• No se han encontrado resultados

TKNN-equations for Dirac-like operators

N/A
N/A
Protected

Academic year: 2020

Share "TKNN-equations for Dirac-like operators"

Copied!
29
0
0

Texto completo

(1)

TKNN-equations

for

Dirac-like operators

Giuseppe De Nittis

(LAGA,Université Paris 13)

——————————————————————————–

IVrd MathematicalMethods inQuantumMechanics

Bressanone, Italy. February 14-19, 2011

——————————————————————————–

(2)

Outline

1 Introduction

Spectrum of the Harper equation Hall conductivity and TKNN-equation “Dirac-like” Harper Hamiltonians

2 Generalized TKNN-equations

Noncommutative Torus and(q,r)-representations The main result (weak form)

The main result (strong form)

3 The geometric analysis Geometric duality formula

(3)

•TheHarper equationis

(

ψ(x−θ) +ψ(x+θ)−[E−2 cos(2πx)]ψ(x) =0

ψ∈L2(R).

Deformation parameterθ∈R;EnergyE∈R.

•Extensively studied in the last six decades (Harper,Rauh, Wilkinson,Bellissard,Helffer - Sjöstrand,...,D. - Panati) as

effective modelfor thequantum Hall effect(QHE) in the limit

θ−1:=B→∞.

•The Harper equation is the eigenvalues equation for

Hθ(1):=Dθ+K

(4)

•The spectrum ofHθ(1)isCantor-typeifθ∈R\Q(ten martini

problem,Avila - Jitomirskaya, 2009).

•ifθ=M/NwithN,M∈Qand co-prime

σ(H(M1)

N

) =I1∪I2∪. . .∪IN∗, N∗= (

N−1 ifN even

N ifN odd.

whereIj⊂Rcompact,Ii∩Ij=/0ifi6=j.

•AnyIj defines aspectral projection

pj:=

1 i2π

I

Cj

1

H(M1) N

−λ

whereCj⊂C\σ(H(M1) N

)is aJordan curveenclosingIj.

(5)

Outline

1 Introduction

Spectrum of the Harper equation Hall conductivity and TKNN-equation “Dirac-like” Harper Hamiltonians

2 Generalized TKNN-equations

Noncommutative Torus and(q,r)-representations The main result (weak form)

The main result (strong form)

3 The geometric analysis Geometric duality formula

(6)

•Letgj the gap betweenIj andIj+1. TheHall conductivitydue

to the energy spectrum up togj is

σHall(gj) : =

e2

i} Tr

Pj

[Pj;Λ1]; [Pj;Λ2] (Kubo formula) = e2 h i 2π Z

T2trN

Pj(k)

∂k1Pj(k);∂k2Pj(k)

dk

| {z }

(Chern number)

whereΛi,i=1,2 arestep functions(in position and momentum

!), trNis anN-dimensional trace and

Pj:=

Z ⊕

T2Pj(k)dk, Pj(k)∈B(C

N) (Bloch-Floquet)

•TheKubo-Chern formulahas a long story (Thouless et al., Stˇreda,Bellissard,Avron,Graf,Elgart-Schlein,. . .) still open !

(7)

•C(Pj)is an integer (Chern number) and verifies the

Diophantine equation

N C(Pj) +M sj=Rj, j=1, . . . ,N∗

sj∈Z, |sj|<N, θ=

M

N, Rj=

  

 

j ifj<N/2

j+1otherwise ifNeven

j ifNodd.

•TKNN-equationprovides the (unique) value ofC(Pj).

(8)

Outline

1 Introduction

Spectrum of the Harper equation Hall conductivity and TKNN-equation “Dirac-like” Harper Hamiltonians

2 Generalized TKNN-equations

Noncommutative Torus and(q,r)-representations The main result (weak form)

The main result (strong form)

3 The geometric analysis Geometric duality formula

(9)

•Dαψ(x) :=ψ(x−α) +ψ(x+α), α∈R, Kψ(x) :=2 cos(2πx).

•The (1-dimensional)θ-Harper Hamiltonian:

Hθ(1):=Dθ+K on H1:=L2(R).

•The (2-dimensional,1-twisted)θ-Harper Hamiltonian:

Hθ(2,1):= K Dθ−12 Dθ1

2

−K

!

on H2:=L2(R)⊗C2.

•Hθ(2,1)isDirac-like.(i)Model forQHE in graphene(Bellissard). (ii)Effective Hamiltonian for the coupling of Landau levels in strong magnetic field regime (D. - Panati).

•Hθ(1)andHθ(2,1)areiso-spectral, i.e. same system of energy bands and gaps.

PROBLEM !How to computeC(Pj)for the spectral

(10)

•T1ψ(x) :=ei2πxψ(x), T2αψ(x) :=ψ(x−α), α∈R.

Dα=T2α+ (T2α) †

, K =T1+T1†, T1T2=ei2παT2T1.

•For anyq∈N\ {0}

Uq:=

     

1 0 . . . 0

0 ei2πq . . . 0

..

. ... . .. ...

0 0 . . . ei 2π(q−1)

q      

, Vq:=

   

0 . . . 0 1 1 . . . 0 0 ..

. . .. ... ... 0 . . . 1 0

     .

•For anyr∈ {±1, . . . ,±(q−1)}coprime with respect toq

Uq:=T1⊗Uq, Vqθ,r :=T2ε⊗V

r

q, ε(θ,q,r) :=θ−

r q

•The (q-dimensional,r-twisted)θ-Harper Hamiltonian:

Hθ(q,r):=Uq+Uq†+Vqε,r+ Vqε,r

on Hq:=L2(R)⊗Cq.

PROBLEM !How to computeC(Pj)for the spectral

(11)

Outline

1 Introduction

Spectrum of the Harper equation Hall conductivity and TKNN-equation “Dirac-like” Harper Hamiltonians

2 Generalized TKNN-equations

Noncommutative Torus and(q,r)-representations The main result (weak form)

The main result (strong form)

3 The geometric analysis Geometric duality formula

(12)

Non-Commutative Torus (NCT)

“abstract”C∗-algebraAθ

u∗=u−1, v∗=v−1, uv=ei2πθvu,

θ∈R,

withuniversal normkak:=sup{kπ(a)kH |πrep. ofAθ onH}.

(q,r)-representation:

Observing that UqVqε,r =ei2πθVqε,rUq then

Πq,r :Aθ →B(Hq), Πq,r(u) :=Uq, Πq,r(v) :=Vqε,r.

is afaithfulrepresentation.

THEOREM (isospectrality)

For anyq,r and for anya∈Aθ

(13)

Black and white butterfly (Hofstadter, 1976)

h:=u+u∗+v+v∗∈Aθ (universal Harper operator)

(14)

Outline

1 Introduction

Spectrum of the Harper equation Hall conductivity and TKNN-equation “Dirac-like” Harper Hamiltonians

2 Generalized TKNN-equations

Noncommutative Torus and(q,r)-representations The main result (weak form)

The main result (strong form)

3 The geometric analysis Geometric duality formula

(15)

•Canonical trace (measure structure):

R

−−:Aθ →C

R

−−−(unvm) =δn,0δm,0.

state(linear, positive, normalized), faithful(R

−−−(a∗a) =0⇔a=0), trace property(R

−−−(ab) =R

− − −(ba)).

•Canonical derivations (differentiable structure):

∂−−−j :Aθ →Aθ j=1,2

∂−−−1(unvm) =i2πn(unvm), ∂−−−2(unvm) =i2πm(unvm).

symmetric(∂−−−j(a∗) =∂−−−j(a)∗), commuting(∂−−−1◦∂−−−2=∂−−−2◦∂−−−1),

trace-compatibility(R

−−−◦∂−−−j=0).

•universal Chern number:

C1:Proj(Aθ)→Z

C1(p) := i21π

R

− −

(16)

•Letd∈Aθ (such thatd=d∗). IfI$σ(d)is connected then

p:= 1

i2π

I

CI

1

d−λ dλ ∈ Proj(Aθ), p6=0,1.

•Ifθ=M/N then

σ(d) =I1∪. . .∪IN∗, 16N∗6N

Ij⊂Rdisjointintervals. Moreover

Rk:=NR

−−:Proj(AM/N)−→ {0, . . . ,N},

Rk(p) =0 (resp. =1) iffp=0 (resp.=1).

•SinceΠq,r is faithful for anyq,r, one has that the spectral

projection ofΠq,r(d)∈B(Hq)related to the energy bandIj is

(17)

THEOREM (D. - Landi, D. - Panati, weak form)

For anyp∈Proj(AM/N)letCq,r(p) :=C(Πq,r(p)), then

N Cq,r(p)−(qM−rN) C1(p) =qRk(p).

•IfN is oddh=u+u−1+v+v−1hasNdisjoint energy bands. Sincep1⊕. . .⊕pN=1then Rk(pj) =1 and|C1(pj)|6N/2;

N Cq,r(pj)−(qM−rN) C1(pj) =q ∀ j=1, . . . ,N.

•LetPj:=p1⊕. . .⊕pj (j-th gap projection), then

N Cq,r(Pj)−(qM−rN) C1(Pj) =q j ∀ j=1, . . . ,N.

•Letq=1 andr =0. Setsj:=−C1(Pj)andC(gj) :=C1,0(Pj),

then

NC(gj) +Msj=j

(18)

Colored butterflies (Hofstadter, 2004)

θ=NM =14, j=2, P2=p1⊕p2, Rk(P2) =1+2=3

4C(g3) | {z }

=1

+1 −C1(P3)

| {z }

=−1

(19)

Outline

1 Introduction

Spectrum of the Harper equation Hall conductivity and TKNN-equation “Dirac-like” Harper Hamiltonians

2 Generalized TKNN-equations

Noncommutative Torus and(q,r)-representations The main result (weak form)

The main result (strong form)

3 The geometric analysis Geometric duality formula

(20)

•Ifθ∈R\Q(irrational condition)

R

−−−:Proj(Aθ)→Z+θZ∩[0,1]

(Pimsner-Voiculescu, 1980) R

−−−(p) =M(p)−θ C1(p)

whereM :Proj(Aθ)→Zuniquelyspecified by 06R

− −−61.

•Letdθ =f(u,v)where the dependence inθ is only in the

commutation relation betweenuandv.dθ has astable gapif

for allθ∈(a,b)⊂R there exists a ε∗∈R\σ(dθ).

•LetPθ the spectral projection ofdθ related to(−∞,ε∗), then

(21)

Ifθ=M/Nandp∈AM/N

NCq,r(p)−(qM−rN) C1(p) =q Rk(p)

Cq,r(p) =q

Rk(p)

N +

qM N −r

C1(p)

Cq,r(p) =q −−R−(p) +θC1(p)

−r C1(p).

THEOREM (D. - Landi, strong form)

Letdθ ∈Aθ selfadjoint with astable gapat energyε∗for all

θ∈(a,b)andPθ the spectral projection in(−∞,ε∗). Then

Cq,r(Pθ) =qM(Pθ)−r C1(Pθ)

(22)

Outline

1 Introduction

Spectrum of the Harper equation Hall conductivity and TKNN-equation “Dirac-like” Harper Hamiltonians

2 Generalized TKNN-equations

Noncommutative Torus and(q,r)-representations The main result (weak form)

The main result (strong form)

3 The geometric analysis

Geometric duality formula

(23)

•Bundle representation:

There exists a rankNHermitian vector bundleEq→T2and a

unitary map

Fq,r :Hq−→L2(Eq), (generalized Bloch - Floquet)

such that

AM/N Π−→q,r Πq,r(AM/N)

Fq,r...Fq−,r1

−→ Γ(End(Eq))$B(L2(Eq)).

MoreoverEq isnot trivialandC(Eq) =q.

•From universal projections to subbundles:

IfP(·)∈Γ(End(Eq))then

G

k∈T2

RangeP(k) −→ T2, subbundleofEq,

then for anyq,r

(24)

•Untwisting (continuous) mapsof the two-dimensional torus:

T23(eik1,eik2)7−→α (eiNk1,eik2)T2

T23(eik1,eik2)7−→β (eiM0k1,eik2)T2

M0:=qM−rN.

•Determinant Harper line bundle:

ι :det(Eq)→T2, C(det(Eq)) =C(Eq) =q

THEOREM (D. - Landi, D. - Panati, geometric duality)

For anyP∈Proj(AM/N)the exists areferencevector bundle

L0(P)→T2such that

α∗Lq,r(P)'β∗L0(P)⊗det(Eq)

(25)

Outline

1 Introduction

Spectrum of the Harper equation Hall conductivity and TKNN-equation “Dirac-like” Harper Hamiltonians

2 Generalized TKNN-equations

Noncommutative Torus and(q,r)-representations The main result (weak form)

The main result (strong form)

3 The geometric analysis

Geometric duality formula

(26)

•Simmetries:

For anyq,r andθ =M/N:

S1(q,r):=T 1

1 ⊗U

a

q, S

(q,r)

2 :=T 1

q

2 ⊗V

−1

q , [ra]q=−1

S1(q,r);S(2q,r)

=

S1(q,r); Πq,r(AM/N)

=

S2(q,r); Πq,r(AM/N)

=0

•Simultaneous generalized eigenspace:

For anyk∈R2letΥk ∈Dq0 :=D0(R)⊗Cqsuch that

S1(q,r)Υk =ei2πk1 Υk, S2(q,r)Υk=ei2πk2 Υk.

Then

Υk=

N−1

j=0

cjζ(jq,r)(k) where ζ(jq,r)(k) :=

     

ζ(jq,r)(k)|(·;0) ζ(jq,r)(k)|(·;1)

.. .

ζ(jq,r)(k)|(·;q−1)

(27)

•Explicit formula for the components:

ζ(jq,r)(k)|(·;`) :=

r

|M0| N m

Ze

−i2πk1(τ`+mq)

δ

· −M0

N (k2+j)−mM0−τ` M0

q

where for`∈ {0, . . . ,q−1}, the permutationτ:`7→τ`is defined

by`= [τ`rN]qand the Dirac delta functionδ(· −x0)acts as the evaluation inx0.

•Pseudo-periodic conditions:

Let~ζ(q,r)(·):= (ζ(0q,r)(·), . . . ,ζ

N−1

(q,r)(·)). For alln1,n2∈Z

~ζ

(q,r)(k1+n1,k2+n2) = GN,q(k1,k2)

n2·~

ζ(q,r)(k1,k2)

GN,q(k) :=

     

0 1 . . . 0

0 0 . .. ... ..

. ... . .. 1 ei2πqk1 . . . 0 0

(28)

•The vector bundle: Consider the projection

P(k) := N−1

j=0

(jq,r)(k)ihζ(jq,r)(k)|.

For anyn= (n1,n2)∈Z2it transforms as

P(k+n) = GN,q(k)

n2

P(k) GN,q(k)

−n2 .

TheK-theory classofP(·)depends only on[k]∈R2/Z2,Then it

describesι :EN,q→T2, with the fibers given by

ι−1(k) =P(k)Dq0.

•The curvature:P(·)provides a canonical (Berry,

Grassmannian,Levi-Civita, ...) connection and a curvature

∇(B):=P◦d, (∇(B))2:=P(dP∧dP).

The related Chern class is

c1(EN,q)=

i

2πTrN[(∇

(B))2] =q dk

(29)

Referencias

Documento similar

In the inset figure is shown that the current intensity corresponding to the Fc redox peak decreases when the negative voltage limit is brought below -0.6 V (blue and cyan

The Drude weight for twisted bilayer as function of µ will thus be independent of the twist angle in the regime where the electronic spectrum can be described by a (renormalized)

The effective magnetic field representing the optical spin Hall effect can be utilized, for example, to generate polarization textures [4,36], where the polaritons propagate in

The state-of-the-art microcavities, working in the strong-coupling regime, allow for the carrier density to be increased up to values where the quantum nature of the bosonic

As a strong field ligand, CO affects the magnetic state of MnPc in two ways: (i) it increases the splitting of the d orbitals, and thus favors the low spin configuration in the

Here we present the theoretical foundation of the strong coupling phenomenon between quantum emitters and propagating surface plasmons observed in two-dimensional metal surfaces..

When we apply a magnetic field above the upper critical field, we do not find any signature for the magnetic impurities. This shows that there is no strong exchange cou- pling

The figure also shows the results obtained using a standard Newton-based optimization method, and with a GA method using a standard minimum-square objective function.. We can see that