• No se han encontrado resultados

Autocorrelation Measures for the Quadratic Assignment Problem

N/A
N/A
Protected

Academic year: 2020

Share "Autocorrelation Measures for the Quadratic Assignment Problem"

Copied!
11
0
0

Texto completo

(1)

Quadrati Assignment Problem

FranisoChiano,GabrielLuque,EnriqueAlba

E.T.S.IngenieraInformatia

UniversityofMalaga,Spain

Abstrat

InthisartileweprovideanexatexpressionforomputingtheautoorrelationoeÆient

andtheautoorrelationlength`ofanyarbitraryinstaneoftheQuadratiAssignment

Problem (QAP)in polynomialtimeusing itselementary landsapedeomposition. We

also provide empirial evidene of the autoorrelation length onjeture in QAP and

ompute the parameters and ` for the 137instanes of the QAPLIB. Ourgoal is to

better haraterizethe diÆulty of this importantlass of problems to easethe future

denition ofnewoptimization methods. Also,theadvanethat thisrepresentshelpsto

onsolidateQAPasaninterestingandnowbetterunderstoodproblem.

Keywords: Fitnesslandsapes,elementarylandsapes,quadratiassignmentproblem,

autoorrelationoeÆient,autoorrelationlength

1. Introdution

A landsape for a ombinatorial optimization problem is a triple (X;N;f), where

f :X !Ristheobjetivefuntiontobeminimized(ormaximized)andtheneighborhood

funtion N mapsasolutionx2X to theset ofneighboringsolutions. Ify2N(x)then

y is aneighborofx. Thereisaespeialkindoflandsape,alledelementary landsape,

whih is of partiular interest in present researh due to their properties. They are

haraterizedbytheGrover's wave equation[1℄:

avgff(y)g

y2N(x)

=f(x)+ k

d

f f(x)

(1)

where dis thesize ofthe neighborhood, jN(x)j, whih weassume thesamefor all the

solutionsinthesearhspae(regularneighborhood),f istheaveragesolutionevaluation

overtheentiresearh spae,andk isaharateristi(problem-dependent)onstant. A

general landsape (X;N;f)an notalwaysbe said to beelementary, but even in this

ase itispossibleto haraterizethefuntion f asasumof elementarylandsapes[2℄,

alled theelementaryomponents ofthelandsape.

Emailaddresses: hianol.uma.es (FranisoChiano),gabriell.uma.es(GabrielLuque),

(2)

optimization problem that isat theore ofmanyreal-worldoptimization problems [3℄.

A lot of researh has been devoted to analyze and solve the QAP itself, and in fat

someother problemsan beformulatedasspeial asesof theQAP,e.g.,theTraveling

Salesman Problem(TSP).Let P beaset ofn failitiesandLaset ofn loations. For

eahpair ofloationsi andj,an arbitrarydistaneisspeiedr

ij

andforeahpairof

failitiespandq,aowisspeiedw

pq

. TheQAPonsistsinassigningtoeahloation

in L onefailityin P in suh awaythat thetotalostoftheassignmentisminimized.

Eahloationan onlyontainonefailityandallthefailitiesmustbeassignedtoone

loation. Foreah pairofloationstheostisomputedastheprodutofthedistane

between the loations and the ow assoiated to the failities in the loations. The

total ostis thesum of alltheosts assoiated to eah pairof loations. Onesolution

to this problem is a bijetion between L and P, that is, x : L ! P suh that x is

bijetive. Withoutlossofgenerality,weanjustassumethatL=P =f1;2;:::;ngand

eah solutionx is apermutation in S

n

, theset permutationsof f1;2;:::;ng. The ost

funtion tobeminimizedanbeformallydenedas:

f(x)= n

X

i;j=1 r

ij w

x(i)x(j)

(2)

In [4, 5℄ the authors analyzed the QAP from the point of view of landsapes

the-ory [6℄ and they found the elementary landsape deomposition of the problem using

themethodologypresentedin[7℄,providingexpressionsforeahelementaryomponent.

In this paper we use the elementary deomposition of the previous work to ompute

the autoorrelationlength ` andthe autoorrelation oeÆient ofanyQAP instane

in polynomialtime (Setion 2). Wealso present in Setion 3empirialevidene of the

autoorrelation length onjeture [8℄, whih links these values to the number of loal

optima of a problem, and we numerially ompute ` and for the well-known publi

instanes oftheQAPLIB[9℄.

2. Autoorrelation ofQAP

Letusonsideraninniterandomwalkfx

0 ;x

1

;:::gonthesolutionspaesuhthat

x

i+1 2N(x

i

). Therandom walk autoorrelationfuntion r:N !R isdened as[10℄:

r(s)= hf(x

t )f(x

t+s )i

x0;t hf(x

t )i

2

x0;t

hf(x

t )

2

i

x0;t hf(x

t )i

2

x0;t

(3)

wherethesubindiesx

0

andtindiatethattheaveragesareomputedoverallthe

start-ing solutionsx

0

and along the omplete random walk. The autoorrelation oeÆient

of a problem is a parameter proposed by Angel and Zissimopoulos [11℄ that gives a

measureofitsruggedness. Itisdenedafterr(s)by =(1 r(1)) 1

[12℄. Another

mea-sureofruggednessistheautoorrelationlength `[13℄whosedenitionis`= P

1

s=0 r(s).

The autoorrelationoeÆient fortheQAPwasexatlyomputed byAngeland

Zis-simopoulos in [14℄. However,reentresults(see [4℄)suggestthat theexpression in [14℄

(3)

present(withoutproof)theresultsof[5℄thatarerelevanttoourgoal.

Proposition 1 (Deompositionof theQAP). For the swap neighborhood, the funtion

f denedin (2) an be written asthe sum of atmost three elementary landsapes with

onstants k

1

=2n, k

2

= 2(n 1), and k

3

= n: f = f

1 +f

2 +f

3

. The elementary

omponents an bedenedas

f

1 =

n

X

i;j;p;q=1

i6=j;p6=q ijpq

1

(i;j);(p;q)

2n

(4)

f

2 =

n

X

i;j;p;q=1

i6=j;p6=q ijpq

2

(i;j);(p;q)

2(n 2)

(5)

f

3 =

n

X

i;j;p;q=1

i6=j;p6=q ijpq

3

(i;j);(p;q)

n(n 2) +

n

X

i;p=1 iipp

'

(i;i);(p;p)

(6)

where

ijpq = r

ij w

pq , '

(i;i);(p;p)

is the funtion dened using the Kroneker's delta by

'

(i;i);(p;p)

(x) = Æ p

x(i)

, and the funtions are partiular ases of the parameterized

funtionsdenedas:

;;;";

(i;j);(p;q) (x)=

8

>

>

>

>

<

>

>

>

>

:

ifx(i)=p^x(j)=q

ifx(i)=q^x(j)=p

ifx(i)=px(j)=q

" ifx(i)=qx(j)=p

ifx(i)6=p;q^x(j)6=p;q

(7)

Thedenitionofthefuntionsisasfollows: 1

(i;j);(p;q) =

n 3;1 n; 2;0; 1

(i;j);(p;q)

, 2

(i;j);(p;q) =

n 3;n 3;0;0;1

(i;j);(p;q)

,and 3

(i;j);(p;q) =

2n 3;1;n 2;0; 1

(i;j);(p;q) .

Proof. See[5℄fortheproof.

Proposition 2 (Autoorrelation measures). The autoorrelation oeÆient , the

au-toorrelation length `, and the autoorrelation funtion r(s) an be omputed from the

atual problem data(instane) usingthe expressions:

=

W

1 4

n 1

+W

2 4

n +W

3 2

n 1

1

=

n(n 1)

2n(1+W

1 )+2W

2 (n 2)

(8)

`=d

W

1

2n +

W

2

2(n 1) +

W

3

n

= W

1

(1 n)+W

2

(2 n)+2(n 1)

4

(9)

r(s)=W

1

1 4

n 1

s

+W

2

1 4

n

s

+W

3

1 2

n 1

s

(10)

where the oeÆientsW

i

for i=1;2;3are denedby

W

i =

f 2

i f

i 2

f 2

f 2

(4)

(10)isprovenin[2℄. WealsousedthefatthatW

1 +W

2 +W

3

=1toremoveW

3 inthe

expressionsfor and`.

Asaonsequene,weonlyneedtoomputeW

1 andW

2

toobtain and`. Thus,we

provideinthispapersomepropositionsthatallowustoeÆientlyomputeW

1 andW

2 .

Aordingto (11)weneedtoomputef 2

,f 2

,f 2

1 ,f

1 2

,f 2

2 ,andf

2 2

. Letus startwith

f

1 andf

2 .

Proposition3. Two expressionsfor f

1 andf

2 are:

f

1 =

r

t w

t

2n

(12)

f

2 =

r

t w

t (n 3)

2(n 1)(n 2)

; (13)

where r

t andw

t

aredenedas:

r

t =

n

X

i;j=1

i6=j r

ij

; w

t =

n

X

p;q=1

p6=q w

pq

(14)

Proof. Theaveragevalueof 1

and 2

is 1

= 1,and 2

=(n 3)=(n 1)[4℄. Using

these averagevaluesweanomputef

1 andf

2

withthehelp of(4)and(5)as:

f

1 =

1

2n n

X

i;j;p;q=1

i6=j;p6=q ijpq

; f

2 =

n 3

2(n 1)(n 2) n

X

i;j;p;q=1

i6=j;p6=q ijpq

(15)

Takingintoaountthat

ijpq =r

ij w

pq

andusing thenotationr

t , w

t

dened above

weantransform(15)in (12)and(13).

Bothexpressions(12)and(13)anbeomputedinO(n 2

). Beforegivinganexpression

forf letusrstintrodueanewfuntion t

n

denedas:

t

n

:P(f1;:::;ng 2

) ! N

Q 7! t

n (Q)=

X

x2Sn Y

(i;p)2Q Æ

p

x(i)

(16)

Thisfuntionwillbeusefullaterintheomputationoff,f 2

,f 2

1 ,andf

2

2

. Aording

to its denition,the evaluation of t

n

is noteÆient sineit requiresasummation over

all thepermutations in S

n

. However,weansimplify theexpression oft

n

to makethe

omputation moreeÆientasthefollowingpropositionstates.

Proposition4. The funtion t

n

satisesthefollowing equality:

t

n (Q)=

(n jQj)! if jQ

1 j=jQ

2 j=jQj

0 otherwise

; (17)

where Q

1 (Q

2

(5)

n

elementsin S

n

that fulll theondition V

(i;p)2Q

x(i) =p. Now,wemust observethat

if we nd twopairs(i;p) and (j;q)in Qsuh that i =j and p6=q, then the valueof

t

n

(Q) must be zerobeauseit isnot possibleto satisfy at thesametime x(i)=pand

x(j)=q. Wean haraterizethissituation usingtheondition jQ

1

j6=jQj. That is, if

thenumberofpairsinQisnotequaltothenumberofrstelementsofthesepairs,then

there existinQatleasttwopairsoftheform(i;p)and(i;q)withp6=qandt

n

(Q)=0.

Forthesamereason,t(Q)=0ifjQ

2

j6=jQj. IfjQj=jQ

1 j=jQ

2

jthen thepairsinQx

the valuefor jQj omponentsof thesolution vetorand the number of solutionsin S

n

withthexedomponentsist

n

(Q)=(n jQj)!.

One wehavedenedthet

n

funtion and weknowaneÆientwayofomputingit

weanprovideanexpressionforf.

Proposition5. An expressionfor f is:

f = r t w t n(n 1) + r d w d n (18) where r d = P n i=1 r ii andw d = P n p=1 w pp .

Proof. Usingthedenition off andt

n

weanwrite:

f = 1 jS n j n X i;j;p;q=1 ijpq X x2Sn Æ p x(i) Æ q x(j) ! = 1 n! n X i;j;p;q=1 ijpq t n

(f(i;p);(j;q)g) (19)

Ifwetakeintoaountthatt

n

anonlytaketwodierentvalues,weanrewritethe

previousexpressionas:

f =

(n 2)!

n!

n

X

i;j;p;q=1

i6=j;p6=q ijpq + (n 1)! n! n X i;p=1 iipp = r t w t n(n 1) + r d w d n (20)

With thehelp ofthefuntion t

n

weanalsoprovideanexpressionforf 2

.

Proposition6. An expressionfor f 2 is: f 2 = 1 n! n X i;j;p;q=1 n X i 0 ;j 0 ;p 0 ;q 0 =1 ijpq i 0 j 0 p 0 q 0t n

(f(i;p);(j;q);(i 0 ;p 0 );(j 0 ;q 0 )g) (21)

whih anbeomputedinO(n 8

).

Proof. Usingthedenition off weanwrite:

f 2 = 1 jS n j X x2Sn 0 n X i;j;p;q=1 ijpq Æ p x(i) Æ q x(j) 1 A 2 = 1 n! X x2Sn n X i;j;p;q=1 n X i 0 ;j 0 ;p 0 ;q 0 =1 ijpq i 0 j 0 p 0 q 0 Æ p x(i) Æ q x(j) Æ p 0 x(i 0 ) Æ q 0 x(j 0 ) (22)

whih anbetransformedinto(21)byommutingthesumsandusing thedenitionof

t

(6)

The omputation of f

1 , f

2

requires amore omplextreatment. Wepresent their

expressionsin thefollowing

Proposition7. Two expressionsfor f 2 1 andf 2 2 are: f 2 1 = 1 4n 2 n! n X

i;j;p;q=1

i6=j;p6=q

n X i 0 ;j 0 ;p 0 ;q 0 =1 i 0 6=j 0 ;p 0 6=q 0 ijpq i 0 j 0 p 0 q 0 7 X m=1 7 X m 0 =1 1 m 1 m 0t n v i;j;p;q m [v i 0 ;j 0 ;p 0 ;q 0 m 0 ! (23) f 2 2 = 1 4(n 2) 2 n! n X

i;j;p;q=1

i6=j;p6=q

n X i 0 ;j 0 ;p 0 ;q 0 =1 i 0 6=j 0 ;p 0 6=q 0 ijpq i 0 j 0 p 0 q 0 7 X m=1 7 X m 0 =1 2 m 2 m 0 t n v i;j;p;q m [v i 0 ;j 0 ;p 0 ;q 0 m 0 ! (24)

where the 7-dimensional parameterized vetors v 2 P(N 2

)

7

and 2 R 7

are given in

Table 1and

1

and

2

denote the vetors whose parameters;;;"; arethose of

1

and 2

,respetively,that is,

1

=

n 3;1 n; 2;0; 1

and

2

=

n 3;n 3;0;0;1

.

Component(m) v i;j;p;q

;;;";

1 ;

2 f(i;p)g ( )

3 f(i;q)g (" )

4 f(j;q)g ( )

5 f(j;p)g (" )

6 f(i;p);(j;q)g ( 2+)

7 f(i;q);(j;p)g ( 2"+)

Table1:Contentofthevetorsv i;j;p;q

and ;;;";

.

Proof. Afterthedenition off

1 andf

2

weanwrite:

f 2 1 = 1 4n 2 n! n X

i;j;p;q=1

i6=j;p6=q

n X i 0 ;j 0 ;p 0 ;q 0 =1 i 0 6=j 0 ;p 0 6=q 0 ijpq i 0 j 0 p 0 q 0 X x2Sn 1 (i;j);(p;q) (x) 1 (i 0 ;j 0 );(p 0 ;q 0 ) (x) ! (25) f 2 2 = 1 4(n 2) 2 n! n X

i;j;p;q=1

i6=j;p6=q

n X i 0 ;j 0 ;p 0 ;q 0 =1 i 0 6=j 0 ;p 0 6=q 0 ijpq i 0 j 0 p 0 q 0 X x2Sn 2 (i;j);(p;q) (x) 2 (i 0 ;j 0 );(p 0 ;q 0 ) (x) ! (26)

Inthisaseitisnotsosimpleto writetheinnersummationasafuntion oft

n . We

willwritethefuntionsaslinearombinationsofKroneker'sdeltasusingthedenition

of the funtions and the following haraterization of the funtions, whih anbe

(7)

(i;j);(p;q)

(x)=Æ

x(i) Æ x(j) +Æ x(i) Æ x(j) +(Æ x(i) Æ x(j) ) 2 + +"(Æ q x(i) Æ p x(j) ) 2

+(1 Æ p x(i) )(1 Æ q x(i) )(1 Æ p x(j) )(1 Æ q x(j) )= =( )(Æ p x(i) +Æ q x(j)

)+(" )(Æ q x(i) +Æ p x(j) )+ +Æ p x(i) Æ q x(j)

( 2+)+Æ q

x(i) Æ

p

x(j)

( 2"+)+ (27)

Thus, ;;;";

(i;j);(p;q)

isasumofsixtermswithÆ andoneonstant,and thesummation

X x2S n ;;;"; (i;j);(p;q) (x) ;;;"; (i 0 ;j 0 );(p 0 ;q 0 ) (x) (28)

an be written as a weighted sum of 49 t

n

terms. In order to write this summation

in a ompat way we dene one vetordenoted with v i;j;p;q

ontaining the sets to be

onsidered in the t

n

termsand a vetor ;;;";

ontaining theoeÆients for the t

n

terms. Theontentofthe previousvetorsis shown in Table 1. Usingv and wean

write thesummationoftheprodutoffuntionsinthefollowingway:

X x2S n ;;;"; (i;j);(p;q) (x) ;;;"; (i 0 ;j 0 );(p 0 ;q 0 ) (x)= 7 X m=1 7 X m 0 =1 ;;;"; m ;;;"; m 0 t n v i;j;p;q m [v i 0 ;j 0 ;p 0 ;q 0 m 0 (29)

and usingthepreviousequalityin(25)and(26)weobtain(23)and(24).

NowwehaveeÆientexpressionsforomputingf,f 2 ,f 1 ,f 2 1 ,f 2 ,andf

2

2

. Withthis

expressionsweareinonditionsof eÆientlyomputingtheautoorrelationmeasures

and `. Thisresultissummarized inthefollowing

Theorem1(EÆientomputationofand`). IntheQAP,thevaluesofand`related

tothe swap neighborhood anddenedby

=

n(n 1)

2n(1+W

1 )+2W

2 (n 2) [eq:(8)℄ `= W 1

(1 n)+W

2

(2 n)+2(n 1)

4

[eq:(9)℄

anbeomputedinpolynomialtimeoverthesizeof the problemn usingequations(12),

(13), (18),(21), (23),and(24).

Proof. Afteromputingf,f

1 ,f 2 ,f 2 , f 2 1 ,andf

2

2

usingtheequations(18),(12),(13),

(21), (23), and (24) we should ompute W

1

and W

2

using equation (11). Then, the

autoorrelationoeÆient an beobtainedwith(8) and` anbeomputed with(9).

Noneofthepreviousequationsrequiresmorethaneightnestedsummationsovernand,

thus, theomputationanbedoneinO(n 8

).

We have gone one step further and we haveexpanded the expressions for f 2 , f 2 1 , and f 2 2

in ordertomakeamoreeÆientomputation. TheresultisaO(n 2

)algorithm

(whih we omit due to spae onstraints) to ompute ` and . It is not diÆult to

provethatsuhalgorithmisoptimalin omplexity,sinethedataof aQAPinstaneis

omposedof2n 2

numberswhihhaveto betakenintoaountinorder toomputethe

(8)

Theautoorrelationlengthisspeiallyimportantin optimizationbeauseof the

au-toorrelationlengthonjeture,whihlaimsthatinmanylandsapesthenumberofloal

optima M an beestimated by theexpression M jXj

jX(x

0 ;`)j

[8℄, where X(x

0

;`) is the

set of solutionsreahablefrom x

0

in ` (the autoorrelation length) orlessloal

move-ments (jumps betweenneighbors). Thepreviousexpression is notanequation, but an

approximation. Itanbeusefultoomparetheestimatednumberofloaloptimaintwo

instanes ofthesameproblem. Ineet,foragivenprobleminwhihtheonjetureis

appliable, the higherthevalue of` (or ) thelowerthenumberof loal optima. Ina

landsapewith alownumberof loal optima, aloal searh strategyan apriori nd

the global optimum using less steps. This phenomenon has been empirially observed

fortheQuadratiAssignmentProblem(QAP)byAngelandZissimopoulosin[14℄.

InordertohektheautoorrelationlengthonjetureintheQAPwehavegenerated

4000randominstanesofQAPwithsizesvaryingbetweenn=4andn=11(500foreah

value ofn)usingarandomgeneratorwhere theelementsof thematriesareuniformly

seletedfromtherange[0,99℄. Foreahinstaneweomputedtheautoorrelationlength

` using (9) and the numberof loal optima(minima) by omplete enumeration of the

searhspae. WeomputedtheSpearmanorrelationoeÆientofthenumberofloal

optimaand`fortheinstanesofthesamesize. TheresultsareshowninTable2. Wean

observeaninverseorrelation(around 0:3)betweenthenumberofloaloptimaandthe

autoorrelationlength. Althoughthisfatisinagreementwiththeautoorrelationlength

onjeture,theorrelationoeÆientislow. However,AngelandZissimopoulos[14℄used

asimulatedannealing algorithmbasedontheswapneighborhoodandreportedabetter

performane of the algorithm asthe autoorrelation length inreased. Assuming that

thenumberofloaloptimaisaparameterwithanimportantinueneonthesearh,we

onludethat eveninproblems inwhihthenumberofloaloptimaislowlyorrelated

with `(likeQAP)theautoorrelationmeasures( and`)anbeusefulasestimatorsof

theperformaneofloalsearhalgorithms.

n 4 5 6 7 8 9 10 11

0:3256 0:2317 0:2126 0:3195 0:3032 0:2943 0:2131 0:1640

Table2: Spearman orrelation oeÆient for the number of loal optimaand the autoorrelation

length.

InFigure1weplotthenumberofloal optimaagainsttheautoorrelationlength`

foralltheinstanesofsizen=10. Weanobserveaslighttrend: astheautoorrelation

lengthinreasesthenumberofloal optimadereases. Thetrendisthesamein allthe

instanes withdierentsizes(weomittheirplots).

Inaseond experimentwehekthat theautoorrelationmeasuresprovided bythe

elementarylandsapedeompositionarethesameastheonesomputedusingstatistial

methods. ForthisexperimentwehavehosensixinstanesoftheQAPLIB[9℄: twosmall,

twomedium andtwolargeinstanes. Foreahinstanewehavegeneratedonerandom

walk of length 1 000 000 and we haveomputed the r(s) values for s 2 [0;49℄. This

proess hasbeen repeated 100 times and we haveomputed the average value for the

100independentruns. Theresultsempiriallyobtainedandthosetheoretiallypredited

(9)

200

300

400

500

600

700

800

900

1000

1100

1200

1300

4.34

4.36

4.38

4.4

4.42

4.44

4.46

4.48

4.5

# Local optima

replaemen

ts

`

Figure 1: Numberof loal optimaagainst theautoorrelation length `for randominstanes ofQAP

withn=10.

between the empirial and the theoretial value, as expeted. The advantage of the

theoretial approahis thatitis muh faster. Theexperimental resultsofTable3were

obtainedafter157783seondsofomputation(morethan43hours). However,theexat

valueswereobtainedevaluatingEquation(10) in0:4 seonds, nearhalf amilliontimes

faster.

Finally,wehaveomputedthevaluesof and`forthe137QAPinstanesfoundin

theQAPLIBdatabase[9℄. Theresults,showninTable4inalphabetialorder,ouldbe

helpfulforfutureinvestigationsontheQAP.Inthetableweanobservesomeinteresting

behaviours,likethatoftheesinstanes,whihhavealwaysavalueofn=4for and`.

This happens beausein those instanes W

1 =W

3

= 0and W

2

= 1,that is, theyare

elementary landsapeswith k =2(n 1). All theelementary landsapeshave avalue

fortheautoorrelationmeasuresthatdoesnotdependontheinstanedata,butonlyon

the problemsize. Intheaseof es16f,theobjetivefuntion isaonstant,that is,it

takesthesamevalueforeverysolutionandtheautoorrelationmeasuresmakenosense.

Weshouldalsonotiethat thevalueof`and dependonn,thesizeoftheproblem

instane. Ineet,thevaluesarebounded(see[4℄)by

n 1

4

;`

n 1

2

(30)

Thus, the values of and ` usually inreasewith the problem size n. As a

onse-quene,theautoorrelationlengthonjetureanbeappliedonlywhen theomparison

is performed over instanes with the same size n and, in general, it is not true that

the higherthe valueof `theeasierto solvetheinstane,sinethelargestinstanesare

(10)

tai10a

E 0.624255 0.393489 0.250810 0.161890 0.106102 0.070590

T 0.624380 0.393590 0.250903 0.162013 0.106129 0.070617

es16a

E 0.749984 0.562424 0.421759 0.316365 0.237300 0.177939

T 0.750000 0.562500 0.421875 0.316406 0.237305 0.177979

es64a

E 0.937402 0.878700 0.823668 0.772063 0.723672 0.678292

T 0.937500 0.878906 0.823975 0.772476 0.724196 0.678934

lipa70a

E 0.943369 0.890041 0.839723 0.792267 0.747507 0.705296

T 0.943479 0.890170 0.839890 0.792466 0.747735 0.705545

tho150

E 0.975680 0.951974 0.928863 0.906338 0.884384 0.862981

T 0.975722 0.952060 0.928997 0.906518 0.884607 0.863251

tai256

E 0.984364 0.968983 0.953843 0.938935 0.924256 0.909805

T 0.984375 0.968994 0.953854 0.938950 0.924279 0.909837

Table3: Experimental(E)andexat(T)valuesfortheautoorrelationfuntionr(s)insixinstanesof

theQAPLIB(sfrom1to6).

Instane ` Instane ` Instane ` Instane `

bur26a 11.825 12.130 es32b 8.000 8.000 nug16a 4.475 4.796 tai100b 35.472 39.613

bur26b 11.727 12.073 es32 8.000 8.000 nug16b 4.472 4.792 tai10a 2.662 2.774

bur26 12.109 12.291 es32d 8.000 8.000 nug17 4.836 5.220 tai10b 3.002 3.253

bur26d 12.050 12.258 es32e 8.000 8.000 nug18 5.111 5.516 tai12a 3.419 3.674

bur26e 12.032 12.248 es32f 8.000 8.000 nug20 5.800 6.311 tai12b 3.358 3.586

bur26f 11.962 12.208 es32g 8.000 8.000 nug21 6.218 6.807 tai150b 40.458 42.947

bur26g 12.323 12.407 es32h 8.000 8.000 nug22 6.751 7.446 tai15a 3.858 3.946

bur26h 12.296 12.392 es64a 16.000 16.000 nug24 7.067 7.737 tai15b 7.000 7.000

hr12a 3.096 3.171 had12 3.743 4.092 nug25 7.308 7.987 tai17a 4.402 4.526

hr12b 3.201 3.346 had14 4.319 4.732 nug27 8.023 8.813 tai20a 5.211 5.385

hr12 3.044 3.079 had16 4.405 4.690 nug28 8.181 8.949 tai20b 6.866 7.582

hr15a 3.917 4.049 had18 5.084 5.477 nug30 8.613 9.373 tai256 64.000 64.000

hr15b 4.126 4.388 had20 5.830 6.352 rou12 3.158 3.275 tai25a 6.373 6.482

hr15 3.843 3.920 kra30a 9.131 10.089 rou15 3.927 4.066 tai25b 6.896 7.374

hr18a 4.585 4.658 kra30b 9.086 10.031 rou20 5.354 5.628 tai30a 7.779 8.021

hr18b 4.632 4.742 kra32 9.848 10.908 sr12 3.407 3.657 tai30b 7.599 7.689

hr20a 5.105 5.195 lipa20a 5.072 5.135 sr15 4.303 4.650 tai35a 8.922 9.077

hr20b 5.035 5.067 lipa20b 5.196 5.358 sr20 5.514 5.885 tai35b 9.382 9.895

hr20 5.260 5.469 lipa30a 7.622 7.732 sko100a 27.800 29.985 tai40a 10.216 10.413

hr22a 5.763 5.980 lipa30b 7.652 7.787 sko100b 28.106 30.470 tai40b 10.583 11.074

hr22b 5.672 5.819 lipa40a 10.154 10.295 sko100 27.548 29.578 tai50a 12.675 12.839

hr25a 6.490 6.693 lipa40b 10.355 10.669 sko100d 27.535 29.557 tai50b 12.824 13.119

els19 5.178 5.494 lipa50a 12.684 12.855 sko100e 27.600 29.663 tai60a 15.292 15.563

es128 32.000 32.000 lipa50b 12.854 13.174 sko100f 27.346 29.247 tai60b 17.837 19.691

es16a 4.000 4.000 lipa60a 15.111 15.217 sko42 11.559 12.378 tai64 16.000 16.000

es16b 4.000 4.000 lipa60b 15.124 15.243 sko49 13.413 14.331 tai80a 20.214 20.419

es16 4.000 4.000 lipa70a 17.693 17.876 sko56 15.598 16.817 tai80b 24.021 26.612

es16d 4.000 4.000 lipa70b 17.785 18.052 sko64 17.504 18.706 tho150 41.190 44.174

es16e 4.000 4.000 lipa80a 20.102 20.201 sko72 19.929 21.436 tho30 8.326 8.938

es16f lipa80b 20.191 20.373 sko81 22.739 24.629 tho40 11.492 12.531

es16g 4.000 4.000 lipa90a 22.610 22.716 sko90 25.046 27.024 wil100 28.362 30.868

es16h 4.000 4.000 lipa90b 22.733 22.957 ste36a 10.954 12.122 wil50 13.832 14.860

es16i 4.000 4.000 nug12 3.135 3.237 ste36b 11.821 13.177

es16j 4.000 4.000 nug14 3.892 4.155 ste36 11.270 12.525

es32a 8.000 8.000 nug15 4.029 4.234 tai100a 25.195 25.383

Table4:AutoorrelationoeÆientandautoorrelationlength`forthe137instanesoftheQAPLIB.

(11)

Inthisartilewegiveanoptimalwayofexatlyomputingtheautoorrelation

mea-sures and` for theQAP. These twoparametersareimportant to better haraterize

QAPandtoguidepratitionersintherelativediÆultyoftheexistingprobleminstanes.

These resultsanbeautomatiallyapplied toallthesubproblemsofQAP,likedeTSP.

Themain ontributionsofthisworkare:

An exatexpression foromputingtheautoorrelationoeÆient andthe

auto-orrelationlength`of theQAPin polynomialtime.

EmpirialevideneoftheautoorrelationlengthonjetureinpratiefortheQAP,

byusingarbitrarilygeneratedinstanes.

Thenumerialvalueof and`foralltheinstanesintheQAPLIBdatabase.

Asafutureworkweplantoobtainexatexpressionsfortheautoorrelationmeasures

inotherproblems,andstudytheatualpratialappliationsoftheinformationobtained

from them.

Aknowledgements

ThisworkhasbeenpartiallyfundedbytheSpanishMinistryofSieneandInnovation

and FEDER under ontrat TIN2008-06491-C04-01(M

projet) and the Andalusian

Governmentunder ontratP07-TIC-03044(DIRICOMprojet).

[1℄ L.K.Grover,LoalsearhandtheloalstrutureofNP-ompleteproblems,OperationsResearh

Letters12(1992)235{243.

[2℄ P.F.Stadler,Landsapesandtheirorrelationfuntions,JournalofMathematialChemistry20

(1996)1{45.

[3℄ M. R. Garey, D. S. Johnson, Computers and Intratability: A Guide to the Theory of

NP-Completeness,W.H.Freeman,1979.

[4℄ F.Chiano,G.Luque,E.Alba,Elementarylandsapesdeompositionofthequadratiassignment

problem,in:ProeedingsofGECCO2010,ACM,Portland,OR,USA,2010,pp.1425{1432.

[5℄ F.Chiano, G.Luque, E. Alba, Elementaryomponents of the quadrati assignment problem,

arXiv:1109.4875v1,availablefromhttp://arxiv.org(september2011).

[6℄ J.Barnes,B.Dimova,S.Dokov,A.Solomon,Thetheoryofelementarylandsapes,Applied

Math-ematisLetters16(3)(2003)337{343.

[7℄ F.Chiano,L.D.Whitley,E.Alba,Amethodologytondtheelementarylandsapedeomposition

ofombinatorialoptimizationproblems,EvolutionaryComputationJournal19(4).

[8℄ P.F.Stadler,BiologialEvolutionandStatistialPhysis,Springer,2002,Ch.FitnessLandsapes,

pp.183{204.

[9℄ R.Burkard,S.Karish,F.Rendl,QAPLIB- aquadrati assignmentproblemlibrary,Journalof

GlobalOptimization10(1997)391{403.

[10℄ E.Weinberger,Correlatedandunorrelatedtnesslandsapesandhowtotellthedierene,

Bio-logialCybernetis63(5)(1990)325{336.

[11℄ E.Angel,V.Zissimopoulos,AutoorrelationoeÆientforthegraphbipartitioningproblem,

The-oretialComputerSiene191(1998)229{243.

[12℄ E.Angel,V.Zissimopoulos,OnthelassiÆationofNP-ompleteproblemsintermsoftheir

orre-lationoeÆient,DisreteAppliedMathematis99(2000)261{277.

[13℄ R.Gara-Pelayo,P.Stadler,Correlationlength,isotropyandmeta-stablestates,PhysiaD:

Non-linearPhenomena107(2-4)(1997)240{254.

[14℄ E.Angel, V.Zissimopoulos,Onthe landsaperuggednessof the quadrati assignment problem,

Referencias

Documento similar

This condition, related to the normal component on ∂D of the ∂-operator, permits us to study the Neumann problem for pluriharmonic functions and the ∂-problem for (0, 1)-forms on D

A transitive map on a graph has positive topological entropy and dense set of periodic points (except for an irrational rotation on the

No obstante, como esta enfermedad afecta a cada persona de manera diferente, no todas las opciones de cuidado y tratamiento pueden ser apropiadas para cada individuo.. La forma

For a given problem size, as we increase the number of processing elements, the overall efficiency of the parallel system goes down for all systems. For some systems, the

The program is based on the following pillars: (a) students become the main agents of their learning by constructing their own knowledge; (b) the teacher must be the guide to

The rates of correct classifications [%] within each classification problem obtained for the considered univariate and multivariate LR models and the corresponding Cllr values,

The application of the turnpike property and the reduction of the optimal control problem for parabolic equations to the steady state one allows us to employ greedy procedure

From a network planning perspective, the problem of finding the lightpaths to accommodate a given traffic demand is called the routing and wavelength assignment (RWA) problem