• No se han encontrado resultados

manipulator An integrated study of the workspace and singularity for a Schönfliesparallel Technology Journal of Applied Researchand

N/A
N/A
Protected

Academic year: 2023

Share "manipulator An integrated study of the workspace and singularity for a Schönfliesparallel Technology Journal of Applied Researchand"

Copied!
29
0
0

Texto completo

(1)

Availableonlineatwww.sciencedirect.com

Journal of Applied Research and Technology

www.jart.ccadet.unam.mx JournalofAppliedResearchandTechnology14(2016)9–37

Original

An integrated study of the workspace and singularity for a Schönflies parallel manipulator

J. Jesús Cervantes-Sánchez

, José María Rico-Martínez, Víctor Hugo Pérez-Mu˜noz

UniversidaddeGuanajuato,DICIS,DepartamentodeIngenieríaMecánica,36885Salamanca,Guanajuato,Mexico Received4August2015;accepted26January2016

Availableonline3March2016

Abstract

ThispaperpresentsasimpleandsystematicapproachtoformulatetheinversepositionproblemofaSchönfliesparallelmanipulator.Asa result,theinversepositionproblemissolvedinclosedformandleadsdirectlytotheautomaticgenerationoftheworkspaceofthemanipulator.

Additionally,asystematicvelocityanalysisisalsopresented,whichallowstodetectandcharacterizeallthesingularitiesrelatedtothismanipulator.

AllRightsReserved©2016UniversidadNacionalAutónomadeMéxico,CentrodeCienciasAplicadasyDesarrolloTecnológico.Thisisan openaccessitemdistributedundertheCreativeCommonsCCLicenseBY-NC-ND4.0.

Keywords:Workspace;Singularity;Schönfliesparallelmanipulator

1. Introduction

Althoughseveralstudiesofworkspacehavebeenperformedfor manytypesofmanipulators(Abdel-Malek, Adkins,Yeh,&

Haug,1997;Bohigas,Manubens,&Ros,2012;Bonev&Ryu,2001;Davidson&Hunt,1987;Gosselin,1990;Gupta&Roth,1982;

Lee&Lee,2012;Macho,Altuzarra,Pinto,&Hernández,2013;Merlet,1999;Pernkopf&Husty,2006),thesearchofageneral andprecisedefinitionoftheworkspaceofarobotisasubjectivetask.Perhapsitisbecausetheworkspaceofamanipulatormaybe describedwithrespecttoitsabilitytoreachpoints,lines,planesorthree-dimensionalbodiesattachedtothemobileplatform.Hence thesimplestdefinitionofworkspaceisthatrelatedtopositioningmanipulators.Forthissimplecase,theworkspaceisdefinedas thevolumeofspacethatapointoftheendeffectorcanreach.However,whenthephysicalentityattachedtothemobileplatform isaline,aplaneora3Dobject,theproblemrelatedtothegraphicalvisualizationofthecorrespondingworkspaceisnotaneasy task.Therefore,duetotheparticularfeaturesofaSchönfliesmotion,namely,aspatialtranslationandarotationaboutafixedaxis, thispaperdealswiththeso-calledreachableworkspace,i.e.,thevolumeofspacewithineverypointcanbereachedbythemobile platforminatleastoneorientation.

Furthermore,qualitative andquantitative studiesof workspacesare importantbecause theymaybeused to:(a)yielduseful insightsaboutthekinematicarchitectureofthemanipulatorinthedesignstage,(b)leadtocriteriafortheevaluationofdifferent typesofmanipulators,(c)assistintheplanningofdesiredtasksinfavorablezones,and(d)avoiddangerouscollisionswithobjects.

Moreover,evenforthesimplestroboticsystem,therobotcontrollerprogrammustcontrolthemotionsofthemanipulatorandmobile platformtocarryoutataskinthespecificworkspace.

Ontheotherhand,afirst-ordersingularityanalysisdealswiththoseproblemsencounteredduringthesolutionstageofthevelocity analysisofamanipulator(Hao&McCarthy,1998;Gosselin&Angeles,1990;Altuzarra,Pinto,Avilés,&Hernández,2004;Amine, Masouleh,Caro,Wenger,&Gosselin,2012;Ghosal&Ravani,2001;Zlatanov,Fenton,&Benhabib,1995).Asaresultofsuch problems,degreesoffreedommaybeinstantaneouslygainedorlost.Particularlydangerousarethosemanipulator’sconfigurations

Correspondingauthor.

E-mailaddresses:jrico@ugto.mx(J.M.Rico-Martínez),vperez@ugto.mx(V.H.Pérez-Mu˜noz).

PeerReviewundertheresponsibilityofUniversidadNacionalAutónomadeMéxico.

http://dx.doi.org/10.1016/j.jart.2016.01.004

1665-6423/AllRightsReserved©2016UniversidadNacionalAutónomadeMéxico,CentrodeCienciasAplicadasyDesarrolloTecnológico.Thisisanopenaccess itemdistributedundertheCreativeCommonsCCLicenseBY-NC-ND4.0.

(2)

O

O1

O2

A2

B2

C2

D2

O3

A3

B3

C3 D3

A1

B1

C1

D1

O4

A4

B4

D4

C4

P

2 3

1 4

11

12 13 43

44

41 42

10

14

32 33

34

30 40

31

20 21 22 23

24

0 25 5

15

35 45

X0

Y0

Z0

X5

Y5

Z5

Fig.1.LayoutoftheSchönfliesparallelmanipulator.

wheredegrees offreedomaregainedinanunexpectedway.There,themanipulatormaydangeritsownenvironment,including adjacentequipmentandhumanbeings.Moreover,certaintypesofsingularitiesdividethewholeworkspaceintoseveralregions.

Henceitisimportanttodetectallthesingularitiesandtoknowabouttheirdistributionintheworkspaceofthemanipulator.

In particular, inAmine,Masouleh,Caro, Wenger,andGosselin (2012)it isreportedasingularityanalysis of 3T1Rparallel manipulators withidentical limb structures, wherea specificcase study is fully detailed. However, the kinematicstructure of themanipulatordescribedinthatcasestudyisnotequaltothekinematicarchitectureofthemanipulatorreportedinthepresent paper.Moreover,the singularityanalysisreportedin(Amineetal.,2012)is basedonGrassmann-Cayley Algebra,whereasthe singularity analysis introducedin the present paper is based onlyon classicalconcepts of vectors andLinear Algebra, which resultsinasimplerapproach.Furthermore,duetotheexhaustivenatureoftheapproachproposedinthepresentpaper,asetof95 singularityconfigurationsaremathematicallyidentifiedandgeometricallycharacterized.Finally,thesingularitiesareplottedinto themanipulator’sworkspace,thusenlighteningtheirgeometricmeaning.

Fromtheforegoingdiscussion,thecontributionofthispaperwillbefocusedonfourdirections:(a)aclosedformsolutionof theinversepositionproblem,(b)aworkspacegenerationscheme,(c)asystematicvelocityanalysis,and(d)characterizationand detectionofallthesingularitiesandtheirdistributioninthereachableworkspaceofaSchönfliesparallelmanipulator.Itisexpected thatthesecontributionsmaybeusefulforanadequateplanningoftasks.

2. TheSchönfliesparallelmanipulator

Figure1showsaspatial4-dofparallelmanipulatorwhosemobileplatformgeneratesaSchönfliesmotion.

ReferringtoFigure1,itmaybenotedthatthemovingplatform(link5)isconnectedtoafixedbase(link0)byfournonidentical legs.TheobjectiveistohaveaSchönfliesparallelmanipulatorwithdifferentactuationschemes,i.e.,usingtworotatoryactuators andtwoprismaticactuators.Asaresult,theJacobianmatriceswillnotbehomogeneousintermsofunits,seeEq.(41).Itisexpected

(3)

O3: (R3x, R3Y, 0)

O4: (R4x, R4Y, 0)

O1: (R1x, 0, 0) O2: (R

2x, R

2Y, 0)

3: (ρ3x, ρ3Y, 0)

2: (ρ2x, ρ2Y, 0)

4: (ρ4x, ρ4Y, 0)

I: (ρ1x, 0, 0) Y0

Y5

X0 X5 Y5

Y0

X0 X5

O

P

φ

Fig.2.Generalgeometryofthefixedandmobileplatforms.

z1 z0

A1 b1

B1 h1

L1 D1 θ1

β1

a1

O1

X1 X0

Y1 Y0 C1 C1

g1

g1 D1

f1

e1 P

γ1

e1 e1

1

1 d1

ϕ1

f1 f1

f1

×

Fig.3. Geometryofthefirstleg.

toconductananalysisofthisparticulartypeofJacobianmatricesandtheirrelationwithdexterityindices.Thiswillbetheresearch topicinaforthcomingpaper.

2.1. Kinematicarchitectureofthelegs

Thekinematicarchitecture1ofthelegsinvolvestwotypesoflegs:

(a) Thefirsttypeoflegismadeupoffiverevolutejoints,seethefirst(O1-A1-B1-C1-D1-1)andthethird(O3-A3-B3-C3-D3-3)legs showninFigure1.Inthisleg,thesecondandfifthjointaxesareparalleltothefirstjointaxis,whereasthefourthjointaxisis parallelthethirdjointaxis.Moreover,thethirdjointaxisintersectsthesecondperpendicularly,andthefifthjointaxisintersects thefourthperpendicularly.Furthermore,thereisanoffsetdistancebetweenthefirst andthesecond jointaxes.Arotational actuatorisusedtodrivethefirstjointofthelegwherethemotorisinstalledonthefixedplatform.

(b) Thesecondtypeoflegismadeupofoneprismaticjointandfourrevolutejoints,seethesecond(O2-A2-B2-C2-D2-2)andthe fourth(O4-A4-B4-C4-D4-4)legsshowninFigure1.Inthisleg,thesecondandfifthjointaxesareparalleltothefirstjointaxis, whereasthefourthjointaxisisparallelthethirdjointaxis.Moreover,thethirdjointaxisintersectsthesecondperpendicularly, andthefifthjointaxisintersectsthefourthperpendicularly.Furthermore,thereisanoffsetdistancebetweenthefirstandthe secondjointaxes.Thefirstmovinglinkofthislegisdrivenbyatranslationalactuatormountedonthefixedplatform.

2.2. Geometryofthemanipulator

ForthespatialparallelmanipulatorshowninFigure1,thefourfixedpointsO1,O2,O3,andO4definethegeometryofthefixed platform,andthefourmovingpoints1,2,3,and4definethegeometryofthemobileplatform.Althoughtheparticularmanipulator’s platformsshowninFigure1 aresymmetrical,itshouldbenoted thatboth, thefixedplatformandthemobileplatform,maybe arbitraryplanarquadrilaterals,seeFigure2.

Additionally,Figures3–6showthelinklengthsandjointvariablesrelatedtothefourlegs.Itisimportanttomentionthatunit vectorse1,e2,e3ande4denotethejointaxesofthoserevolutejointsthatjoinlinks12and13,22and23,32and33,and42and43, respectively.

1 Accordingtotheapproachproposedinthemanipulatorunderstudywasobtainedbyassemblingfourlegs.Thesefourlegsincludetwotypesofbasiclegs proposedinKongandGosselin(2007),whichweredesignedtogenerateaSchönfliesmotion.However,itisimportanttomentionthatthisparticularmanipulator, asawhole,isnotexplicitlyreportedinKongandGosselin(2007).

(4)

f2

d2

D2

C2 g2 e2

f2 e2

e2

f2

C2 Z2

p2

O2

X2

g2

D2 P

2

X2 X0

Y2

Y2

Y0

h2

b2

B2 A2

f2

L2

β2

γ2

α2

ϕ2

2

×

Fig.4. Geometryofthesecondleg.

Z3

C3

C3 h3

L3 D3 d3

3

e3

g3 f3

α3

β3

γ3

θ3

B3 b3 A3

a3

O3

g3≡ e3 f3

Y3

Y3

Y0

X3 X0

P

3

D3 X3

f3

f3 e3

ϕ3

×

Fig.5.Geometryofthethirdleg.

Insummary,theposeofthemobileplatformcanbespecifiedintermsofthepositionofpointP,andanorientationangle,namely, φ,seeFigure2.Moreover,theoriginofthefixedcoordinateframeX0Y0Z0islocatedatpointO.

3. Kinematicpositionanalysis

Theobjectiveofthissectionistoformulatetheinversepositionproblemassociatedwiththemanipulatorunderstudy.Ontheone hand,itshouldbenotedthatanglesϕ1,ϕ2,ϕ3,ϕ4,β1,β2,β3,β4,γ1,γ2,γ3andγ4arepassivejointvariables,whereasθ1,p2,θ3

andp4areactivejointvariables,seeFigures3–6.Ontheotherhand,rP/O=(x,y,z)TisthepositionvectorofmovingpointPwith respecttofixedpointO,whichismeasuredintheX0Y0Z0coordinateframe,andφdenotestherotationofthemobileplatformabout theZ0axis,seeFigure2.

(5)

f4

f4 e4

C4

d4 D4

C4 Z4

b4

L4 4

h4

B4 A4

p4

O4 X4

Y4

f4

Y4

Y0

X0

g4

D4

P 4

e4 X4

α4

γ4 ϕ4

β4

g4≡ e4×f4

Fig.6.Geometryofthefourthleg.

3.1. Constraintequations

Inordertoobtaintheso-calledconstraintequations,theprocedurebeginsbywritingaloop-closureequationforeachleg:

rOi/O+rAi/Oi+rBi/Ai+rCi/Bi+rDi/Ci+ri/Di =rP/O+ri/P,i=1,2,3,4. (1) whererj/kstandsforthepositionvectorofpointjwithrespecttopointk.

Writingequation(1)fori=1,2,3,4,andtakingtheX0Y0Z0coordinateframeasareference,itisobtainedthat:

R1X+b1cosθ1+L1sin(θ1+ϕ1)cosβ1=x+ρ1Xcosφ (2)

b1sinθ1L1cos(θ1+ϕ1)cosβ1=y+ρ1Xsinφ (3)

a1+h1+L1sinβ1+d1=z (4)

R2XL2cosϕ2cosβ2cosα2+(b2+L2sinϕ2cosβ2)sinα2=x+ρ2Xcosφρ2Ysinφ (5) R2YL2cosϕ2cosβ2sinα2(b2+L2sinϕ2cosβ2)cosα2=y+ρ2Xsinφ+ρ2Ycosφ (6)

p2+h2+L2sinβ2+d2=z (7)

R3X+{b3cosθ3+L3sin(θ3+ϕ3)cosβ3}cosα3{b3sinθ3L3cos(θ3+ϕ3)cosβ3}sinα3

=x+ρ3Xcosφρ3Ysinφ (8)

R3Y+{b3cosθ3+L3sin(θ3+ϕ3)cosβ3}sinα3+{b3sinθ3L3cos(θ3+ϕ3)cosβ3}cosα3

=y+ρ3Xsinφ+ρ3Ycosφ (9)

a3+h3+L3sinβ3+d3=z (10)

R4X+L4cosϕ4cosβ4cosα4(b4+L4sinϕ4cosβ4)sinα4=x+ρ4Xcosφρ4Ysinφ (11) R4Y+L4cosϕ4cosβ4sinα4+(b4+L4sinϕ4cosβ4)cosα4=y+ρ4Xsinφ+ρ4Ycosφ (12)

p4+h4+L4sinβ4+d4=z (13)

whicharetheconstraintequationssought.

(6)

3.2. Handlingoftheconstraintequations

Theapproachcanbestartedbyfocusingonthefactthatequations(2)–(13)arelinearinthesinesandcosinesofpassivejoint variablesϕ1,ϕ2,ϕ3,andϕ4.Thus,fromsimultaneoussolutionofequations(2),and(3),(5),and(6),(8),and(9),(11),and(12), respectively,itisfoundthat:

sinϕ1= ρ1Xcos(φθ1)+(xR1X)cosθ1+ysinθ1b1

L1cosβ1

(14)

cosϕ1= −ρ1Xsin(φθ1)+(xR1X)sinθ1ycosθ1

L1cosβ1

(15)

sinϕ2= −ρ2Xsin(φα2)−ρ2Ycos(φα2)−R2Xsinα2+R2Ycosα2+xsinα2ycosα2b2

L2cosβ2

(16)

cosϕ2= −ρ2Xcos(φα2)+ρ2Ysin(φα2)+R2Xcosα2+R2Ysinα2xcosα2ysinα2

L2cosβ2

(17)

sinϕ3= ρ3Xcos(φθ3α3)−ρ3Ysin(φθ3α3) L3cosβ3

R3Xcos(θ3+α3)+R3Ysin(θ3+α3)−xcos(θ3+α3)−ysin(θ3+α3)+b3

L3cosβ3

(18)

cosϕ3=−ρ3Xsin(φθ3α3)+ρ3Ycos(φθ3α3) L3cosβ3

+−R3Xsin(θ3+α3)+R3Ycos(θ3+α3)+xsin(θ3+α3)−ycos(θ3+α3) L3cosβ3

(19)

sinϕ4= ρ4Xsin(φα4)+ρ4Ycos(φα4)+R4Xsinα4R4Ycosα4xsinα4+ycosα4b4

L4cosβ4

(20)

cosϕ4= ρ4Xcos(φα4)−ρ4Ysin(φα4)−R4Xcosα4R4Ysinα4+xcosα4+ysinα4

L4cosβ4

(21) Introducingthetrigonometricidentitiessin2ϕi+cos2ϕi=1,fori=1,2,3,and4,Eqs.(14)–(21)become:

1X{xcosφ+ysinφb1cos(φθ1)−R1Xcosφ+ρ1X/2}2b1(xcosθ1+ysinθ1R1Xcosθ1)+(R1Xx)2

+y2+b21L21cos2β1=0 (22)

2X{xcosφ+ysinφ+b2sin(φα2)−R2XcosφR2Ysinφ+ρ2X/2}2Y{xsinφycosφb2cos(φα2)

R2Xsinφ+R2Ycosφρ2Y/2}2b2{xsinα2ycosα2R2Xsinα2+R2Ycosα2b2/2}

+(R2Xx)2+(R2Yy)2L22cos2β2=0 (23)

3X{xcosφ+ysinφb3cos(φθ3α3)−R3XcosφR3Ysinφ+ρ3X/2}3Y{xsinφycosφ

b3sin(φθ3α3)−R3Xsinφ+R3Ycosφρ3Y/2}2b3{xcos(θ3+α3)+ysin(θ3+α3)

R3Xcos(θ3+α3)−R3Ysin(θ3+α3)−b3/2}+(R3Xx)2+(R3Yy)2L23cos2β3=0 (24)

4X{xcosφ+ysinφb4sin(φα4)−R4XcosφR4Ysinφ+ρ4X/2}4Y{xsinφycosφ+b4cos(φα4)

R4Xsinφ+R4Ycosφρ4Y/2}+2b4{xsinα4ycosα4R4Xsinα4+R4Ycosα4+b4/2}

+(R4Xx)2+(R4Yy)2L24cos2β4=0 (25)

(7)

Additionally,Eqs.(4),(7),(10),and(13)aresolvedforsinβi,andthensquared.Next,Eqs.(22)–(25)aresolvedfor cos2βi. Then,byintroducingthetrigonometricidentitiessin2βi+cos2βi=1,fori=1,2,3,and4,thefollowingequationsareobtained:

ε1sinθ1+1cosθ1+κ1=0 (26)

p22+2p2+κ2=0 (27)

ε3sinθ3+3cosθ3+κ3=0 (28)

p24+4p4+κ4=0 (29)

where

ε1−2b1(y+ρ1Xsinφ) σ1b1(R1Xxρ1Xcosφ)

κ1x2+y2+(a1+d1+h1z)22R1X(x+ρ1Xcosφ)+1X(xcosφ+ysinφ)+b21+R21X+ρ1X2L21 σ2d2+h2z

κ2(R2Xx)2+(R2Yy)2+(d2+h2z)22R2X2Xcosφρ2Ysinφ)2R2Y2Xsinφ+ρ2Ycosφ) +2X{xcosφ+ysinφ+b2sin(φα2)+ρ2X/2}2Y{xsinφycosφb2cos(φα2)−ρ2Y/2}

2b2(xsinα2ycosα2R2Xsinα2+R2Ycosα2b2/2)L22

ε32b3{xsinα3ycosα3ρ3Xsin(φα3)−ρ3Ycos(φα3)−R3Xsinα3+R3Ycosα3} σ3−2b3{xcosα3+ysinα3+ρ3Xcos(φα3)−ρ3Ysin(φα3)−R3Xcosα3R3Ysinα3} κ3(R3Xx)2+(R3Yy)2+(a3+d3+h3z)2+3X(xcosφ+ysinφ+ρ3X/2)

3Y(xsinφycosφρ3Y/2)2R3X3Xcosφρ3Ysinφ)2R3Y3Xsinφ+ρ3Ycosφ)+b23L23

σ4d4+h4z

κ4(R4Xx)2+(R4Yy)2+(d4+h4z)22R4X4Xcosφρ4Ysinφ)2R4Y4Xsinφ+ρ4Ycosφ) +4X{xcosφ+ysinφ+ρ4X/2}4Y(xsinφycosφρ4Y/2)L24+2b4{(xR4X)sinα4

+(R4Yy)cosα4ρ4Xsin(φα4)−ρ4Ycos(φα4)+b4/2}

Atthispoint,itshouldbementionedthatequations(26)–(29)canbesolvedfortheinputdisplacements,namely,θ1,p2,θ3and p4,respectively,whichisaprocedureusuallyknownasinversepositionproblem.

4. Workspacegeneration

TheworkspaceofthemanipulatorwillbedefinedhereasthevolumeofspacethatpointPofthemobileplatformcanreachinat leastoneorientation.Thus,themanipulator’sworkspacewillbecomposedbyalargesetofpointsPi,whoseCartesiancoordinates aregivenbyxi,yi,zi.AteachpointPi,themobileplatformwillhaveacommonorientationangle,namely,φG.

InordertodetectwhichpointPiiscontainedwithinthemanipulator’sworkspace,thefollowingapproachisproposed.Firstly, iftheworkspaceisgivenintermsoftheCartesiancoordinatesx,y,zandtheorientationangleφ,thenequations(26)–(29)canbe solvedfortheinputdisplacements,namely,θ1,p2,θ3andp4,respectively.Analyzingequations(26)–(29),itcanbeobservedthat equations(27)and(29)arequadraticinp2andp4,respectively.Moreover,equations(26)and(28)aretrigonometricexpressions thatcanbeconvertedintoquadraticequationsinτ1tan(θ1/2)andτ3tan(θ3/2),respectively.Thus,thesolutionprocesscanbe summarizedasfollows:

θ1=2arctan

−ε1±√ δ1

κ11



, δ1ε21+12κ21 (30)

p2=−σ2±

δ2, δ2σ22κ2 (31)

θ3=2arctan

−ε3±√ δ3

κ33



, δ3ε23+32κ23 (32)

(8)

400

350

z

300

250

100

400

350

z

y

x 300

250

100 50

0 –50 0

–50

50 50

0

–50 –50

0 50

x Y

a b

c d

400

350

z

300

250

100 50

0 –50

–50 0

50 x y

400

350

z

300

250

100 50

0 50

0

–50 –50

y

x

Angle φG = –30°. Angle φG = –20°.

Angle φG = –10°. Angle φG = 0°.

Fig.7.WorkspacesfordifferentvaluesofthegivenorientationangleφG.

p4=−σ4±

δ4, δ4σ42κ4 (33)

Then,apointPi(accompaniedwithagivenorientationangleφ=φG)willbepartoftheworkspaceifandonlyifthefollowing constraints:

δ10, δ20, δ30, and δ40. (34)

aresimultaneouslysatisfied.Suchconditionsguaranteethatatleastonesetofrealinputdisplacementsexistforthatpoint.

Insummary,theworkspaceisgeneratedbyconsideringathreedimensionalgridofpointsPiequippedwithconditions(34).As aresult,theplotsshowninFigures7and8wereobtained.

Figures7and8weregeneratedbyconsideringthefollowingnumericalvaluesofthedesignparameters:R1X=180,R2X=180, R2Y=0,R3X=0,R3Y=−180,R4X=−180,R4Y=0,ρ1X=181.10,ρ2X=13.25,ρ2Y=119.26,ρ3X=176.69,ρ3Y=39.75,ρ4X=−17.67, ρ4Y=−159.02,a1=a3=113,b1=b2=b3=b4=40,h1=h2=h3=h4=123,L1=L2=L3=L4=100,d1=d2=d3=d4=103,whichare giveninanarbitrarysystemofunits.Moreover,numericalvaluesofconstantangleswerechosenasα2=0,α3=0andα4=0.

5. Velocityanalysis

Avelocityanalysisrelatedtotheparallelmanipulatorunderstudyisintroducedinthissection.Inordertopresentasystematic approach,thecorrespondingmathematicalformulationisdividedintothefollowingthreeparts.

(9)

400

350

300

250

100

400

350

300

250

100

400

350

300

250

100 50

0

–50 –50

0 50

x y

50 0

–50 –50

0 50

x y

50 0

–50 –50

0 50

x y

z z

400

350

300

250

100 50

0

–50 –50

50

x

y 0

z z

Angle φG = 10°.

a

Angle φG = 30°. Angle φG = 40°.

c d

Angle φG = 20°.

b

Fig.8.WorkspacesfordifferentvaluesofthegivenorientationangleφG.

5.1. Velocityanalysisrelatedtothejointmotions

Duetotheseveralclosedloopsthatcomposethekinematicarchitectureoftheparallelmanipulator,thejointmotionsarenot independent.Hence,theobjectiveofthissectionistoobtainthelinearrelationshipsthatexistbetweenjointvelocities.Tothisend, theprocedurebeginsbyformulatingthevelocitystate2ofthemobileplatformwithrespecttofixedplatformintermsofthejoint motionsofeachmanipulator’sleg.Thus,byresortingtoscrewtheory(Rico,Gallardo,&Duffy,1999),itisobtainedthat:

V15/0 =

ω15/0

vP/O



=

 k0 k0 0 k0

k0×rP/O1 k0×rP/B1 e1×rD1/C1 k0×rP/D1



⎢⎢

⎢⎢

⎢⎣

˙θ1

˙ϕ1

˙β1

γ˙1

⎥⎥

⎥⎥

⎥⎦

(35)

2 ThevelocitystateofbodyiwithrespecttobodyjisdenotedbyVi/j(ωi/j,vPi/Oj)T.Thisisasix-dimensionalvectorcomposedoftwothree-dimensional vectors:(a)theangularvelocityvectorofbodyiwithrespecttobodyj,namely,ωi/j,and(b)thevelocityvectorvPi/OjofapointPi(fixedonbodyi)withrespectto anypointofbodyj,suchaspointOj.

(10)

V25/0=

ω25/0

vP/O



=

0 k0 0 k0

k0 k0×rP/B2 e2×rD2/C2 k0×rP/D2



⎢⎢

⎢⎢

⎢⎣ p˙2

˙ϕ2

˙β2

γ˙2

⎥⎥

⎥⎥

⎥⎦

(36)

V35/0=

ω35/0

vP/O



=

 k0 k0 0 k0

k0×rP/O3 k0×rP/B3 e3×rD3/C3 k0×rP/D3



⎢⎢

⎢⎢

⎢⎣

˙θ3

˙ϕ3

˙β3

γ˙3

⎥⎥

⎥⎥

⎥⎦

(37)

V45/0=

ω45/0

vP/O



=

0 k0 0 k0

k0 k0×rP/B4 e4×rD4/C4 k0×rP/D4



⎢⎢

⎢⎢

⎢⎣ p˙4

˙ϕ4

˙β4

γ˙4

⎥⎥

⎥⎥

⎥⎦

(38)

Ontheotherhand,sinceeachlegsharesacommonfixedandmobileplatform,i.e.,links5,15,25,35and45representthemobile platform,whereaslinks0,10,20,30and40representtothefixedplatform,itcanbestatedthat:

V15/0=V25/0, V15/0=V35/0, V15/0 =V45/0 (39)

whichyieldsthefollowingmatrixarray:

⎢⎢

C1 D1 E1 F1

C2 D2 E2 F2

C3 D3 E3 F3

⎥⎥

˙qI

˙qP



=0,

C D E F

˙qI

˙qP



=0 (40)

where:

C1

 1 0 1 0

k0×rP/O1 −k0 0 0



C2

 1 0 −1 0

k0×rP/O1 0 −k0×rP/O3 0



C3

 1 0 0 0

k0×rP/O1 0 0 −k0



D1

 1 0 1 −1

k0×rP/B1 e1×rD1/C1 k0×rP/D1 −k0×rP/B2



D2

 1 0 1 0

k0×rP/B1 e1×rD1/C1 k0×rP/D1 0



D3

 1 0 1 0

k0×rP/B1 e1×rD1/C1 k0×rP/D1 0



E1

 0 −1 0 0

−e2×rD2/C2 −k0×rP/D2 0 0



E2

0 0 −1 0

0 0 −k0×rP/B3 −e3×rD3/C3



(11)

E3

⎢⎢

⎢⎣

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

⎥⎥

⎥⎦

F1

⎢⎢

⎢⎣

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

⎥⎥

⎥⎦

F2

 −1 0 0 0

−k0×rP/D3 0 0 0



F3

0 −1 0 −1

0 −k0×rP/B4 −e4×rD4/C4 −k0×rP/D4



˙qI

˙θ1 p˙2 ˙θ3 p˙4

T

˙qP

˙ϕ1 ˙β1 γ˙1 ˙ϕ2 ˙β2 γ˙2 ˙ϕ3 ˙β3 γ˙3 ˙ϕ4 ˙β4 γ˙4

T

Eq.(40)willbereferredtoasstructuralvelocitymodel.Itshouldbenotedthatequation(40)doesnotcontainanyparameter (e.g.,theCartesiancoordinates˙x,˙y,˙zofvelocityvectorofpointP)relatedtotheoutputmotionofthemobileplatform,butitonly containsinputjointvelocities ˙qIandpassivejointvelocities ˙qP.

5.2. Velocityanalysisrelatedtotheinputandoutputmotions

Inaparallelmanipulator, thearchitectureof thelegsdeterminesthe transformationofthe joint motionsintomotions of the mobileplatform.Thus,themobileplatformacquiresacertainvelocitystatethroughtheactuationofthelegscomposingtheparallel manipulator.Hencetheobjectiveofthissectionistorelatetheoutputmotionofthemobileplatformwiththeinputmotionsgenerated bymanipulator’sactuators.

Forthepurposesofthispaper,theoutputmotionisdefinedasthevelocitystateofthemobileplatformwithrespecttothefixed platform,namely,V5/0≡(ω5/0,vP/O)T.Ontheotherhand,theinputmotionisdefinedbyafour-dimensionalvector ˙qI,whichinvolves theinputjointvelocitiesoftheparallelmanipulator,i.e., ˙qI(˙θ1,p˙2, ˙θ3,p˙4)T.

Inordertoreachtheobjectiveformulatedpreviously,theoryofreciprocalscrewscanbeusedtoprovideanelegantformulation.

Thus,computingtheKleinformofbothsidesofEqs.(35)–(38),andaftersomealgebra,itfollowsthat:

⎢⎢

⎢⎢

⎢⎣

μ1 rTD1/C1 μ2 rTD

2/C2

μ3 rTD

3/C3

μ4 rTD4/C4

⎥⎥

⎥⎥

⎥⎦

 φ˙ vP/O



=

⎢⎢

⎢⎢

⎢⎣

λ1 0 0 0

0 λ2 0 0

0 0 λ3 0

0 0 0 λ4

⎥⎥

⎥⎥

⎥⎦

⎢⎢

⎢⎢

⎢⎣

˙θ1

p˙2

˙θ3

p˙4

⎥⎥

⎥⎥

⎥⎦, A˙s=B ˙qI (41)

where:

μ1(k0×r1/PrD1/C1, λ1(k0×rB1/A1rD1/C1, μ2(k0×r2/PrD2/C2, λ2k0·rD2/C2,

μ3(k0×r3/PrD3/C3, λ3(k0×rB3/A3rD3/C3, μ4(k0×r4/PrD4/C4, λ4k0·rD4/C4.

Giventhe rolerepresentedbyEq. (41),itwill bereferredtoas input–outputvelocitymodel.Itshouldbenotedthat Eq.(41) directlyrelatestheoutputmotion,vP/O, ˙φ,withtheinputmotion, ˙qI.Inotherwords,theoutputmotionisdecoupledfromthepassive jointmotions, ˙qP.

Referencias

Documento similar

In the preparation of this report, the Venice Commission has relied on the comments of its rapporteurs; its recently adopted Report on Respect for Democracy, Human Rights and the Rule

Our results here also indicate that the orders of integration are higher than 1 but smaller than 2 and thus, the standard approach of taking first differences does not lead to

We seek to characterize the transport in a time-dependent flow by identifying coherent structures in phase space, in particular, hyperbolic points and the associated unstable and

The Dwellers in the Garden of Allah 109... The Dwellers in the Garden of Allah

From the phenomenology associated with contexts (C.1), for the statement of task T 1.1 , the future teachers use their knowledge of situations of the personal

No obstante, como esta enfermedad afecta a cada persona de manera diferente, no todas las opciones de cuidado y tratamiento pueden ser apropiadas para cada individuo.. La forma

– Spherical Mexican hat wavelet on the sphere software (developed by the Observational Cosmology and Instrumentation Group at

Díaz Soto has raised the point about banning religious garb in the ―public space.‖ He states, ―for example, in most Spanish public Universities, there is a Catholic chapel