• No se han encontrado resultados

Cambios en las propiedades mecánicas del hormigón debido a la ASR

N/A
N/A
Protected

Academic year: 2020

Share "Cambios en las propiedades mecánicas del hormigón debido a la ASR"

Copied!
5
0
0

Texto completo

(1)

Availableonlineat

ScienceDirect

www.sciencedirect.com

www.e-ache.com HormigónyAcero2018;69(S1):15–19 www.elsevierciencia.com/hya

Changes

in

mechanical

properties

of

concrete

due

to

ASR

Cambios

en

las

propiedades

mecánicas

del

hormigón

debido

a

la

ASR

Hans

W.

Reinhardt

a,

,

Hasan

Özkan

b

,

Oliver

Mielich

c

aProf.Dr.-Ing.,DepartmentofConstructionMaterials,UniversityofStuttgart,Stuttgart,Germany bDipl.-Ing.,MaterialsTestingInstitute,UniversityofStuttgart,Stuttgart,Germany

cDr.-Ing.,MaterialsTestingInstitute,UniversityofStuttgart,Stuttgart,Germany

Received24August2017;accepted9February2018 Availableonline25April2018

Abstract

Alkali-SilicaReaction(ASR) isoneofthe mostseveredamagereactionsof concrete.Thereareatleasttwodifferentmechanisms ofASR: Themost commonisthe rapiddisruptionof siliceousaggregates atthe surfaceof the grain,whichoccurs in flintand opalsandstone, for example:Theothersarecalledslowreactingaggregates,andrefer,forexample,tocrackingofthegrainofgreywackeandquartzporphyry.Both reactionsareduetothedissolvingofSiO2byalkalis.Thepresentpaperreportsontestsonslowreactingaggregates.

Whilemoststudiesintheliteratureconcentrateontheexpansionbehavioroftheaggregates,inthisarticlefocusiscenteredonthemechanical properties,suchasstrengthandcreep.Theaggregatesusedaregreywacke,quartzporphyry,andcrushedsedimentsfromtheUpperRhineValley. ©2018PublishedbyElsevierEspa˜na,S.L.U.onbehalfofAsociaci´onEspa´ooladeIngenier´oaEstructural,ACHE.

Keywords:Concrete;Alkali-silicareaction(ASR);Expansion;Mechanicalproperties;Creepmodulus

Resumen

Lareacciónálcali-sílice(ASR)esunodelosdeteriorosmásimportantesqueseproduceenelhormigón.Existenprincipalmentedosmecanismos deASR:Elmáscomúneslairrupciónrápidadelosáridossilíceosenlasuperficiedelgranoqueporejemplosucedeconelpedernalylaarenisca opal,mientrasquelosotrosmecanismossonlosdeáridosdereacciónlentay,porejemploserefierenalagrietamientodelgranodegrauvacay pórfidodecuarzo.AmbasreaccionessedebenaladisolucióndelSiO2porlosálcalis.Elpresentetrabajoversasobreensayosenáridosdereacción

lenta.

Mientrasquelamayoríadelasinvestigacionesenlaliteraturaseconcentranenelcomportamientodeexpansióndelosáridos,nosotrosnos centramosenlaspropiedadesmecánicastalescomoresistenciamecánicayfluencia.Losáridosutilizadossongrauvaca,pórfidodecuarzoy sedimentostrituradosdelValleAltodelRin.

©2018PublicadoporElsevierEspaña,S.L.U.ennombredeAsociaciónEspañoladeIngenieríaEstructural(ACHE).

Palabrasclave: Hormigón;Reacciónálcali-sílice(ASR);Expansión;Propiedadesmecánicas;Módulodefluencia

1. Introduction

ASRmanifestsitselfmainlybyexpansionandcracking.The surfaceofconcretestructuresshowsrandomcrackingor, depen-dentoftheloadingdirectionlongitudinalortransversecracking.

Correspondingauthor.

E-mailaddress:reinhardt@iwb.uni-stuttgart.de(H.W.Reinhardt).

Ithappensvery frequentlythatsuch structuresareabandoned althoughtheloadingcapacityisstillsufficient.Thiswasthe start-ingpointoftheinvestigationwithseveralquestions:Whatare theremainingcompressivestrengthandtensilestrength,what are thedeformations duetoexpansion of the aggregates,due to shrinkage andcreep when ASR happens.It may be more economictoanalyzethestateofastructuretakingaccountof inherentmechanicalpropertiesandmonitorthefurther

behav-https://doi.org/10.1016/j.hya.2018.02.001

(2)

iorinstead of demolishing the structure.That means that the mechanicalpropertieshavetobeknown.

In the current investigation, fourtypesof aggregateshave beenused:acrushedgreywackefromtheHarz(GW),crushed gravelfromtheUpperRhineValley(OR),quartzporphyryfrom Halle(QP),andanotherquartzporphyryfromtheBlackForrest (QPSW).Accordingtothe40◦Cfog-roomtest[1]thefirstthree aggregateswerealkalisensitivewhiletheforthaggregatewas insensitive. The first three aggregates belong tothe category of slowreactingaggregatesi.e.anASRdamage wouldoccur inpracticeonlyafterabout15years.Howevertherearemany structuresmainlyintheEastpartofGermany,whichsufferfrom suchsignsofdeterioration.

2. Concretecomposition

ACEMI32.5RaccordingtoEN197-1[2]wasusedwith additionofK2SO4tothemixingwatersuchthattheNa2Oequi. amountedto1.30M-%.Theconcretewasmadewith400kg/m3 cementandawatertocementratioof0.45.30M-%ofthe aggre-gateswereinertquartzsandupto4mm,70M-%werethecoarse aggregatesupto16mmgrainsize.Thegradingcurvefollowed almostaFullerparabola.

3. Testingprogram

For strength testing, 150mm cubes and cylinders with 150mmdiameterand300mmlengthwereproduced.Modulus ofelasticity,creepandshrinkageweredeterminedoncylinders, compressive strength on cubes, tensile strength on dog-bone specimens,deformationduetoASRinthe40◦Cfogroomon cylinders.Testingtookplacebeforeanddirectlyafter installa-tionofthe28daysmoistcuredspecimensinthefogroomand after140,280and560daysstorageinthefogroom.

Forcreeptesting,cylindersweremountedinthetestrig.The compressiveforcewasappliedbyahydraulicramandheld con-stantbyBellevillesprings.Thedeformationwasmeasuredwith dialgauges.Thestresswasdecidedtobeonethirdofthe charac-teristicstrengthofconcreteafter28daysstandardcuring.The specimenswere takenout ofthe fogroomafterthe predeter-minedtime,transportedtothecreeproomwithconstantclimate of23◦Cand80%RH,mountedinthetestrig,andloaded.80% RHwasusedbecauseASRhadtocontinue,fromexperienceit isknownthatASRwouldstopatlowerrelativehumidity[3].

4. Testingresults

4.1. Expansioninthefogroom

ConcretewhichisaffectedbyASRtypicallyexhibits expan-sioninmoistenvironment.Thespecimenswerestoredat40◦C andalmost100%RHforacertaintime.Thelengthchangeis plottedinFig.1.Thedotsgivetheexperimentalresults,thelines aregeneratedwiththeapproximationfunctionofLarive[4].

Obviously, the crushed gravel from the Upper Rhine Val-leyexpandedmost,the greywackeissecond,quartzporphyry fromHalleisthree,andquartzporphyryfromtheBlackForest

Figure1.Expansionofspecimensinthefogroom,functionofLarive[4]:ε(t)=

ε∞ 1−eτCaract

1+e

(tτLatence)

τCarac

.

Figure2.Rateofexpansion.

doesnotexpand.TheexpansionfollowsalwaysanS-curveas known fromLarive[4].Alllinesstartatalowlevel,increase thenstronglyandfinallystaywithanasymptoticmaximum.The timeofstrongincreasedependsonthereactivityofthe aggre-gate.TherateofexpansionisplottedinFig.2,itrepresentsthe firstderivativeoftheLarivefunction.

Threeaggregatesweresuitableforthedeterminationofthe expansion rate, crushed gravel from the Upper Rhine Valley (OR),greywacke(GW)andquartzporphyry(QP).ORexhibits themaximumat130dwhileGWshowsthemaximumat190d. QP islesspronouncedwithamaximumat392d.Thetypical shapeofthecurveisveryimportantandcanlaterbeusedfor thepredictionofexpansioninrealstructures.

4.2. Modulusofelasticity

(3)

Table1

Staticmodulusofelasticityofconcretemeasuredafteracertainstoragetime inthefogroominMPa(inbrackets:therelativevaluein%),meanofthree specimens.

TypeofaggregateAfter28dcuring Storagetimein40◦Cfogroomindays

140 280 560

OR 37,702(100) 15,805(42) 20,750(55) 28,934(77) GW 40,302(100) 43,391(108) 16,440(41) 25,931(64) QP 36,031(100) 41,078(114) 41,551(115) 22,342(62) QPSW 31,729(100) 38,682(122) 39,543(125) 40,191(127)

Table2

CompressivestrengthofconcreteinMPameasuredafteracertainstoragetime inthefogroom(inbrackets:therelativevaluein%),meanofthreespecimens.

Typeofaggregate After28dcuring Storagetimein40◦Cfogroomindays

140 280 560

OR 52.1(100) 57.9(111) 61.5(118) 65.4(125) GW 50.6(100) 69.2(137) 71.4(141) 72.7(143) QP 53.4(100) 69.6(130) 74.5(140) 81.5(153) QPSW 54.5(100) 72.5(133) 74.2(136) 83.8(154)

Theelasticmodulus of crushedgravelof theUpper Rhine valleydecreasesstronglyafter140dandexhibitsonly42%of theoriginalvalue.Thereafteritincreasesagain.Theother aggre-gatesshowanoppositebehavior.Themodulusincreasesdueto goodhydration conditions (40◦C andwater saturationof the ambientair)firstlyanddecayonlyafter280or560days.The insensitivequartzporphyryfromtheBlackForestincreases con-tinuously.ComparingwithFig.2showsthattheminimumvalue of the elastic modulus coincides roughly withthe maximum reactionrate.

4.3. Compressivestrength

Compressivestrengthhasbeendeterminedon150mmcubes.

Table2showstheresultsasmeanofthreespecimens.

Allconcretesstartatabout50MPaandincreasecontinuously to65–84MPadependingontheaggregate.Thestrengthincrease is also dueto the favorablehydration conditions.Obviously, ASRdidnotaffectthecompressivestrengthwhichmeansthat thecompressivestrengthcannotbeusedasindicatorofASR.

4.4. Tensilestrength

Theinvestigation of thesplitting tensilestrength wasvery limited. The results of aggregate OR and QP are shown in

Table3.

ThestrengthofORdecaysafter140 daysinthefogroom to1.15MPawhichisonly25%oftheoriginalvalue,it recov-ersto31%after280daysandto44%after560days.Fig.1with theexpansionofconcretehasshownastrongexpansionatabout 140dayswhichexplainsthe reductionofthetensilestrength. Slow/lateaggregategrainsexhibitfractureinthegrain[8]and, since the grain is responsible for the load transfer onemust concludethatASRhascausedthestrengthloss.Withongoing

Table3

TensilestrengthofconcreteinMPameasuredafteracertainstoragetimeinthe fogroom(inbrackets:therelativevaluein%),meanoftwospecimens.

TypeofaggregateAfter28dcuring Storagetimein40◦Cfogroomindays

140 280 560

OR 4.68(100) 1.15(25) 1.43(31) 2.04(44) QP 3.99(100) 3.40(85) – 3.19(80)

Figure3.CreepstrainofaggregateOR.

hydration strengthrecovers partlybut cannotreach the origi-nalvalueagain.QPshowsrespectivevaluesof117%after280 daysand80%after560days.AlooktoFig.1revealsthatASR hasstartedonlyafterabout320dayswhichmeansthatongoing hydration hascausedthestrength increaseat280 days.Later strengthdecreasesto80%duetoASR.Comparingthe devel-opmentofcompressivestrengthwithtensilestrength,the two propertiesdonotfollowthesamemanner.Thishasbeenreported alsobyotherresearchers[9].Thus,thetensilestrengthisabetter indicatorforASRthancompressivestrength.

4.5. Creepundercompressiveload

Figs.3–6showthedevelopmentofstrainwithtimeasmeanof twospecimens.Thestressisconstantduringthetimeunderload, howeveritdependsontheaggregate.Assaidbeforethestress levelhasbeenchosenasonethirdofthecharacteristicstrength after28daysstandardcuring.Thediagramsgivethe informa-tion.Thelegendinformsaboutthepre-storageinthe40◦Cfog room. Ofcourse,thissituation isartificial,however sincethe climateinthetestingroomistakenconstantwith80%RHone canassumethat ASRisstill progressing. (Remark:Although thecreepstrainsarenegative(shortening)theyareplottedwith aplussign,i.e.asabsolutevalues.)

(4)

Figure4.Creepstrainofaggregategreywacke.

Figure5.CreepstrainofaggregateQP.

Figure6.CreepstrainofaggregateQPSW.

largestforthespecimenswhichwerestoredinthefogroomfor 140days.LookingtoFig.2onecanseethatthisisthetimeof strongestreaction.Thespecimenswith280and560daysstorage showlesscreepwhichisatokenofgreaterhydration.

Fig.4belongstothegreywacke.

Table4

CreepmodulusofconcreteinMPameasuredafter365daysloadingandaftera certainpre-storagetimeinthefogroom,meanoftwospecimens.

Pre-storage Typeofaggregate

OR GW QP QPSW

28daysmoistcuring 10,520 12,518 10,967 13,214 140daysinfogroom 6117 21,393 14,159 25,056 280daysinfogroom 11,596 5956 23,195 28,021 560daysinfogroom 11,030 10,531 9480 25,154

ThecurvesmorespreadthanitwasinthecaseofOR.The largestcreep occursforconcretewhichwasstoredinthefog roomfor280days.Thistimecoincidesroughlywiththetime ofgreatestASRreaction.Thelowercurvefor140daysmustbe causedbymorehydrationcomparedtothecurvewithoutstorage inthefogroom.The560dayscurvemustbeattributedtothe ongoingASR.

Fig.5showstheresultsofthequartzporphyryfromHalle. The concretewhichhad nopre-treatmentinthe fog room showsthelargestcreep.Comparedtotheothersitistheyoungest concrete.Thelineforthe140dconcreteislowerandthelinefor the280dconcreteisevenlower.Thisbehaviorcanbeattributed tothe ongoinghydration withouteffectofASR.The line for the560dpre-treatmentapproachesalmostthelineofthezero concrete,i.e.ASRinfluencescreepconsiderably.

Fig.6referstothequartzporphyryfromtheBlackForrest, theaggregatewhichisinsensitivetoASR.

Thisfigureshowsbesttheinfluenceofprogressinghydration. Thezeropre-treatmentconcreteexhibitsthelargestcreepand theotherlineslieclosetogether.

Comparingthefourforegoingfigures,onecanseeacommon feature:TheaggregateswhichareASRsensitiveshowalarger creepthantheinsensitiveaggregateQPSW.TheaggregatesOR andGWwhichundergothelargestexpansionduetoASRshow largercreepstrainthanthelassexpandedQP.Ontheotherand, thesimultaneousinfluenceofabsoluteageofconcretebecame obvious.

5. Creepmodulus

Ifstructureshavetobeanalyzedwithrespect tolong-term deformation onecan have alook to polymertechnology. To thisend,theirengineersusetheso-calledcreepmodulus.The creepmodulusEcristhequotientofstressdividedbytheload induced strainEcr=σ/(εel+εcr)withεel the elasticstrainand

εcrthecreepstrain.Thecreepmoduluscouldalsobeusedfor concretestructures.Table4showsthenumberscalculatedwith thedeformationatoneyear(withoutshrinkage,ofcourse).

(5)

QPSWexhibitsthelargestvalues.Italsoreflectsthefeatureof

Figs.1and2.

6. Outlook

Theaimoftheinvestigationswastoincreasetheknowledge withrespecttoshort-timeandlong-timemechanicalproperties of ASR affectedconcrete. The knowledge issuitable for the analysisofthestatestructuresinthelightofloadingcapacityand deformation.However,thereareseveraldisciplinesquestioned: firstly,thetestingresultshavetobetransposedtoreallifeofthe structure,secondly,ASRdevelopmenthastobemodeledforthe structureintermsoftimeandspace,andthirdly,anASRaffected structureshouldbemonitoredcontinuously.Asthefirst point isconcerned thereareresults of ASRatreal exposurewhich showthatthedevelopmentofASRtakesabouttentimesmore timethaninthe40◦Cfogroom[10].Thesecondpointcanbe satisfiedwiththeaidofmodernfinite-elementcodeswhichtake accountofphysicalaspects(diffusion,permeation,temperature, humidity)andstress[11].Thenowadaysmonitoringtechniques areabletomonitorcontinuouslyandwirelessthecrucialspots ofstructures[12].Inanycasethereisastrongdemandforgood knowledgeofthematerial.

7.Finalconclusions

The investigations have been performed on concrete with threetypesofslowreactingalkalisensitiveaggregatesandone insensitiveaggregate.Thefollowingconclusionscanbedrawn. TheexpansionduetoASRmeasuredafteracertainstorage timein the 40◦Cfog room follows an S-curve for the three concreteswithalkalisensitiveaggregate.Thetimeofmaximum reactionrateisstronglydependentonthetypeofaggregate.

ThestaticmodulusofelasticitydecreaseswithASRtoa mini-mumvalueandincreasesthereafteragain.Thetimeofminimum coincidesroughlywiththemaximumreactionrate.

ThecompressivestrengthseemsnottobeaffectedbyASR. Thetensilestrengthdecayswithtimeinthefogroom. Com-pressiveandtensilestrengthdonotfollowthesamebehavior.

Creep is enlarged by ASR. The largest creep rate goes togetherwiththelargestprogressofASR.

Asameanfortheanalysisoflong-termdeformationthecreep modulushasbeencalculatedwhichshowsasimilartendencyas creep.

Theoutlookprovidessomeideashowthegainedknowledge canbeusedintheanalysisofstructuresinrealenvironment.

Allconclusionsareonlyvalidforthematerialtested.Onehas tobeverycautiousindrawinggeneralconclusionsbecausethe aggregatesareofnatural originandvaryfromplacetoplace. It can happen that rocks taken from the same quarry differ strongly.

Acknowledgement

Thefirstauthorhasexperiencedalonglastingfriendshipwith CarmenAndrade.WemetatmanyeventsofRILEM,at commit-teemeetings,symposiaandworkshops.Carmenshowedalways muchinterestinvariousfieldswhichhavetriggeredresearchof commoninterest.Thankyou.Admultosannos!

TheGermanResearchCommunityhasgreatlysupportedthe projectunderRE691/39-1whichisthankfullyacknowledged.

References

[1]DeutscherAusschussfürStahlbeton(DAfStb),VorbeugendeMaßnahmen gegenschädigendeAlkalireaktionimBeton(AlkaliRichtlinie),Beuth Ver-lag,Berlin,DeutscherAusschussfürStahlbeton,Oktober,2013. [2]EN197-1:2011Cement.Composition,specificationsandconformity

cri-teriaforcommoncements.

[3]D.Stark,Themoistureconditionoffieldconcreteexhibitingalkalisilica reaction,in:DurabilityofConcrete,2ndInt.Conf.MontrealCanada,Vol. IIACI,SP126,Detroit,1991,pp.973–987.

[4]C.Larive,Apportscombinésdel‘expérimentationetdelamodélisationà lacompréhensiondel’alcali-réactionetdeseseffetsmécaniques,thèsede doctorat,L’ÉcoleNationaledePontsetChaussées,1997.

[5]H.W.Reinhardt,O.Mielich,Staticvs.dynamicYoung’smodulusas indi-catorforASRdegradation,in:C.Leung,K.T.Wan(Eds.),Advancesin ConstructionMaterialsthroughScienceandEngineering,2011,RILEM PRO79,S.104(Abstractbook)ISBN978-2-35158-116-2.

[6]P. Helene,M.Carvalho,J.Pachero,Engineering fieldtests for alkali-aggregatereaction,Struct.Concr.J.Fib.18(2017)349–355.

[7]DIN1048-5:1991Testingmethodsforconcrete;hardenedconcrete, spe-ciallypreparedspecimens.

[8]H.W.Reinhardt,O.Mielich,Fracturetoughnessofalkali-sensitiverocks inalkalinesolution,Int.J.RockMech.Min.Sci.70(2014)552–558. [9]“Alkali-aggregatereactionconcrete”(ICAAR),proceedingsvolumessince

1974.

[10]E.Siebel,M.Böhm,I.Borchers,C.Müller,J.Bokern,E.Schäfer. AKR-Prüfverfahren–VergleichbarkeitundPraxis-Relevanz,Betontechnische Berichte2004–2006,VDZDüsseldorf.

[11]J.Oˇzbolt,MASA–MAcroscopicSpaceAnalysis.Berichtzur Beschrei-bungdesFEProgrammesMASA,InstitutfürWerkstoffeimBauwesen, UniversitätStuttgart,Stuttgart,1998.

Referencias

Documento similar

Abstract: The present work investigates the effect of the amount of carbon black on curing and mechanical properties such as tensile strength, elongation at

Compressive strength and splitting tensile strength results indicated that addition of SF into mixtures extensively developed the matrix structure and improvements were noted with

Incorporation of fly ash, slag and silica fume provides a better performance as a blended concrete in the evolution of compressive strength, the increase in the strength was in

Physical properties of the materials, Hydraulic conductivity test, drying shrinkage, compressive strength of concrete cube, and tests on beams were determined and the

O 2 initial sticking coefficients were determined using the King and Wells method in the incident energy range 40–450 meV, and compared to the corresponding values measured on

To score the dormancy of gemma cups, constitutive- and native-promoter MpDELLA overexpressors, as well as Mppif ko plants were grown from gemmae on half-strength

Physical (mass loss, ultrasonic pulse velocity and capillary water absorption coefficient) and mechanical (compressive strength) properties were studied after the mortars were

In all cases, the maximum and minimum stresses were 85% and 20%, respectively, of the average compressive strength of each size se- ries, and we kept these values through the