1.Vectorstudiesinthefield.JSAfrVetMed Assoc1972;43:391–5.

(7)

[31]Direcc¸ãoNacionaldePecuária,MinistériodeAgreculturaeDesenvolvimento Rural.Relatórioanual2002.Maputo;2003.p.45.

[32]BarnardBJ.RiftValleyfevervaccine–antibodyandimmuneresponseincattle toaliveandaninactivatedvaccine.JSAfrVetAssoc1979;50:155–7. [33]Cêtre-SossahC,BillecocqA,LancelotR,DefernezC,FavreJ,BouloyM,etal.

EvaluationofacommercialcompetitiveELISAforthedetectionofantibodies toRiftValleyfevervirusinseraofdomesticruminantsinFrance.PrevVetMed 2009;90:146–9.

[34]BrandauDT,JonesLS,WiethoffCM,RexroadJ,MiddaughCR.Thermalstability ofvaccines.JPharmSci2003;92:218–31.

[35]RandallR,BinnLN,HarrisonVR.ImmunizationagainstRiftValleyfevervirus. Studiesontheimmunogenicityoflyophilizedformalin-inactivatedvaccine.J Immunol1964;93:293–9.

[36]RashidA,RasheedK,AkhtarM.Factorsinfluencingvaccineefficacy–ageneral review.JAnimPlantSci2009;19:22–5.

Referencias

Documento similar

Therefore, it is observed that color flyers, printed both sides, were much more usual in the group of Company and Asian (100%), that in the group of Independent or Group,

The anti-Itoiz Dam movement is one of the most popular environmental movements in the history of Spain. A significant part of this popularity can be

Given that arthritis is one of the leading causes of functional disability in the elderly, and in spite of the fact that the literature about the relationship between

The interpretation of these results is that, differences in students’ achievements between students from public and private schools in Spain, is mainly due to differences

Some of these pathogens are the Rift Valley fever virus (RVFV), dengue virus (DENV), West Nile virus (WNV), yellow fever virus (YFV), Ebola virus (EBOV), SARS- and MERS-CoV, zika

This component allows for the introduction of a rank discount by having ( | ) reflect the fact that the lower an item is ranked in , the less likely it will be seen.

With regard to bone parameters it can be seen that there is a clearly significant difference in the experimental group both in terms of degree of bone mass loss, significantly

Our quantitative analysis, then, could be summarised by saying that the differences observed in the frequency of use of connectives between translations and