• No se han encontrado resultados

Vibración y Balanceo de Ventiladores

N/A
N/A
Protected

Academic year: 2021

Share "Vibración y Balanceo de Ventiladores"

Copied!
30
0
0

Texto completo

(1)

VIBRACIÓN Y BALANCEO DE VENTILADORES

VIBRACIÓN Y BALANCEO DE VENTILADORES

La vibración siempre ha sido un buen indicador de que

La vibración siempre ha sido un buen indicador de que tan bien fuetan bien fue diseñada e instalada una pieza del equipo y como se le dio diseñada e instalada una pieza del equipo y como se le dio mantenimiento. Con programas computarizados de mantenimiento mantenimiento. Con programas computarizados de mantenimiento preventivo, la vibración puede también

preventivo, la vibración puede también usarse como precursor de unusarse como precursor de un mantenimiento futuro.

mantenimiento futuro.

Los ventiladores están suetos a vibración porque tienen una Los ventiladores están suetos a vibración porque tienen una altaalta

relación entre la masa rotato

relación entre la masa rotatoria y la masa total ria y la masa total y operan ay operan a velocidades relativamente altas. ! diferencia de la mayor"a de los velocidades relativamente altas. ! diferencia de la mayor"a de los equipos mecánicos, e#isten dos causas principales de vibración en equipos mecánicos, e#isten dos causas principales de vibración en ventiladores. $stos son, el aspecto aerodinámico, que tiene

ventiladores. $stos son, el aspecto aerodinámico, que tiene que verque ver con el %uo de aire, y el mecánico, que tiene que ver con los con el %uo de aire, y el mecánico, que tiene que ver con los componentes rotatorios, los suetadores, y los

componentes rotatorios, los suetadores, y los soportes estructurales.soportes estructurales. $n esta Carta de &ngenier"a se discutirán ambas causas de vibración y $n esta Carta de &ngenier"a se discutirán ambas causas de vibración y

se proporcionar

se proporcionarán gu"as án gu"as para su reducción.para su reducción.

VIBRACIÓN AERODINAMICA

VIBRACIÓN AERODINAMICA

La vibración aerodinámica, también llamada pulsación aerodinámica, La vibración aerodinámica, también llamada pulsación aerodinámica,

es una causa de la

es una causa de la vibración del ventilador y el sistema. 'currevibración del ventilador y el sistema. 'curre cuando un ventilador opera a la izquierda de su

cuando un ventilador opera a la izquierda de su punto pico de presiónpunto pico de presión estática. La frecuencia de la vibración, cuando se veri(ca con estática. La frecuencia de la vibración, cuando se veri(ca con instrumentos, está en una frecuencia diferent

instrumentos, está en una frecuencia diferente a la e a la de la velocidadde la velocidad del

del rotorrotor.. $sta área de operación está ilustrada

$sta área de operación está ilustrada en la )igura *+.*. $n estaen la )igura *+.*. $n esta región el rotor del ventilador no mueve su(ciente aire para llenar los región el rotor del ventilador no mueve su(ciente aire para llenar los

pasos del aspa. La vibración aerodinámica es más fácilmente pasos del aspa. La vibración aerodinámica es más fácilmente identi(cada por el incremento del volumen de aire %uyendo a través identi(cada por el incremento del volumen de aire %uyendo a través

del ventilador, de tal modo que

del ventilador, de tal modo que el punto de operación del ventiladorel punto de operación del ventilador se mueve a la

se mueve a la derecha. i la causa es aerodinámica, la vibraciónderecha. i la causa es aerodinámica, la vibración desaparecer

desaparecerá o se á o se reducirá signi(cativamentreducirá signi(cativamente. $l e. $l incremento del %uoincremento del %uo de aire se logra con la apertura de

de aire se logra con la apertura de compuertas, la limpieza de (ltros ycompuertas, la limpieza de (ltros y serpentines, o como una prueba, removiendo una sección del ducto serpentines, o como una prueba, removiendo una sección del ducto cerca del ventilador

cerca del ventilador. $stas acciones . $stas acciones reducirán la presión del reducirán la presión del sistema,sistema, y en consecuencia, incrementarán el %uo de aire.

y en consecuencia, incrementarán el %uo de aire. -ebido a la

-ebido a la geometr"a del rotor, algunos ventiladores son másgeometr"a del rotor, algunos ventiladores son más susceptibles a la pulsación cuando operan a la izquierda del

susceptibles a la pulsación cuando operan a la izquierda del pico depico de su curva de

su curva de presión estática. Los ventiladores centr"fugos que utilizanpresión estática. Los ventiladores centr"fugos que utilizan aspas inclinadas hacia atrás o curvadas hacia delante están

aspas inclinadas hacia atrás o curvadas hacia delante están particularmen

particularmente suetas a te suetas a este fenómeno. in embargo, loseste fenómeno. in embargo, los ventiladores con aspas aerodinámicas inclinadas hacia atrás, como ventiladores con aspas aerodinámicas inclinadas hacia atrás, como

los rotores !cousta)oil, están diseñados para ser estables a la los rotores !cousta)oil, están diseñados para ser estables a la izquierda del pico. La )igura *+. ilustra esta área de

izquierda del pico. La )igura *+. ilustra esta área de operaciónoperación inestable en una tabla de funcionamiento de

inestable en una tabla de funcionamiento de un ventilador /área deun ventilador /área de achurado transversal0. $stos puntos de operación indican la achurado transversal0. $stos puntos de operación indican la

inestabilidad del

(2)
(3)

La operación a la izquierda del pico

La operación a la izquierda del pico puede deberse más a un errorpuede deberse más a un error en los cálculos de la

en los cálculos de la presión del sistema, que a la instalación delpresión del sistema, que a la instalación del sistema, o a una práctica de mantenimiento de(ciente. $l punto de sistema, o a una práctica de mantenimiento de(ciente. $l punto de operación del ventilador puede

operación del ventilador puede también cambiar si el también cambiar si el sistema1prsistema1procesooceso se ha modi(cado desde la instalación. 2or eemplo, un sistema de se ha modi(cado desde la instalación. 2or eemplo, un sistema de secado puede haber sido diseñado inicialmente para alar aire a secado puede haber sido diseñado inicialmente para alar aire a través de una capa de 3

través de una capa de 3 de material. Los cambios subsecuentes delde material. Los cambios subsecuentes del sistema ahora requier

sistema ahora requieren una cama de 43 en una cama de 43 de material con una ca"dade material con una ca"da de presión signi(cativamente más alta. $sto

de presión signi(cativamente más alta. $sto ocasionara que elocasionara que el ventilador opere en un punto diferente en su curva la cual

ventilador opere en un punto diferente en su curva la cual puedepuede estar a la izquierda del pico.

estar a la izquierda del pico. i se ha determinado que la vibración es

i se ha determinado que la vibración es aerodinámica, hay variosaerodinámica, hay varios pasos que se pueden tomar para restaurar el ventilador a un punto de pasos que se pueden tomar para restaurar el ventilador a un punto de

operación aceptable. i alg5n tipo de

operación aceptable. i alg5n tipo de obstrucción está causando elobstrucción está causando el problema, se pueden abrir las compuertas, limpiarse

problema, se pueden abrir las compuertas, limpiarse los (ltros y loslos (ltros y los serpentines, y el proceso se puede

serpentines, y el proceso se puede restaurar a una con(guración másrestaurar a una con(guración más parecida al diseño original. Las

parecida al diseño original. Las alternativas más caras incluyenalternativas más caras incluyen incrementar los tamaños de los ductos, reducir las longitudes de los incrementar los tamaños de los ductos, reducir las longitudes de los

ductos, y eliminar vueltas muy pronunciadas. i no es practico un ductos, y eliminar vueltas muy pronunciadas. i no es practico un rediseño del sistema pero el volumen de aire es el adecuado y el rediseño del sistema pero el volumen de aire es el adecuado y el ventilador en cuestión es centr"fugo, puede ser posible eliminar o ventilador en cuestión es centr"fugo, puede ser posible eliminar o reducir la pulsación austando el rotor del ventilador al cono de la reducir la pulsación austando el rotor del ventilador al cono de la succión. Como se muestra en

succión. Como se muestra en la )igurla )igura *+.6, a *+.6, austando el rotor deaustando el rotor de manera que el borde del cono esté dentro del plato frontal del rotor, manera que el borde del cono esté dentro del plato frontal del rotor, el aire adicional recirculara en el ventilador. !hora el rotor recibirá un el aire adicional recirculara en el ventilador. !hora el rotor recibirá un

volumen su(ciente de aire, permitiéndole funcionar sin

volumen su(ciente de aire, permitiéndole funcionar sin pulsar7 sinpulsar7 sin embargo, la e(ciencia del ventilador se reducirá. $n general, embargo, la e(ciencia del ventilador se reducirá. $n general, incrementando el traslape una distancia igual al 8 del diámetro del incrementando el traslape una distancia igual al 8 del diámetro del

rotor se eliminara la pulsación. rotor se eliminara la pulsación.

La vibración aerodinámica además puede ser causada La vibración aerodinámica además puede ser causada porpor cone#iones de(cientes de la succión al ventilador. 2ara reducir cone#iones de(cientes de la succión al ventilador. 2ara reducir pérdidas las caas y codos de succión deben ser acondicionados con pérdidas las caas y codos de succión deben ser acondicionados con

hoas o aspas gu"a. Cuando el aire es forzado a

hoas o aspas gu"a. Cuando el aire es forzado a %uir a través de una%uir a través de una vuelta o curva pronunciada cuando entra al ventilador, tiende a vuelta o curva pronunciada cuando entra al ventilador, tiende a cargar una parte del rotor del ventilador. $l resultado siempre es un cargar una parte del rotor del ventilador. $l resultado siempre es un

funcionamiento reducido y muchas veces también la

funcionamiento reducido y muchas veces también la pulsación.pulsación.  9

 9ambién se puede desarambién se puede desarrollar el mismo fenórollar el mismo fenómeno en la descarmeno en la descargaga del ventilador,

del ventilador, aunque generalmente en aunque generalmente en grado menorgrado menor. Los. Los ventiladores no descargan el aire con una

ventiladores no descargan el aire con una velocidad uniforme a travésvelocidad uniforme a través de toda su

de toda su descarga. :eneralmente operan meor cuando descargandescarga. :eneralmente operan meor cuando descargan el aire en un ducto largo y recto, siendo el

el aire en un ducto largo y recto, siendo el m"nimo tres diámetrom"nimo tres diámetros dels del ducto más allá de la descarga del ventilador.

ducto más allá de la descarga del ventilador.

VIBRACIÓN MECANICA

VIBRACIÓN MECANICA

La vibración mecánica es el tipo

La vibración mecánica es el tipo más com5n de vibración demás com5n de vibración de ventiladores. $s causada por rotores u otros componentes rotatorios ventiladores. $s causada por rotores u otros componentes rotatorios

(4)

del ventilador desbalanceados. u impacto

del ventilador desbalanceados. u impacto negativo se incrementanegativo se incrementa por suetadores %oos y un soporte estructural de(ciente. -os por suetadores %oos y un soporte estructural de(ciente. -os términos son importantes para entender la vibración mecánica. términos son importantes para entender la vibración mecánica.

;alanceo se re(ere principalmente al rotor u otros componentes ;alanceo se re(ere principalmente al rotor u otros componentes rotatorios del ventilador

rotatorios del ventilador. $l . $l procedimiento de balanceo consiste procedimiento de balanceo consiste enen agregar o remover peso en un intento para mover el centro de agregar o remover peso en un intento para mover el centro de

gravedad hacia el ee de

gravedad hacia el ee de rotación.rotación. <ibración se re(ere principalmente al ventilador

<ibración se re(ere principalmente al ventilador completo. Lacompleto. La vibración del ventilador es

vibración del ventilador es medida durante una =prueba de medida durante una =prueba de corridocorrido3 y3 y es la amplitud de vibración en

es la amplitud de vibración en los rodamientos del ventiladorlos rodamientos del ventilador e#pres

e#presada en unidades de desplazamiento o velocidad. $l ada en unidades de desplazamiento o velocidad. $l nivel denivel de vibración de ventiladores nuevos es resultado del diseño y la vibración de ventiladores nuevos es resultado del diseño y la construcción del fabricante

construcción del fabricante de ventiladores. 2ara ventiladores ende ventiladores. 2ara ventiladores en operación, la instalación y el mantenimiento subsiguiente pueden operación, la instalación y el mantenimiento subsiguiente pueden

tener un efecto

tener un efecto mayor en la mayor en la vibración del ventiladorvibración del ventilador.. $#isten muchas causas del desbalanceo de

$#isten muchas causas del desbalanceo de rotorrotores>es>

Construcción

Construcción

? en rotores de ventiladores nuevos se presenta? en rotores de ventiladores nuevos se presenta desbalanceo debido a la naturaleza de la

desbalanceo debido a la naturaleza de la fabricación y al ensamble.fabricación y al ensamble. Las tolerancias de las partes y el

Las tolerancias de las partes y el ensamble, las variaciones de losensamble, las variaciones de los materiales, y un pandeo

materiales, y un pandeo durante el proceso de soldadura contribuyendurante el proceso de soldadura contribuyen a un ensamble

a un ensamble no concéntrico del rotorno concéntrico del rotor. $l . $l balanceo compensa estosbalanceo compensa estos factores.

factores.

Estructura del material

Estructura del material

? a5n una capa delgada de ? a5n una capa delgada de suciedadsuciedad puede causar desbalanceo. @sando solventes, cepillos de

puede causar desbalanceo. @sando solventes, cepillos de alambre,alambre, etc., se pueden

etc., se pueden limpiar los rotores y restaurar su balanceo.limpiar los rotores y restaurar su balanceo.

Arasión!corrosión

Arasión!corrosión

? en aplicaciones de transporte de? en aplicaciones de transporte de materiales o en el

materiales o en el maneo de vapores o gases maneo de vapores o gases corrcorrosivos, la abrasiónosivos, la abrasión o la corrosión del rotor causara desbalanceo. $sta condición es

o la corrosión del rotor causara desbalanceo. $sta condición es másmás seria que la vibración, por razones de seguridad se debe

seria que la vibración, por razones de seguridad se debe contactar alcontactar al repr

representante del fabricante de esentante del fabricante de ventiladores para que de lasventiladores para que de las recomendaciones para reparación o el reemplazo del rotor. recomendaciones para reparación o el reemplazo del rotor.

Com"onentes de la

Com"onentes de la transmisió

transmisión

n

? poleas, bandas,? poleas, bandas, acoplamientos y motores pueden tener su

acoplamientos y motores pueden tener su propio desbalanceo que dapropio desbalanceo que da como resultado vibración en el ventilador. <erif"quese el alineamiento como resultado vibración en el ventilador. <erif"quese el alineamiento

de los componentes, e#am"nense las canaletas de las poleas y las de los componentes, e#am"nense las canaletas de las poleas y las super(cies de las

super(cies de las bandas. Aeemplazar los componentes gastados. Losbandas. Aeemplazar los componentes gastados. Los acoplamientos pueden variar a5n milésimas de pulgada en el acoplamientos pueden variar a5n milésimas de pulgada en el

embarque, causando desalineamiento y vibración. embarque, causando desalineamiento y vibración.

e pueden veri(car fácilmente los diversos componentes de la e pueden veri(car fácilmente los diversos componentes de la

transmisión para determinar s" están causando vibración. transmisión para determinar s" están causando vibración.

-esconéctese la transmisión o el acoplamiento y arránquese el motor -esconéctese la transmisión o el acoplamiento y arránquese el motor

con una polea

(5)

corre con ciertos problemas, remuévase la polea o el medio acoplamiento y corra el motor solo.

$s mucho más dif"cil determinar si el rotor del ventilador o el conunto polea impulsada1acoplamiento está causando la vibración

sin quitarlo y balancearlo. Las poleas y los acoplamientos debieron haber sido balanceados dinámicamente previamente. ! menos que sea importante determinar si el rotor o la transmisión esté fuera de balanceo, es probablemente meor balancear el rotor, la %echa, y la

transmisión como un solo ensamble.

Su#etadores

? el rotor y los tornillos de los componentes de la transmisión, los pernos de las chumaceras, y los herraes de la base de montae del ventilador están suetos a a%oamiento, especialmente

cuando hay vibración. Los componentes %oos se agregan a la magnitud total de la vibración del ventilador.

So"orte estructural

? muy frecuentemente, los ventiladores están montados en soportes que tienen una frecuencia natural de vibración muy cercana a la del ventilador. $n esta frecuencia, la

estructura tiende a seguir vibrando una vez que ha entrado en movimiento. ;ao tales condiciones es casi imposible balancear todos

los componentes rotatorios en forma aceptable para evitar una magnitud inconveniente de vibración. @sando refuerzos se moverá la

frecuencia natural de la estructura fuera del rango del ventilador en operación.

Las estructuras óptimas de montae incluyen gruesas placas de concreto, bases de acero soportadas por aisladores de vibración, o estructuras pesadas de acero totalmente soldadas. Las estructuras deben tener un apuntalamiento contraladeo adecuado, con tramos cortos sin apoyo. -eben estar diseñadas para ser más pesadas que si

estuvieran diseñadas para soportar una carga estática. 9odos los apoyos verticales deben estar directamente abao del ventilador y el ventilador no debe estar localizado a la mitad de los tramos de trabe.

$lec%a "andeada

? puede causar vibración importante que usualmente resulta en una magnitud de vibración que es proporcional

a la cantidad por la cual la %echa se pandea. @sando un simple indicador de carátula, se puede veri(car el nivel de la %echa. Bo debe

estar fuera más de una o dos milésimas de pulgada en una %echa corta o dos o tres milésimas en una %echa larga. i la %echa está

pandeada, puede enderezarse, reemplazarse, o corregirse por balanceo.

CRITERIOS DE BALANCEO

)abricantes grandes de ventiladores balancean los rotores antes del ensamble en maquinas de balanceo. $l procedimiento de balanceo

(6)

involucra la detección y la compensación por las onzas ? pulgadas /ozin0 del desbalanceo.

2ara la mayor"a de las aplicaciones de calor, ventilación y aire acondicionado /D<!C por sus siglas en inglés07 agr"colas e industriales, un grado de calidad de balanceo de &' de :4.6 es adecuado. @sando este grado de balanceo, el desbalanceo residual

permisible se calcula como sigue>

Uper E 4.+* # G # W 1 N

donde> Uper E desbalanceo permisible por el grado de calidad de balanceo /ozin0

G E grado de calidad de balanceo /4.60

W E peso del rotor /lbs0

N E velocidad de operación del rotor /rpm0

2or eemplo, usando un rotor erie + -D 9amaño 4F> donde> G E 4.6 W E GH lbs . N E H+ rpm Uper E /4.+* # 4.6 # GH01H+ Uper E *.6 ozin

CRITERIOS DE VIBRACIÓN

-espués de la instalación del rotor, los ventiladores ensamblados tienen un =balanceo de auste3 como una unidad completa antes del

embarque. Los fabricantes tienen ciertas limitaciones que los ventiladores puedan ser probados en marcha a los requerimientos

eléctricos, velocidades de prueba, y los accesorios del cliente. 2ara desarrollar una prueba de vibración en marcha, el ventilador se monta en una base r"gida. La base puede ser menos o más r"gida que la que usará el cliente. 2or causa de esta diferencia, los l"mites de

vibración determinados de la prueba de vibración en marcha en la fábrica no pueden usarse como garant"a del nivel m"nimo de vibración

una vez que el ventilador se instala en el sistema. 2ara e#plicar esta diferencia en aplicaciones sensibles a vibración, muchos ventiladores

son montados en bases de absorción de vibración. $stas bases contienen resortes o aislamientos de hule y pueden o no estar llenos

(7)

con concreto como masa adicional. $l propósito de estas bases es permitir al ventilador vibrar sin transmitir la vibración a la estructura

del edi(cio.

La vibración del ensamble del ventilador es t"picamente medida en la dirección horizontal. $sta indicación se re(ere a la vibración medida solo en la frecuencia de interés. $ste método proporciona una

medida e#acta del desbalanceo del rotor. /<er la )igura *+.F0. La mayor"a de los fabricantes de ventiladores tienen normas de vibración s"smica como parte de sus procesos de manufactura y calidad. $stos limites variaran dependiendo de las facilidades de las pruebas del fabricante, el equipo de balanceo, y el tipo y tamaño del

ventilador.

Como una gu"a para ventiladores en aplicaciones industriales, agr"colas y de calor, ventilación y aire acondicionado, una velocidad pico de +.*I pulg.1segundo es adecuada en la velocidad de prueba en

fabrica.

2ara aquellos más familiarizados con el uso del desplazamiento como una medida de vibración, las unidades de desplazamiento se

pueden convertir a unidades de velocidad usando la ecuación siguiente>

V E p # F # D 1 *+++

donde> V E velocidad /pulg.1segundo0

F E frecuencia en rpm /rpm14+0

D E desplazamiento, de pico a pico, /mils0 /* mil E .++* pulg.0 $emplo>

Convertir un desplazamiento de .4 mils a velocidad en pulg.1segundo con el ventilador corriendo a *++ rpm.

V E /6.*F*4 # *++ # .401/4+ # *+++0

V E .+6GG pulg.1segundo

CONCL&SIÓN

Los diseñadores de sistemas deben observar las siguientes especi(caciones para asegurar niveles m"nimos aceptables de

(8)

J Los rotores deben ser balanceados dinámicamente antes de su instalación de acuerdo al grado de calidad :4.6 de &' *KF+1!B&

.*K.

J -espués de la instalación del rotor se deben correr los

ventiladores y tener un balanceo de auste en la planta del fabricante para reducir la vibración causada por otros componentes del

ventilador y el proceso del ensamble total siempre que la con(guración del ventilador lo permita.

J Las estructuras de montae deben ser r"gidas y lo

su(cientemente pesadas para soportar apropiadamente el ventilador. Las estructuras deben tener una frecuencia natural que está bastante

fuera del rango de operación del ventilador.

J $n aplicaciones sensibles a vibración se deben dar

consideraciones especiales para resortes o aislamiento de goma, o bases de inercia.

J @tilizando programas computarizados para selección de ventiladores y con la ayuda de un representante del fabricante, los

ventiladores deben seleccionarse para evitar puntos de operación inestables y que de cómo resultado una pulsación aerodinámica.

J Las alteraciones al diseño total del sistema deben incluir la consideración de cambios en el punto de operación del ventilador y

posible pulsación aerodinámica.

J @n mantenimiento apropiado, que incluye inspecciones periódicas del rotor y de los componentes de la transmisión y los

(9)
(10)
(11)

COMPARANDO LAS TOLERANCIAS DE BALANCEO DE API, ISO Y MIL-STD-167-1

Uper = desbalanceo residual permisible para cada plano de corrección en oz-in.

(12)

mostrados)

 N = operación máxima continua en rpm.

 = !rado de calidad de balanceo de "#$% a saber &.'% .% 1.0% etc.

*c + 10, ar!a stática de /rabajo Uper = &%' x (ar!a stática de /rabajo W2) 2 N 

"#$ Uper =  x &.01 x W2 2 N

3"4-#/5-1&-1 Uper = 0.1 W ( 0 a 10 rpm) = 000 W 2 N  ( 10 a 1000 rpm)

=  W 2 N (arriba de 1000 rpm) W = peso total del rotor

67" Uper =  W 2 N (W = ar!a stática de /rabajo) *c = 1. (rpm21000)  oz-in

TAB&LACION DE DATOS

 N 3"4-#/5-1& "#$  &.' "#$  . "#$  1.0 67" *c = 10, W2 Uper oz-in *uerza entri8. Uper oz-in *uerza entri8. Uper oz-in *uerza entri8. Uper oz-in *uerza entri8. Uper oz-in *uerza entri8. Uper oz-in *uerza entri8. 10 00 1000 000 '000 000 1 1&   1.'' 1.0    1 1 9 1&.0 '9.0 1:.0 :. &.' .  1 ' & 100 1'' 0.0 1.0 . '.9 . 1.: .0 &.& 1'.' &.& ':.9 '.9 0.0 &.0 '.0 1. 1.0 0.9 0.9 . .' 10.& 1.: 1. 1'.' .0 .0 1.0 0.& 0. 0. 1.9 '. .1 :.& 1.

(13)

000 &000 000 0.9 0.& 0. ' ' : '.9 '. . 1&9 01 ' 1. 1.' 1.1 &&. :. :.9 0.& 0. 0. &.& '1.: '.' 0. 0.' 0.' 1. 1:.1 &.0 http>11.evisaventiladores.com1evisaeb1ventiladores1bvibracion.htm

(14)

El Balanceo activo trae el e!ili"rio al

e!i#o $ientra% e%ta tra"a&an'o

 b; 6ndre< Winzenz

n este artculo% discutiremos los problemas comunes de la >ibración experimentados en >entiladores centr8u!os !randes ?ue lle>an a 8allas 8orzadas ; mantenimiento

impre>isto.

5escribirá el uso de un #istema de @alanceo de un Aentilador 6cti>o utilizado para controlar el desbalance relacionado de los ni>eles de >ibración en los >entiladoresB ; detalla tambiCn unas pocas instalaciones acti>as de balanceo ; describe los bene8icios ?ue estos usuarios Dan experimentado.

Ca!%a% co$!ne% 'e vi"raci(n en ventila'ore% centr)*!+o%

5esde ?ue se 8abrican los >entiladores centr8u!os Dan sido susceptibles a problemas relacionados con la >ibración. stos problemas >an de sencillas condiciones de

desbalance causadas por >ariaciones masi>as en el rotor del >entilador a asuntos más complejos relacionados a la alineación del eje% 8ati!a de cojinetes% o asuntos de

resonancia. n mucDos casos los ni>eles excesi>os de >ibración en >entiladores lle>an a 8allas impre>istas ; 8orzadas a realizar el mantenimiento. Una >ez ?ue a esta etapa% estas 8allas son necesarias para mantener la se!uridad. #in embar!o% la ma;ora de las >eces% son costosas tanto en mantenimiento como en pCrdida de producción.

4os estándares Dan sido puestos en cuanto a lo ?ue son los ni>eles aceptables de >ibración correspondientes a las >elocidades de operación. l !rá8ico mostrado en la *i!ura 1 es aceptado comEnmente como los criterios para ni>eles de >ibración en la ma;ora de los e?uipos de rotación. $tras 8uentes ?ue resumen los ni>eles aceptables de  balanceo ; >ibración para >entiladores inclu;en la norma 6N#"2636 0-:&% Fla

alidad del balanceo ; Ni>eles de Aibración para AentiladoresG e "#$ 1&:H00'% FAentiladores de Aalor industrial I las speci8icaciones para la alidad del balanceo ;  Ni>eles de AibraciónG.

4neas abajo encontraremos bre>es discusiones de las causas más comunes de >ibración en >entiladores centr8u!os junto con los sntomas ; mCtodos correspondientes para su corrección.

(15)

4a alineación apropiada entre un eje impulsor motriz ; el eje de un >entilador es un  paso importante ?ue debe de ser atendido apropiadamente durante la nue>a instalación

del >entilador o si un eje2rotor es reemplazado. l desbalance entre un eje motriz ; el eje del >entilador tiene como resultado tpicamente un componente armónico de

>ibración de 1J ; de J. 6 menudo% las condiciones del desbalance lle>arán tambiCn a ni>eles excesi>os de la >ibración axial. 5esde ?ue la ma;ora de los >entiladores no son e?uipados con las puntas axiales de >ibración% esto a menudo no es detectado a menos ?ue el componente de la >ibración J exista. l desbalanceo puede ser causado por una instalación descuidada de un e?uipo nue>o% pero más es causado comEnmente por ejes doblados o cojinetes impropiamente puestos. 4a desalineación debe poder ser detectada antes de poner en marcDa un >entilador utilizando un sistema de alineación láser o de dial para >eri8icar la alineación apropiada entre el eje motriz ; el eje del >entilador. #in embar!o% un eje doblado de >entilador no puede ser detectado por el sistema de

alineación% ?ue puede permitir ?ue los sntomas anteriores persistan.

Re%onancia

4os problemas de la resonancia son a menudo por dos aspectos en el ensamble de >entiladores de !ran tamaKo. l primer componente ?ue tiene ?ue ser atendido es el de las >elocidades crticas. 4a carto!ra8a crtica de la >elocidad es tpicamente una tarea ?ue es diri!ida durante el nue>o diseKo de un >entilador. 4a ma;ora de los >entiladores son diseKados para operar bajo las primeras >elocidades crticas. 4os 8actores a e>itar la >elocidad crtica en el diseKo del >entilador en !eneral% el espacio entre cojinetes% ; la necesidad de la >elocidad para operar para producir la corriente de aire re?uerida. #i un >entilador opera encima de la primera >elocidad crtica entonces se re?uiere de especial cuidado se tiene ?ue poner a los ni>eles de >ibración mientras el >entilador acelera Dasta la >elocidad operacional ;% lo ?ue es más importante% ?ue descienda Dasta detenerse de

(16)

la >elocidad operacional. 4os ni>eles excesi>os de >ibración al pasar por una >elocidad crtica pueden lle>ar a un daKo se>ero en los cojinetes% a los sellos% ; a otro e?uipo relacionado.

l se!undo 8actor% la resonancia estructural% puede ser mucDo más di8cil de predecir. ada estructura tiene una 8recuencia natural en la ?ue resonará. #i un >entilador opera en un punto estructural de la resonancia ?ue no es corre!ido lo puede lle>ar tambiCn a 8allas del componente. 4a resonancia estructural puede ocurrir a la >elocidad

operacional de 1J o en una 8recuencia armónica (J% 'J% etc.). 4a resonancia

estructural >ariará dependiendo de la >elocidad operacional ; puede ser identi8icada 8ácilmente realizando un mapeo !rá8ico de la amplitud de la >ibración% contra la 8recuencia% contra la >elocidad !iratoria.

Coneione% $ecnica% *lo&a%

4a Dol!ura en al!una conexión mecánica entre las tapas de los cojinetes% los pedestales% o las bases puede causar ni>eles excesi>os de >ibración o ampli8icar un problema ;a existente de desbalanceo. n la ma;ora de los casos% una conexión mecánicamente 8loja  producirá ni>eles armónicos de >ibración (J% 'J% etc.) ; puede producir tambiCn

ni>eles sub-armónicos de >ibración (J2% J2'% etc.). 4a >ibración causada por

conexiones mecánicamente 8lojas es a menudo mal dia!nosticada debido a la presencia de ni>eles sub-armónicos de >ibración.

Un se!undo tipo de >ibración causada por conexiones mecánicamente 8lojas puede suceder si Da; Dol!ura en la conexión entre el rotor del >entilador ; el eje del >entilador. n mucDos casos esto inducirá a un desbalanceo mu; alto relacionado al ni>el de

>ibración ?ue no es necesariamente a 1J de la >elocidad operacional. ste tipo de la >ibración puede ser mu; di8cil de determinar% pero se corri!e 8ácilmente si se

encuentra. n la ma;ora de los casos% una inter8erencia apropiadamente diseKada entre el eje del rotor ; el eje del >entilador puede ser aplicada para e>itar esta condición. E&e% o rotor% c!artea'o%

4a propa!ación de !rietas ;a sea en el eje del >entilador o en el rotor puede lle>ar a uno de los modos de 8alla más temidos en cual?uier tipo de e?uipo de rotación. #i no es detectada% una !rieta en un eje o en el rotor puede lle>ar 8inalmente al 8racaso

catastró8ico del >entilador. l descubrimiento temprano de la !rieta puede suceder si si la tendencia de la >ibración ; el análisis se lle>an acabo en el e?uipo. 4os sntomas comunes de una !rieta ?ue se propa!a en un >entilador son una salida ; crecimiento de un componente J de la >ibración junto con un cambio en la 8ase ; la amplitud del componente de la >ibración 1J.

Ma%a 'el Rotor De%"alancea'a

4a masa del rotor desbalanceada es la causa más comEn de >ibración excesi>a en la ma;ora de los e?uipos rotatorios ; en los >entiladores. l sntoma primario de masa de rotor desbalanceada es un ni>el alto de >ibración 1J. 4a >ariación masi>a del rotor lle>a a una condición de desbalanceo ?ue es causada tpicamente por cuatro 8actores  primarios.

(17)

1. 4as >ariaciones en la 8abricación pueden lle>ar a masa desi!ualmente distribuida en el rotor del >entilador.

. 4a exposición a altas temperaturas de corrientes de aire pueden causar el crecimiento desi!ual del rotor del >entilador.

'. l deterioro del rotor del >entilador causado ;a sea por el impacto de partculas a alta >elocidad o el paso corrosi>o de materiales por el >entilador.

. 4a acumulación desi!ual de materiales o contaminación en el rotor del >entilador.

ste asunto 8inal puede ser compuesto por pedazos !randes de materia ?ue se

descascarilla ; causa una >ibración mu; repentina ; excesi>a. 4as cantidades excesi>as de masa de rotor desbalanceada pueden tener dos e8ectos perjudiciales en los

>entiladores. 4a principal preocupación es la 8ati!a a lar!o plazo% causada por el

!olpeteo de 8uerzas ?ue ocurre al trabajar en ni>eles ele>ados de >ibración. 4a se!unda  preocupación% aun?ue rara en >entiladores% es el pase por >elocidades crticas en el

arran?ue o en el cierre. 4as cantidades excesi>as de masa de rotor desbalanceada  pueden ampli8icar tambiCn otras condiciones de >ibración% tal como una tapa 8loja de

cojinete o inestabilidad en una base. 3ucDas de las 8allas impre>istas ?ue suceden debido a la >ibración excesi>a son simplemente debido a cantidades excesi>as de masa de rotor desbalanceada.

Corri+ien'o la con'ici(n 'e 'e%"alanceo en lo% .entila'ore%

4as acciones correcti>as pueden ser tomadas para reducir la cantidad de desbalanceo% inclu;endo el remo>er las partculas acumuladas del rotor del >entilador o realizar un  balanceo mecánico del >entilador. #in embar!o% ambas acciones re?uieren una parada

del >entilador por al!En espacio de tiempo. La; dos mCtodos para corre!ir la masa desbalanceada para compensar la >ibración 1J% ;a sea un sistema de balanceo manual ?ue es a menudo portátil ; puede ser utilizado en mEltiples aparatos o un sistema dedicado de balanceo acti>o.

Correccione% $an!ale% 'e Balanceo

l procedimiento de la corrección manual del balanceo o balanceo 8uera de lnea (o88-line) es una acción comEn ?ue sucede durante la instalación de un e?uipo nue>o o como un procedimiento de mantenimiento durante una interrupción planeada. 4a corrección del balanceo es tpicamente un proceso de & partes ?ue si!ue estos pasosH

1. 4impie el impulsor de cual?uier aumento de partcula. . 3ida el án!ulo inicial de 8ase de >ibración ; ma!nitud.

'. 7are el >entilador ; a!re!ue una masa conocida de prueba en una ubicación conocida.

(18)

. 6rran?ue el >entilador ; mida el án!ulo resultante de 8ase de >ibración ;

ma!nitud. sta in8ormación entonces es utilizada para computar la sensibilidad del >entilador o respuesta para desbalanceo).

. Una >ez ?ue este cálculo es DecDo% el >entilador es detenido ; uno puede determinar la cantidad apropiada de masa para el peso del balanceo ; ?uC ubicación para a!re!ar el peso.

&. l peso es aKadido ; el >entilador se >uel>e a poner en marcDa.

4os pasos '-& de este proceso pueden ser repetidos mucDas >eces dependiendo del ni>el de experiencia del tCcnico ; la sensibilidad del e?uipo.

6un?ue una corrección manual del balanceo es tpicamente necesaria para los e?uipo nue>os durante su instalación ; durante cierres planeados% tiene los incon>enientes si usted necesita emplear esta tCcnica re!ularmente entre inter>alos planeados de

mantenimiento. 4a cantidad de tiempo re?uerida para realizar una corrección manual de  balanceo puede ser mu; di8cil de determinar% especialmente si esta relacionada a

asuntos de permisos% cooperación entre ser>icios% ; la 8acilidad para balancear el >entilador. uando se prende ; se apa!a constantemente un motor puede lle>ar a recortar la esperanza de >ida del motor ; otros e?uipos asociados. 4as aplicaciones >ariables de >elocidad pueden encontrar ?ue esas correcciones di8erentes de balanceo son necesarias para >elocidades di8erentes de operación. M% aun?ue raro en la ma;ora de las aplicaciones de >entilador% para el e?uipo ?ue pasa por >elocidades crticas% los ni>eles excesi>os de >ibración experimentados al pasar por una >elocidad crtica pueden lle>ar al des!aste excesi>o del cojinete ; de los sellos.

Correcci(n A!to$tica 'el Balanceo

Un se!undo tipo de #istemas de @alanceo Da estado en uso desde el inicio de los aKos 90s ; permite a los usuarios a controlar continuamente los ni>eles de >ibración del >entilador ; realizar correcciones de balanceo sin tener ?ue parar el >entilador. stos sistemas Dan sido llamados #istemas de @alanceo acti>o o automático. stos sistemas consisten en un sistema de control% en los anillos de balanceo% en los acti>adores% ; en los sensores de >ibración. l anillo de balanceo se conecta permanentemente al eje del >entilador. ste anillo contiene pesas internas ?ue pueden ser recolocadas para

compensar la masa desbalanceada ; compensar los ni>eles excesi>os de >ibración 1J (>er la *i!ura ).

(19)

O#eraci(n 'e !n Si%te$a Activo 'e Balanceo

4os sistemas acti>os operan en un concepto sencillo se sentido% ; entonces se ajustan. l sistema se pre-establece para monitorear continuamente los ni>eles de >ibración del >entilador. 4os usuarios pro!raman un ran!o 8ijo de tolerancia ?ue ellos determinen  para mantener el ni>el de >ibración. uándo los ni>eles de >ibración alcanzan el lmite

superior del ran!o de tolerancia% el sistema de control determina el án!ulo necesario de la ma!nitud ; la 8ase de corrección re?uerida para el balanceo.

l control manda el poder ; los datos a un acti>ador inmó>il ?ue se comunica con un anillo de balanceo !iratorio. l acti>ador ordena a las pesas internas en el anillo de  balanceo mo>erse a las nue>as posiciones para corre!ir el desbalanceo ; recuperar el

ni>el de >ibración 1J dentro del ran!o de tolerancia. 4a 8i!ura ' proporciona un es?uema de una con8i!uración tpica de este sistema.

A#licacione% #ara !n Si%te$a 'e Balanceo Activo

4os sistemas acti>os Dan sido empleados en numerosos tipos de e?uipos de rotación. #u e8icacia en controlar los ni>eles de >ibración 1J causados por la masa del rotor

desbalanceada en >entiladores de tipo industrial continEa siendo un área primaria de aplicación. La; tres tipos primarios de >entiladores en los cuales se Da aplicado el uso

(20)

de estos sistemas acti>os de balanceo. stos sonH /ipo " #oporte en lnea% transmisión sencilla. /ipo "" 5oble #oporte% transmisión #encilla. /ipo """ 5oble soporte% doble /ransmisión (>er la *i!ura ).

4a con8i!uración del >entilador de8ine el nEmero de corrección de balanceo re?uerido. 4a >ariación en el tamaKo ; la >elocidad operacional del >entilador% as como las

condiciones del proceso% dictan la capacidad necesaria de la corrección ?ue es construida en el sistema acti>o.

Bene*icio% 'e !tili/ar e%to% Si%te$a%

l objeti>o primario de un sistema acti>o es de mantener los ni>eles de >ibración bajos mientras el proceso continEa operando. 3antener mu; bajos los ni>eles de >ibración tiene tpicamente impactos positi>os en una planta desde el punto de >ista de los departamentos de producción ; del de 3antenimiento. l bene8icio más >isible es la Dabilidad de mejorar la con8iabilidad ; la disponibilidad de los >entiladores. sto lle>a a reducciones en los cierres plani8icados e impre>istos de 3antenimiento% ?ue son

utilizadas tpicamente para medios más con>encionales de corre!ir problemas de desbalanceo. 3ucDos usuarios encuentran tambiCn ?ue además de eliminar las 8allas impre>istas e intermitentes de mantenimiento a menudo pueden extender el perodo entre cierres planeados de mantenimiento. 7ara plantas ?ue planean esperar de 1 a  aKos entre cierres planeados de mantenimiento% esto puede tener un impacto mu;  positi>o.

4os bene8icios secundarios inclu;en la extensión de >ida del e?uipo% tal como los

motores% cojinetes% ; sellos al operar por periodos más lar!os de tiempo en ni>eles bajos de >ibración. $tro bene8icio es la reducción de consume de combustible ; ener!a al limitar el numero de arran?ues ; paros en el proceso.

Interact!an'o con !n Si%te$a Activo 'e Balanceo

Uno de los datos más Etiles ?ue pueden ser obtenidos de un sistema acti>o es un e>ento de re!istro de datos ?ue rastrea el uso del sistema. ste re!istro demostrará al empezar ; al terminar los ni>eles de >ibración ; la 8ase de án!ulo as como la cantidad de tiempo re?uerido para completar una corrección de balanceo.

4os datos almacenados pueden ser utilizados tambiCn para calcular e8ecti>amente una corrección manual re?uerida% por lo tanto% reduciendo el tiempo ; los es8uerzos

re?ueridos durante un cierre planeado. sta in8ormación puede ser accesada a tra>Cs de un so8t<are de control basado en Windo<s. l sistema puede ser atado tambiCn en un #istema 5i!ital del ontrol (5#) a tra>Cs de una inter8ase 74. sto pone el control del sistema ; los datos delante de un operario siempre.

l sistema de balanceo tambiCn puede ser accesado >a un módulo de inter8ase remoto (>er la *i!ura ) esto permite al sistema ser >inculado a una red de la planta a tra>Cs de una conexión de tDernet. sta inter8ase remota proporciona una conexión se!ura para usuarios remotos para descar!ar los datos Distóricos% acceso ; el cambio de parámetros% monitorear los ni>eles de >ibración ; los permisos completan el control del sistema de cual?uier ubicación alrededor del mundo.

(21)

Re%!$en 0 Concl!%ione%

La; mucDas causas di8erentes de >ibración en el e?uipo de rotación. n el orden para tratar e8ecti>amente con todas las causas% es necesario implementar un 7ro!rama de mantenimiento basado en condición e8ecti>o ?ue pueda identi8icar las situaciones  problemáticas antes ?ue se >uel>en las situaciones potencialmente catastró8icas.

4os sistemas acti>os de balanceo a;udan a resol>er una de las causas más comunes de >ibración excesi>a en e?uipo rotatorio compensando la masa del rotor desbalanceada. stas correcciones son DecDas mientras el e?uipo esta en ser>icio% e>itando costosas 8allas. 4as reducciones en amplitudes de >ibración 1J causadas por masa de rotor desbalanceada a;uda tambiCn a aminorar los e8ectos de otras condiciones de >ibración tales como la Dol!ura en cojinetes o ri!idez inadecuada en soportes% pedestales o bases. 4os sistemas acti>os pueden proporcionar in8ormación detallada de tendencias ?ue  puede ser utilizada para los cierres plani8icados ; para participar en identi8icar otros  problemas de >ibración ?ue no son demostrados estrictamente en la >elocidad

operacional de 1J. l uso apropiado de estos sistemas permite a los usuarios aumentar la disponibilidad del e?uipo% trabajar en un proceso de producción más estable% ;% Eltimamente lle>a a una operación más se!ura ; más con8iable.

6nd; Winzenz es erente de 7roductos en 4$O5 orporation% con cede en ar;% N% UU. 6nd; Da trabajado en la industria del @alanceo ; la Aibración por 11 aKos ; Da desempeKado di>ersas posiciones tanto en Aentas como en "n!eniera en este tiempo. 6nd; puede ser contactado en 6nd;PWinzenzQlord.com o al :1:-&9-:91.

Re*erencia%

1. 6dams% 3aurice 4.% Ootatin! 3acDiner; Aibration I *rom 6nal;sis to /roublesDootin!% 3arcel 5ecRer% "nc.% 001

. Larris% ;ril 3.% #DocR S Aibration LandbooR-/Dird dition% 3cra< Lill @ooR ompan;% 1:99

'. Larto!% T.7. 5en% 3ecDanical Aibrations% 5o>er 7ublications% 1:9 . 6N#"2636 0-:&% @alance ualit; and Aibration 4e>els 8or *ans . "#$ 1&:H00'% "ndustrial *ans I #peci8ications 8or @alance ualit; and

Aibration 4e>els

http>11con(abilidad.net1print1elbalanceoactivotraeelequilibrioalequipo mientrasestatrabaando1

(22)

Desequilibrio y medida de la fase vibratoria

El desequilibrio constituye la principal causa de avería de tipo mecánico en máquinas rotativas. Este fenómeno es debido a la distribución no uniforme de masas sometidas a rotación.

Medida de fase

La fase es un parámetro íntimamente relacionado con la vibración, ya que aparece en la realización de los equilibrados, la detección de resonancias y en el diagnóstico de averías. Definiremos el concepto de fase de dos formas diferentes para una meor comprensión!

(23)

• Es el tiempo de adelanto o retraso que tiene una onda vibratoria respecto a otra de igual

período o con respecto a una marca de referencia. La frecuencia de ambas ondas vibratorias y de la marca de referencia "an de ser iguales.

• #ísicamente, la fase es el movimiento relativo que tiene un punto de la máquina con respecto

a otro.

La aplicación práctica de las lecturas de fase en el diagnóstico de averías está en la diferenciación de problemas mecánicos que se manifiestan espectralmente de la misma forma, como son! el desequilibrio, la e$centricidad, el ee deformado, la desalineación, las "olguras, la falta de rigidez en la bancada y la resonancia armónica.

%eamos diferentes tecnologías aplicables a la medida de fase.

&ulso tacom'trico

&ara realizar lecturas de fase utilizando un pulso tacom'trico es necesario lo siguiente! un analizador monocanal con entrada ((L y con filtro, un sensor de vibración, un pulso tacom'trico generado por un fototaco o un taco magn'tico y una marca de referencia, que para el primer caso será una cinta

reflectante y para el segundo un c"avetero. &ara la realización de la medida se coloca el sensor en el punto que se desea analizar y se orienta el tacómetro "acia la cinta reflectante para obtener el pulso tacom'trico. La salida del tacómetro se conecta a la entrada ((L del analizador y el sensor a su entrada de vibración. La se)al ((L determina la frecuencia que se desea filtrar y el usuario determina el anc"o de la banda de frecuencia a trav's del analizador. El analizador presentará en pantalla directamente el posicionamiento del má$imo de vibración de la se)al filtrada con respecto a la marca de referencia.

El gráfico de la #igura *+ permite interpretar claramente el cálculo de la fase realizado en el analizador monocanal. El cálculo es una simple regla de tres que da como resultado la siguiente ecuación!

La ventaa más destacable del tacómetro de infrarroos o luz visible es la fiabilidad, la

repetibilidad y la rapidez en la realización de las lecturas siendo el principal inconveniente la necesidad de parar la máquina para la colocación de la cinta refectante. Este es un inconveniente que no presentan los tacómetros magn'ticos.

Figura 34: Cálculo de la fase con marca de referencia. Lámpara estroboscópica

Las lecturas de fase con lámpara estrobocópica se pueden realizar mediante dos t'cnicas. La primera es totalmente análoga a la del pulso tacom'trico, en este caso la lámpara act-a como un generador de pulso a la frecuencia que desea el usuario, normalmente la velocidad de giro del ee. La lámpara dispone de una salida que envía el pulso ((L al analizador. &ara que el pulso se genere siempre en el mismo instante de cada giro del ee, "a de congelarse la imagen del ee siempre en la misma posición. &ara congelar la imagen siempre en la misma posición "ay que fiarse en marcas claras del ee o en la c"aveta y mantener  el ee en la misma posición a lo largo de todas las mediciones de fase. El valor de la lectura de fase

aparecerá en la pantalla del analizador al igual que ocurre con el pulso tacom'trico.

La segunda t'cnica de lectura de fase no presenta la lectura de fase en el analizador, sino que se visualiza seg-n la posición del ee al congelarlo la lámpara estroboscópica, en este caso la lámpara no envía ning-n tipo de se)al al analizador. La cadena es la siguiente, el analizador filtra la se)al del sensor a la frecuencia fiada por el usuario, cada vez que el analizador detecta el má$imo de vibración envía una se)al a la lámpara para que emita un destello. Estos destellos tienen la frecuencia de giro del ee, por lo que el ee se observa congelado. (omando como referencia un punto f io, se mide la f ase como el posicionamiento de una marca de ee con respecto a la referencia fia.

(24)

La ventaa de la lámpara es que no "ay necesidad de parar la máquina para colocar la cinta reflectante sobre el ee y el inconveniente es que se requiere mayor tiempo y es menos precisa la lectura que la realizada con el fototaco.

 nalizador multicanal

Las medidas con analizadores multicanales /dos canales como mínimo0 consisten en realizar al menos dos lecturas de vibración con dos sensores simultáneamente y, comparar sus ondas en el tiempo. De la comparación se deducirá la fase de una de las medidas con respecto a la otra. #iando un sensor en uno de los puntos del sistema y colocando otro sensor en los puntos de inter's podemos realizar lecturas de fase relativas al sensor fio. La principal ventaa de este m'todo, además de su rapidez, es que no

requiere la utilización de fototaco o de lámpara estroboscópica. Esta t'cnica suele utilizarse para análisis 1D2 /simulación de la deformación en funcionamiento0 y análisis modal.

3ausas de desequilibrio

4na máquina rotativa está desequilibrada cuando el centro de gravedad o centro de masas del rotor no coincide con su centro de rotación o centro geom'trico. Esto origina una fuerza centrífuga que /como se puede ver en la #igura *50 parte desde el centro de rotación en dirección radial y gira síncronamente con el ee generando una vibración e$cesiva.

Entre las características principales del desequilibrio podemos destacar las siguientes!

• La amplitud de la vibración es directamente proporcional a la cantidad de desequilibrio.

• La variación en el desequilibrio originará una variación en el ángulo de fase.

• La suma vectorial de todos los pesos situados en un mismo plano es igual a un -nico

desequilibrio.

• La cantidad de desequilibrio se puede medir en peso y distancia desde el centro del rotor al

peso /gramos $ cm0. 4n aumento del peso de desequilibrio o del radio originará un aumento directamente proporcional a la cantidad de desequilibrio donde!

m = masa de desequilibrio d = radio de desequilibrio w = velocidad angular

Las fuentes de desequilibrio pueden tener origen y naturalezas muy diferentes como pueden ser las siguientes!

•  glomeración desigual de polvo en los rotores de un ventilador.

• Erosión y corrosión desigual de las impulsoras de una bomba.

• #alta de "omogeneidad en partes coladas, como burbuas, agueros de soplado, y partes

(25)

• E$centricidad del rotor.

• Distribución desigual en las barras

de rotor de motores el'ctricos o en el bobinado.

• #le$ión de rodillos, especialmente

en máquinas de papel.

• &esos de equilibrado que faltan.

• Ee fle$ionado.

• E$centricidad.

Figura 35: Fuerza centrífuga en desequilibrio.

(ipos de desequilibrio

Desequilibrio en un -nico plano

(ambi'n se conoce como desequilibrio estático y es, normalmente, el problema más fácil de

diagnosticar. &roducido generalmente por desgaste radial superficial no uniforme en rotores en los cuales su largo es despreciable en comparación con su diámetro. La causa es una f uerza centrífuga que provoca un desplazamiento del ee de giro en la dirección radial. En ausencia de otros problemas, el desequilibrio genera una forma de onda sinusoidal pura y, por lo tanto, el espectro presenta vibración dominante con una frecuencia igual a 6$ 7&M del rotor.

&ara corregir el problema se recomienda equilibrar el rotor en un sólo plano /en el centro de gravedad del rotor0 con la masa adecuada y en la posición angular calculada con un equipo de equilibrado.

2íntomas!

• %ibración radial en 6$ 7&M.

• Diferencia de fase entre la

dirección "orizontal y vertical de un rodamiento de apro$imadamente 89:, permitiendo una variación aceptable de ;*9:.

• <o e$isten diferencias de fase

significativas en las lecturas de fase entre ambos lados del ee en las direcciones radiales.

Figura 3: !esequilibrio en un "nico #lano.

Desequilibrio en dos planos

El origen del desequilibrio no es una fuerza, sino un par de fuerzas. Es decir, dos fuerzas de igual magnitud y de sentidos contrarios. El desequilibrio dinámico se da en rotores medianos y largos. Es debido principalmente a desgastes radiales y a$iales simultáneos en la superficie del rotor. El espectro presenta vibración dominante y vaiv'n simultáneo a frecuencia igual a 6$ 7&M del rotor.

(26)

&ara corregir el problema se recomienda equilibrar el rotor en dos planos con las masas adecuadas y en las posiciones angulares calculadas con un equipo de equilibrado.

2íntomas!

• %ibración radial en 6$ 7&M.

• Diferencia de fase entre la dirección

"orizontal y vertical de un rodamiento de apro$imadamente 89:,

permitiendo una variación aceptable de ;*9:.

• La lectura de fase radial nos

indicará que ambos lados del ee

tienen un desfase de 6=9:. Figura 3$: !esequilibrio en dos #lanos. 7otor en voladizo

1curre en rotores que se encuentran en el e$tremo de un ee. Es producido por desgaste en la superficie del rotor y doblamiento del ee. El espectro presenta vibración dominante en 6$ 7&M del rotor, muy notoria en dirección a$ial y radial.

&ara corregir el problema, primero debe verificarse que el rotor no tenga e$centricidad y que el ee no est' doblado, luego debe realizarse el equilibrado adecuado.

2íntomas!

• %ibración radial en 6$ 7&M.

• %ibración a$ial en 6$ 7&M.

• Diferencia de fase entre la dirección

"orizontal y vertical de un rodamiento de apro$imadamente 89:,

permitiendo una variación aceptable de ;*9:.

• Lecturas de fase a$ial entre los

rodamientos normalmente en fase.

• Las medidas de fase en dirección

radial entre los rodamientos podrían estar desfasados.

Figura 3%: !esequilibrio de rotor en voladizo.

Descripción El desequilibrio se produce en los ees rotativos cuando el centro de giro y el centro de masas no coinciden. La fuerza centrifuga e$citadora que se genera es proporcional al cuadrado de la velocidad de giro del ee. &or lo tanto, a mayor velocidad de giro, meor deberá ser el equili brado del rotor.

Síntomas Valor global  umento de la vibración en su valor global. Espectro &ico en 6$ 7&M, nivel de ruido espectral bao.

(27)

Fase %alor de fase estable, cambio de fase de 89: cuando se desplaza la posición del sensor 89:.

Forma de onda 2e llega a apreciar una onda senoidal.

Severidad Depende de la máquina, pero en general los valores de alarma oscilan entre * y = mm>s.

Medición En una máquina en la que aparece un problema de desequilibrio encontraremos un aumento de la amplitud de vibración en las medidas radiales, mientras que las medidas de vibración a$ial pueden permanecer baas. En máquinas con rotor en voladizo tambi'n encontraremos un aumento de la amplitud de la vibración en las medidas a$iales.

Detección La detección del desequilibrio se realiza mediante la configuración de una banda frecuencial de 9,=$ a 6,?$ 7&M. El seguimiento de los valores medidos en esta banda nos da el primer síntoma de que la máquina puede sufrir un desequilibrio.

Corrección El desequilibrio se corrige con una compensación de masa en el punto adecuado. 3on un analizador de vibraciones se puede localizar el peso y el ángulo para colocar esta masa de compensación.

&abla %: !iagn'stico del desequilibrio.

http>11sinais.es1Aecursos1Curso

(28)

()*&+F+C,C+- 

• El desbalanceo constituye la causa numero uno de vibración en maquinaria rotativa. Esto implica necesariamente, que los rodamientos están sometidos a cargas dinámicas adicionales, las cuales, en promedio, reducen la vida útil de estos últimos a una octava parte. Otros componentes de maquina tales como ejes, acoples, y bases de soporte, son sometidos a condiciones de fatiga mucho más severas. • Este es un programa de entrenamiento tendiente a fortalecer las destreas en la detección del !esbalanceo, y principalmente su "olución mediante el #alanceo !inámico tanto en sitio como en taller, aportando  para cada caso los criterios de evaluación y de aceptación.

/0(1&+2/* , C)+6 

• #alancear rotores por m$todos dinámicos, en sitio.

• Establecer los criterios de aceptación para rotores balanceados,

e%ternamente, en talleres de reparación.

• &omprobar de forma práctica los conceptos y criterios e%puestos.

Contenido del Curso 0alanceo !inámico de 6otores 70!6+8

• 'ecuento de &onceptos #ásicos( )mplitud, *eriodo, +ase, +recuencia, Espectro, +orma de Onda, "eal !emodulada, +recuencias &aracter-sticas

en maquinaria.

• edición de la +ase( "e tratará en detalle el concepto de la +ase dentro del comportamiento vibratorio de una maquina o sistema. "e e%plicaran las formas de capturar este parámetro( /ámpara Estroboscópica, "ensor  de *ro%imidad, &elda +otoel$ctrica, "ensor /áser, y su aplicación

(29)

• 0dentificación del !esbalanceo( "e e%ponen las diferentes formas en que  puede manifestarse el !esbalanceo en diferentes tipos de rotores.

• &riterios de Evaluación( "e e%pondrán diferentes cartas y su correlación con las normas 0"O, establecidas para evaluar el desbalanceo residual de

un rotor.

• $todos de "olución( 12 #alanceo Estático( 3na resea sobre las formas de mejorar el equilibrio de un rotor, de forma estática. )plicación práctica. • $todos de "olución( 42 #alanceo !inámico, "in +ase( "e e%ponen las situaciones donde es viable o necesario aplicar este procedimiento. • $todos de "olución( 52 #alanceo !inámico, $todo 6ectorial(  )poyándose en la medición de la +ase, y aplicando carta gráfica. Esta es la base conceptual para la aplicación de *rogramas instalados en algunos equipos para medición de vibraciones. "e e%plicará el m$todo de los

&oeficientes de 0nfluencia.

• $todos de "olución( 72 #alanceo !inámico, *rograma &omputariado(  )plicación de los programas para la solución y registro de los trabajos de #alanceo en uno y dos planos. +unciones de compensación, rotores asim$tricos, repartición de pesos, totaliación de pesos, registro de &oeficientes de 0nfluencia para lograr #alanceos rápidos. )plicación para

rotores en voladio.

• 'esonancia y !esbalanceo( /a importancia de identificar las frecuencias naturales, cercanas a frecuencias operativas, y decidir si es recomendable

o no modificar las estructuras antes de balancear.

• "ección *ráctica( "e realiará trabajo de campo, con rotores reales, identificando el desbalanceo, y aplicando los m$todos de solución.

(30)

Referencias

Documento similar

Schmitt considerará pues la petición de indemnidad como punto de parti- da de una evolución que a lo largo del Segundo Imperio irá reflejando la pa- radójica victoria del

La oferta existente en el Departamento de Santa Ana es variada, en esta zona pueden encontrarse diferentes hoteles, que pueden cubrir las necesidades básicas de un viajero que

Pero para evitar todo riesgo, Olivares organizó un control interno; después de la llegada del cardenal-infante a Flandes en 1634, el mismo marqués de Aytona recibió

Se dice que la Administración no está obligada a seguir sus pre- cedentes y puede, por tanto, conculcar legítimamente los principios de igualdad, seguridad jurídica y buena fe,

Este documento destaca nuestra visión colectiva sobre la Transición Energética Justa, tal como debatieron las/os participantes y se expresó en los seminarios virtuales de Amigos de

Por ello es que, realmente, no se puede hablar de una actitud radical y beligerante de parte del colectivo que se manifiesta a favor del reconocimiento legal del

1. LAS GARANTÍAS CONSTITUCIONALES.—2. C) La reforma constitucional de 1994. D) Las tres etapas del amparo argentino. F) Las vías previas al amparo. H) La acción es judicial en

“Eso sí, es que los hombres acá se apartan más de eso [de la transmisión de los saberes ancestrales], primero pues porque la mayoría tiene que trabajar, y el