• No se han encontrado resultados

EL HECHIZO DE LA ELIPSE INTRODUCCIÓN

N/A
N/A
Protected

Academic year: 2021

Share "EL HECHIZO DE LA ELIPSE INTRODUCCIÓN"

Copied!
9
0
0

Texto completo

(1)

EL HECHIZO DE LA ELIPSE

Ana Vega Navarro amvega@ull.es Javier Marrero Acosta jmarrero@ull.es

Universidad de La Laguna

“La imagen no es la asistenta servicial y fiel que tu quieres. Toma todas las apariencias de una servidora, sí, pero en verdad es hipócrita, mentiro-sa y autoritaria. Aspira, con toda su maldad, a re-ducirte a la esclavitud. (...) La imagen es siempre retrospectiva. Es un espejo virado hacia el pasado”.

(Michel Tournier, La gota de oro) INTRODUCCIÓN

Numerosas investigaciones han venido a mostrar que son muchas las concepciones al-ternativas a las científicas que los niños y las niñas tienen acerca de las relaciones Sol-Tierra-Luna. Por lo que se refiere a la causa de las estaciones, es mayoritaria la idea que relaciona inviernos y veranos con lejanía-cercanía de la Tierra al Sol (Sadler, 1987; Jo-nes, Lynch y Reesink, 1987; Baxter, 1989; Schoon, 1992; Osborne et al., 1994; De Ma-nuel, 1995; Sharp,1996; Gould, Willard y Pompea, 2000; Roald y Mikalsen, 2001).

Confusiones semejantes se han advertido entre los estudiantes de magisterio y profesores de diferentes países (Jones, 1988; Ojala, 1992; Mant y Summers, 1993; Schoon, 1995; Atwood y Atwood, 1996; Schoon y Boone, 1998). Los datos no dejan de sorprender: 11 de los 20 profesores ingleses entrevistados por Mant y Summers creían que el verano tiene lugar cuando la Tierra está más cerca del Sol; casi el 83% de los maestros de Indiana entrevistados por Schoon sostenían esta misma alternativa, al igual que el 78 % de los profesores americanos del estudio de Schoon y Boone. Nuestros da-tos (Vega, 2002) son igual de desconcertantes: la mitad del profesorado del centro esco-lar de Tenerife en el que se realizó la investigación explica las estaciones por la lejanía-cercanía de la Tierra al Sol; ninguno asocia convincentemente las estaciones con la in-clinación del eje de rotación respecto del plano orbital, aunque un par de ellos acierta a señalar que “algo tiene que ver la inclinación de los rayos solares”. Decididamente, pa-recen tener plena vigencia las conclusiones de Finegold y Pundak (1991): las escuelas contribuyen poco al conocimiento astronómico de sus estudiantes.

(2)

Para intentar mejorar la comprensión se han propuesto algunas intervenciones educativas, dirigidas tanto al alumnado como al profesorado (Callison y Wright, 1993; Camino, 1995; Atwood y Atwood, 1997; Kikas, 1998; Navarrete, 1998; Weber, 1998; Parker y Heywood, 1998; Sharp, 1999). Algunos autores han señalado la desfavorable influencia que para la enseñanza tienen las ilustraciones de los libros de texto (Vega, 1996; Lukas y Cohen, 1999). Sin embargo, las incoherentes imágenes persisten, por lo que no está de más volver a insistir en esa idea, como aquí pretendemos hacer.

CÓMO SE ROMPIÓ EL HECHIZO DE LA CIRCULARIDAD

Los griegos idearon ingeniosos modelos conceptuales, fundamentados en la sime-tría del círculo y la esfera, para explicar los movimientos de los astros: primero las esfe-ras encajadas de Eudoxo, ampliadas por Aristóteles; más tarde el sistema de epiciclos y deferentes con el que Hiparco intentará explicar la lejanía-cercanía de los planetas a la Tierra en el momento de la regresión, sistema que siglos después retomará Ptolomeo, introduciendo el concepto de ecuante para regular los cambios de velocidad angular.

Ese modelo perdurará hasta la Edad Moderna, pues ni siquiera Copérnico abando-nó la idea griega de la perfectibilidad de la esfera y del círculo; al contrario, planteó como axioma básico de la astronomía el movimiento circular y uniforme

(Revolutioni-bus, Libro I, cap. IV) y entendió que las órbitas planetarias, ahora en torno al Sol y no

en torno a la Tierra, eran circulares y con velocidad constante. Es por eso que para aco-modar su modelo a las observaciones continuó explicando el movimiento de los astros mediante deferentes, epiciclos y ecuantes, aunque tomando ahora al Sol como centro e incorporando a la Tierra al número de los astros con órbitas epicíclicas y excéntricas.

(3)

A la izquierda, explicación de las estaciones de Hiparco, de acuerdo con el mode-lo deferente-epicicmode-lo. Se intenta explicar el hecho observacional de que entre el equinoccio de primavera y el de otoño la Tierra tardaba 186 días, en tanto que pa-ra el tpa-rayecto orbital contpa-rario, del equinoccio de otoño al de primavepa-ra, bastaban 180. A la derecha, dibujo De Revolutionibus, con el que Copérnico intenta mos-trar la órbita terrestre en torno al Sol utilizando también epiciclos y deferentes.

Cuando Kepler dispuso de los datos y observaciones recopilados por Tycho Brahe, estuvo en condiciones de aportar una explicación nueva: los planetas se despla-zan con velocidad variable a lo largo de órbitas elípticas. Esas dos reglas, que hoy cono-cemos como primera y segunda leyes de Kepler, aparecieron por primera vez en

Astro-nomía Nova (1609), un estudio redactado a modo de partes de guerra de la batalla

li-brada por el astrónomo con Marte, para desentrañar los secretos de su órbita, como es-cribe en la Advertencia al lector de Conversaciones con el Mensajero Sideral (1610): “Finjo por obra de la fantasía una contienda entre enemigos, luchas, el triunfo del ven-cedor, terribles amenazas; el castigo del vencido, la ignominia, cadenas, cárceles, el exilio”.

Cuando comenzó a trabajar en la órbita de Marte en 1606, Kepler entendía que el desarrollo del problema exigía primero conocer con precisión la órbita terrestre, puesto que las observaciones se hacían desde ella en movimiento. Después pasó a resolver la órbita de Marte, suponiendo que era excéntricamente circular. Fue grande su desorien-tación y desconcierto cuando advirtió que la órbita de Marte derivada de las observacio-nes y de sus cálculos no encajaba con ningún desarrollo geométrico circular, sino que se le aparecía como una figura oviforme: “mi primer error fue tomar la trayectoria del pla-neta como un círculo perfecto, y este error me robó la mayor parte del tiempo, por ser lo que enseñaba la autoridad de todos los filósofos y estar de acuerdo con la metafísica”

(4)

Empezó entonces a sospechar que quizás sus antecesores habían estado errados durante más de dos mil años suponiendo que las órbitas planetarias eran circulares, pero aún le faltaban varios meses de reflexiones y cientos de páginas de cálculos antes de llegar a la conclusión de que la curva que describía la órbita de Marte era una elipse.

A la izquierda, grabado de Astromomia Nova que representa la construcción geométrica de la órbita elíptica de Marte, con la que Ke-pler gana la batalla al Dios de la Guerra. A la derecha, las órbitas de la Tierra y Marte, según los cálculos de Kepler, tal y como aparecen en el capítulo XXVII de Astronomía Nova (en la figura aparecen también las órbitas de Mercurio y Venus).

De forma retrospectiva nos puede parecer que el problema con el que Kepler se enfrentó tan solo era un problema geométrico, y que en realidad la solución de la trayec-toria elíptica estaba implícitamente expresada con anterioridad, ya que a eso, precisa-mente, obedecía la incorporación de epiciclos y ecuantes. Sin embargo, llegar a la solu-ción de la elipse suponía la incorporasolu-ción de una explicasolu-ción nueva como alternativa a la composición de movimientos circulares que, como dijo Koyré, "rompió el hechizo de la circularidad". Mostrar que la variación de la velocidad de traslación de los planetas se relaciona con sus distancias con respecto al sol y que son innecesarios los epiciclos para explicar las trayectorias era dar un vuelco total al pensamiento astronómico. Porque para llegar a esa solución había que hacer una suposición extraordinariamente audaz e imaginativa. Para construir geométricamente una elipse se necesitan dos focos. Uno era el sol. Pero ¿y el otro? El otro no existía. Por eso, como dijo Hanson (1985: 287), “ni siquiera los dramáticos y espectaculares vuelcos conceptuales de nuestro siglo XX exi-gieron una mayor ruptura con el pasado”.

(5)

UN NUEVO HECHIZO: LA ELIPSE

Como hemos dicho, en Astronomia Nova aparecen enunciadas y demostradas las dos primeras de las leyes conocidas con el nombre de Kepler. Una década más tarde, en

Harmonices Mundi (1619), añadiría la tercera, la que hace referencia a la relación entre

el cuadrado de los períodos orbitales y el cubo del semieje mayor. Quizás convenga conocer la visión que Kepler tenía de esas leyes en Harmonices Mundi:

“En los Comentarios sobre Marte he logrado demostrar, partiendo de las exactas ob-servaciones de Tycho Brahe que, dados unos arcos iguales recorridos en un día a cargo de la misma órbita excéntrica, no son coronados a la misma velocidad, sino que los distintos tiempos utilizados para recorrer partes iguales del excéntrico son proporcionales a la dis-tancia de éstas con el sol, manantial del movimiento; y viceversa, dados unos tiempos iguales, los arcos que les corresponden, recorridos dentro de la misma órbita excéntrica se hallan entre sí en proporción inversa a las dimensiones de sus distancias con respecto al sol. Junto a esto, he demostrado que la órbita de los planetas es elíptica, y que el sol, fuente de movimiento, se encuentra en uno de los focos de dicha elipse (…)

En los actuales libros de texto suele aparecer un dibujo que explica visualmente las dos primeras leyes de Kapler (Ley de la elipse y Ley de las áreas).

Los planetas tienen órbitas elípticas en torno al Sol. La velocidad varía a lo largo de la órbita, aunque se mantiene la proporcionalidad entre las áreas descritas por el radio vector y los tiempos empleados en barrerlas.

En los libros no se aclara que esa imagen con la que se ilustran las leyes de Kepler no puede estar referida a la Tierra, ya que la órbita elíptica de nuestro planeta tiene es-casa excentricidad y en cualquier representación a escala se nos debe aparecer práctica-mente como un círculo*. Al contrario, lo más frecuente es que imágenes parecidas se utilicen en los libros cuando se quiere explicar cómo es la órbita de la Tierra y cómo se

*La elipse de la figura tiene cierto parecido con las de asteroides del tipo Apolo e Icaro, con excentricidades entre 0.6 y 0.8, pero la de la Tierra es solamente de 0.017.

(6)

suceden las estaciones. Bastará con dejar constancia de las imágenes que aparecían en libros de texto de familiares de la autora para comprender el generalizado error concep-tual que se transmite en ellos.

A la izquierda, imagen tomada de Geografía, 2º de BUP, ECIR, Valencia, 1996. A la derecha, parecida representación de Nova 2000, 1º ESO, Santillana, Madrid, 1999.

Son esas imágenes, insistentemente reproducidas en los libros de todas las edito-riales, las que no nos permiten entender la causa real de las estaciones. Porque si las imágenes se correspondiesen con la realidad, habría que deducir de ellas una gran varia-ción de temperaturas en funvaria-ción de la cercanía-lejanía de la Tierra y el Sol. Y eso es lo que piensan quienes las han tenido tantas veces delante de sus ojos, sin acordarse de la inclinación del eje de rotación, ni de que en el otro hemisferio la estación es contraria.

Estuvo acertado Koyré cuando dijo que gracias a Kepler se rompió el hechizo de

la circularidad que encorsetaba a la astronomía desde la época griega. Pero después de

él un nuevo corsé se ha adueñado de nuestras mentes: es lo que aquí hemos denominado el hechizo de la elipse. Es decir el uso y abuso de imágenes falsas y traidoras, que mien-ten y engañan al alumnado y burlan al profesorado, provocando tantas ideas erróneas como las que aparecen en los estudios que citamos al principio.

No parecen necesarios muchos más argumentos para entender la necesidad de modificar esas imágenes que nos muestran una órbita elíptica errónea con el Sol en un foco alejado del centro, sobre todo cuando se utilizan para dar cuenta de la sucesión de las estaciones. Decíamos en otra ocasión (Vega, 1996) que los enseñantes tenemos que exigir que desaparezcan de los libros de texto que utilizamos en nuestras aulas. Este Encuentro de Didáctica de las Ciencias es un buen foro para insistir de nuevo en ello.

(7)

BIBLIOGRAFÍA

ATWOOD, R.K. y ATWOOD, V.A. (1996). Preservice elementary teacher's concep-tions of the causes of seasons. Journal of Research in Science Teaching, 33, 553-563. ATWOOD, R.K. y ATWOOD, V.A. (1997). Effects of instruction on preservice ele-mentary teacher's conceptions of the causes of night and day and the seasons. Journal of

Science Teacher Education, 8 (1), 1-13.

BAXTER, J. (1989). Children’s understanding of familiar astronomical events.

Interna-tional Journal of Science Education, 11, 502-513.

CALLISON, P.L. y WRIGHT, E.L. (1993). The effect of teaching strategies using models on preservice elementary teacher's conceptions about Earth-Sun-Moon relation-ships. Annual Meeting of the National Association for Research in Science Teaching. Atlanta.

CAMINO, N. (1995). Ideas previas y cambio conceptual en astronomía. Un estudio con maestros de primaria sobre el día y la noche, las estaciones y las fases de la Luna.

Ense-ñanza de las Ciencias, 13, 81-96.

DE MANUEL, J. (1995). ¿Por qué hay veranos e inviernos? Representaciones de estu-diantes (12-18) y de futuros maestros sobre algunos aspectos del modelo Sol-Tierra.

Enseñanza de las Ciencias, 13, 227-236.

DICKINSON, V., FLICK, L. y LEDERMAN, N. (1998). Student and teacher concep-tions about astronomy: influences on changes in their ideas. Proceedings of the annual

conference of the Association for the Education and Teachers in Science. Minneapolis.

FINEGOLD, M. y PUNDAK, D. (1991). A study of change in student's conceptual frameworks in astronomy. Studies in Educational Evaluation, 17, 151-166.

GOULD, A., WILLARD, C. y POMPEA, S. (2000). The Real Reasons for

Seasons-Sun-Earth Connections: Unraveling Misconceptions about the Earth and Sun. Grades 6-8. Teacher’s Guide. Berkeley. University of California.

(8)

JONES, B. (1988). Primary teacher student’s explanations of the day and night, the sea-sons and crescent Moon. Conference of the New Zealand Association for Research in

Education. Palmerston North, Massey University.

JONES, B.L., LYNCH, P. y REESINK, C. (1987). Children’s conceptions of the Earth, Sun and Moon. International Journal of Science Education, 9, 43-53.

KIKAS, E. (1998). The impact of teaching on students' definitions and explanations of astronomical phenomena. Learning and Instruction, 8, 439-454.

LUCAS, K. B. y COHEN, M. R. (1999). The Changing Seasons: Teaching for Under-standing. Australian Science Teachers' Journal, 45 (4), 9-17.

MANT, J. y SUMMERS, M. (1993). Some primary-school teacher’s understanding of the Earth place in the universe. Research Papers in Education, 8 , 101-129

NAVARRETE, A. (1998). Una experiencia de aprendizaje sobre los movimientos del sistema Sol/Tierra/Luna en la formación de maestros. Investigación en la Escuela, 34. OJALA, J. (1992). The third planet. Internat. Journal of Science Education,14, 191-200 OSBORNE, J., BLACK, P. J., WADSWOTH, P. y MEADOWS, J. (1994). Space

re-search report: the Earth in space. Liverpool. Liverpool University Press.

PARKER, J. y HEYWOOD, D. (1998). The Earth and beyond: developping primary teachers's understanding of basis astronomical events. International Journal of Science

Education, 20 (5), 503-520.

ROALD, I. y MIKALSEN, O. (2001). Configuration and Dynamics of the Earth-Sun-Moon System: An Investigation into Conceptions of Deaf and Hearing Pupils.

Interna-tional Journal of Science Education, 23, 423-440.

SADLER, P.M. (1987). Misconceptions in astronomy. Proceedings of the 2nd interna-tional seminar on misconceptions an educainterna-tional strategies in science and maths, vol 3,

pp. 422-425. Ithaca. Cornell University Press.

SCHOON, K.J. (1992). Students alternative conceptions of Earth and space. Journal of

(9)

SCHOON, K.L. (1995). The origin and extent of alternative conceptions in the Earth and space sciences: a survey of pre-service elementary teachers. Journal of Elementary

Sciences Education, 7 (2), 27-46.

SCHOON, K.J. y BOONE, W.J. (1998). Self-Efficacy and Alternative Conceptions of Science of Preservice Elementary Teachers. Science Education, 82, 553-568.

SHARP, J.G.(1996). Children’s astronomical beliefs: a preliminary study of year 6 chil-dren in south-west England. International Journal of Science Education, 18, 685-712. SHARP, J. G. (1999). Teaching and Learning Astronomy in Primary Schools. School

Science Review, 80, (292) 75-86.

VEGA, A. (1996). Ideas Precopernicanas en nuestros libros de texto. Revista de

Educa-ción, 311, 339-354.

VEGA, A. (2002). Sol y Luna, una pareja precopernicana. Estudio del día y la noche

en Educación Infantil. Tesis doctoral, Universidad La Laguna (dir. J. Marrero Acosta).

Referencias

Documento similar

Habiendo organizado un movimiento revolucionario en Valencia a principios de 1929 y persistido en las reuniones conspirativo-constitucionalistas desde entonces —cierto que a aquellas

The part I assessment is coordinated involving all MSCs and led by the RMS who prepares a draft assessment report, sends the request for information (RFI) with considerations,

 Tejidos de origen humano o sus derivados que sean inviables o hayan sido transformados en inviables con una función accesoria..  Células de origen humano o sus derivados que

Proporcione esta nota de seguridad y las copias de la versión para pacientes junto con el documento Preguntas frecuentes sobre contraindicaciones y

[r]

Contraindicaciones: El uso de la mascarilla está contraindicado para los pacientes y los miembros de sus familias, profesionales sanitarios y compañeros de

De hecho, este sometimiento periódico al voto, esta decisión periódica de los electores sobre la gestión ha sido uno de los componentes teóricos más interesantes de la

En este sentido, puede defenderse que, si la Administración está habilitada normativamente para actuar en una determinada materia mediante actuaciones formales, ejerciendo