• No se han encontrado resultados

γ * = D para mostrar el comportamiento de cada

N/A
N/A
Protected

Academic year: 2021

Share "γ * = D para mostrar el comportamiento de cada"

Copied!
6
0
0

Texto completo

(1)

"FÓRMULAS PARA CUANTIFICAR EL ARRASTRE EN LA CAPA DE FONDO"

JOSÉ ANTONIO MAZA ÁLVAREZ

Prof., División de Estudios de Posgrado de la Fac. De Ing., UNAM Gerente de Estudios de Ingeniería Civil, CFE

México, D. F.

RAFAEL VAL SEGURA

Téc Académico, Instituto de Ingeniería, UNAM México, D. F.

TEMA: HIDRÁULICA FUNDAMENTAL

RESUMEN

En este trabajo se muestran las principales fórmulas que han sido propuestas para predecir el arrastre en la capa de fondo. Todas ellas se presentan procurando respetar la expresión original del autor, con objeto de que este escrito sirva también como un prontuario de este tipo de fórmulas. Además se explica el significado y valor de cada variable; para que las ecuaciones puedan ser aplicadas. Por otra parte, se han seleccionado dos parámetros

adimensionales G g g U y RS D * B s * 3 *

= γ ∆ τ = para mostrar el comportamiento de cada

expresión y las diferencias más importantes entre los resultados de las fórmulas presentadas.

1. INTRODUCCIÓN

En los ríos y canales se transporta agua y sedimentos. Estos se encuentran en el fondo y orillas o pueden provenir del lavado de las partículas más finas de la cuenca. Al tener en mente únicamente al material del fondo, se puede hablar de dos formas de transporte: el que ocurre en la cercanía del fondo, denominado arrastre en la capa de fondo, y el que es transportado en suspensión, entre la frontera superior de esa capa y la superficie del agua. Para cuantificar el transporte del material del fondo, los métodos que se han propuesto se pueden agrupar de tres formas distintas: en el primero están los que sólo permiten obtener el transporte en la capa de fondo, denominado gB; en

el segundo los que sirven para valuar el transporte total del fondo, denominado gBT, separando gB del que es transportado en suspensión y que se

designa como gBS; con lo que se cumple que gBT = gB + gBS; y por último, en el

tercer grupo están los que valuan gBT en conjunto, sin separar sus componentes.

Se ha mencionado que existen varios métodos para calcular los diferentes tipos de transporte, cuando con una sola ecuación, para cada tipo, sería suficiente. Ello se debe al carácter eminentemente empírico de la hidráulica fluvial, y a la falta de precisión de los datos, sobre todo gB; esa falta de precisión

ocurre tanto en el laboratorio como en las mediciones de campo.

En 1950, Einstein estableció que la capa de fondo tiene un espesor igual a dos veces el diámetro de las partículas. Posteriormente otros autores han propuesto espesores diferentes. De cualquier manera, al tratar con el arrastre dentro de esa capa, se hace referencia a todas las partículas que ruedan o se arrastran, aún con pequeños saltos, cerca del fondo.

(2)

En este trabajo se presentan las ecuaciones de los principales métodos que se han propuesto para cuantificar unicamente el arrastre en la capa de fondo gB.

El conocer gB es necesario para estimar el tiempo de llenado de presas

derivadoras, estudiar la estabilidad de cauces, o para analizar condiciones de erosión y sedimentación en tramos de ríos, cuando en ellos la velocidad de la corriente es baja o el material del fondo es grueso.

A continuación se muestran las principales fórmulas de arrastre en la capa de fondo que se mencionan en la bibliografía especializada, respetando la forma en que ellas fueron presentadas por sus autores. Con objeto de que puedan ser utilizadas, se indica el significado de los parámetros que en ellas intervienen y su expresión para calcularlos.

2. FÓRMULAS PARA OBTENER EL ARRASTRE UNITARIO EN LA CAPA DE FONDO

En todas ellas gB se expresa en kgf/s⋅m

a. DUBOYS Y STRAUB (1879, 1935)

(

)

(

)

gB 0.01003 s D 2 1.25 * = γ −γ τ τ* −τ*c Se utiliza D = D50, y se aplica si τ* ≤ 1.30 b. SHOCKLITSCH (1914, 1950)

(

)

gB =2500 S1/3 qS7/6−2.351 x 10−5 ∆5/3D7/18 Utiliza D = D40, y se aplica para cualquier τ*

c. SHIELDS (1936)

(

)

gB =10 UdS τo −τc / D∆2

Utiliza D = D50, y se aplica si τ* ≤ 0.3 para Ca = 19 y τ* ≤ 0.7 para

Ca = 8.5 d. MEYER-PETER Y MÜLLER (1948)

(

)

[

(

)

]

gB s 3 0.5 n'/n 1.5 * 0.047 1.5

8

g D

=

γ

τ

Utiliza con D = Dm, y se aplica para cualquier τ*

e. KALINSKE (1947)

(

)

[

]

gBs U D f* τ τ/ o Utiliza D = D50. La función f

(

τ τ

/

c

)

vale

τ

o

/

τ

c 0.001 0.002 0.004 0.006 0.01 0.02 0.04 0.06 f

(

τ

o

/

τ

c

)

2.48 2.40 2.27 2.20 2.08 1.87 1.66 1.53

τ

o

/

τ

c 0.1 0.2 0.40 0.60 0.80 1.00 2.00 3.00 f

(

τ

o

/

τ

c

)

1.33 1.10 0.80 0.60 0.45 0.40 0.25 0.20

τ τ

/

c 4.00 5.00 7.00 9.00 10.00 f

(

τoc

)

0.18 0.16 0.13 0.11 0.10 f. LEVI (1948)

(

)

[

(

)

]

gB =0.002γs U3 U−Uc / g1.5 d D⋅ 0.25

(3)

(

) (

)

Uc 1.4 gD Dmáx/ D 1 L d / 7D

1/7 n

= +

Sobreestima gB cuando n ≤ 0.025 aproximadamente.

g. EINSTEIN 1942, EINSTEIN Y BROWN (1950)

g1) EINSTEIN 1942

(

)

[

]

g

B

=

2.151F

1

γ

s

g D

3 0.5

exp 0.391/

τ

* Utiliza D = D50, y es válida cuando 0.045 ≥ τ* ≥ 0.19

g2) EINTEIN-BROWN

(

)

g

B

=

40F

1

γ τ

s *3

g D

3 0.5

Utiliza D = D50, y es válida cuando 0.19 ≥ τ* ≥ 1.0

h. SATO, KIKKAWA Y ASHIDA (1958)

(

)

gB =U* τo −τc

Utiliza D = Dm, y es válida cuando n ≥ 0.025

(

)

(

)

gB =U*

τ

o

τ

c 1 / 40n 3 5. Es válida cuando 0.025 ≥ n ≥ 0.010 i. ROTTNER (1959)

(

)

[

(

)

]

[

(

)

(

)

]

gB s g d3 0.1437 D / d 2/3 0.03 U / g d 0.5 1.674 D / d 2/3 3 0.5 =γ ∆ + ∆ −

Utiliza D = Dm. Es la única fórmula en que gB no depende de τ*, bajo

ninguna condición crítica de arrastre.

j. GARDE Y ALBERTSON (1961)

No se muestra por requerir de una familia de curvas para su aplicación. Es válida cuando 0.018 ≤ τ* ≤ 0.6 y 8 ≤

U

U* ≤ 15.

k. FRIJLINK (1962)

(

)

[

]

g

B

=

5

γ

s

D

µ

gdS

0.5

exp 0.27/

µτ

* Utiliza D = D50, y es válida para cualquier τ*

1. YALIN (1963)

(

)

[

(

)

]

g

B

=

0.635S

y

⋅ ⋅

D U

*

γ

s

γ

1 1/ a S Ln 1

y y

+

a S

y y

Utiliza D = Dm, y es válida para cualquier τ*

(

)

a

y

=

2.5

τ

*c

γ γ

/

s 0.4

;

S

y

=

τ

*c m. PERNECKER y VOLLMER (1965)

(

)

(

)

g

B

25g g D

s

0.04

3 0.5 * 1.5 *

=

τ

τ

Utiliza D = Dm, y es válida para τ* ≤ 1.0

n. INGLIS Y LACEY (1968)

(

)

g

B

=

0.562 U

γ

5

ν

1/3

/

ω

dg

5/3

Utiliza D = Dm, y se aplica para τ* ≤ 0.1 para Ca = 19 y τ**≤ 7.0 para Ca

= 8.5 o. BOGARDI (1979)

(

)

gB 2199 s *U g D3 3 * 4.121 0.5 = γ ∆ τ

Utiliza D = Dm, y se aplica cuando τ* ≤ 1.0

(4)

γ, peso específico del agua, en kgf/m3; γ

s, peso específico de las partículas,

en kgf/m3; ∆, densidad relativa de las partículas sumergidas (se obtiene de la

relación ∆ = (γs - γ)/γ); ν, viscosidad cinemática del agua, en m 2

/s; S, pendiente de la pérdida de carga; d, tirante o profundidad del flujo, en m; U, velocidad media de la corriente, en m/s; q, gasto unitario líquido, en m3/s.m

(se obtiene de la relación q = Ud); g, aceleración debida a la gravedad, en m/s2; D, diámetro de las partículas, en m; Dm, diámetro medio del conjunto de

partículas, en m( se obtiene de la relación Dm = 0.01 ∑(Di pi); Di, diámetro de

las partículas tal que el i% de la muestra es menor que ese tamaño, en m; pi

fracción, con respecto al total de la muestra de partículas, con diámetro Di,

se expresa en forma decimal; Dmáx, diámetro máximo en el material del fondo, en

m; ω, velocidad de caída de las partículas, en m/s (se obtiene de la reacción ω = F1 (g∆D)

0.5

); F1, coeficiente de Rubey que se utiliza en su fórmula de la

velocidad de caída (se obtiene de la relación F 2 3 36v g D 36v g D 1 2 3 0.5 2 3 0.5 =

+ −

∆ ∆ ; τo,

esfuerzo cortante critico que el flujo ejerce en el fondo, en kgf/m2 (se obtiene de la relación τo =

(

γ dS ;

)

τ*, número adimensional de Shields asociado a τo (se obtiene de la relación τ*= dS/ D∆ ); τ*c, número adimensional de Shields

para la condición crítica (se obtiene de la relación

τ*c = + −

0.2196 D 0.077exp 30.35 D* * 0.563 ; cuando 2.15 ≤ D* ≤ 333. Para D* ≥ 333,

τ*c = 0.06; D*, número adimensional de la partícula (se obtiene de la relación

D* = D

[

g / v

]

2 1/3

) ; τc esfuerzo cortante crítico en el fondo para iniciar el

movimiento de las partículas (se obtiene de la relación τc = (γc - γ)D

τ*c)n, coeficiente de rugosidad según Manning (se obtiene de la

relación n = d2/3 S1/2 /U); n', coeficiente de rugosidad según Manning asociado

a las partículas (se obtiene de la relación n' = D901/6/ 26); µ, coeficiente que relaciona coeficientes de rugosidad (se obtiene de la relación µ = C'/C); C, coeficiente de rugosidad según Chezy, en m1/2/s, (se obtiene de la relación

C = dS / U);C' coeficiente de rugosidad según Chezy asociado a las partículas, en m1/2/s, (se obtiene de la relación C = 18 log (12d/D

90); Ca, coeficiente

adimensional de Chezy (se obtiene de la relación Ca = C g). En todas las

fórmulas gB es el arrastre unitario en la capa de fondo, en kgf/s⋅m.

4. ANÁLISIS DE LOS MÉTODOS

Para visualizar las tendencias de los diferentes métodos descritos y mostrar las discrepancias que hay entre ellos, todas las fórmulas presentadas se convirtieron a una relación, cuando menos, entre los siguientes números adimensionales.

G*= g gB ∆/γs *U3 y τ* =dS / D∆

Al efectuar dicho cambio de variables, algunos de los métodos requirieron de otro número adimensional adicional como: n'/n, Ca o S. Para tomar en cuenta

ese tercer parámetro adimensional se seleccionaron dos coeficiente de rugosidad de Manning n = 0.018 y n 0 = 0.040. En la fig 1a se muestran las

(5)

curvas obtenidas para τ* - G* y n = 0.018 y en la fig 1b, τ* contra G* para

n = 0.04. En dichas figuras sólo se encuentran algunos de los métodos.

Del análisis efectuado y en las figuras señalas se observa que los diferentes métodos se pueden agrupar de la siguiente manera:

a) Métodos en que G*, y por tanto gB, sólo es función de τ*. Cumplen esta

condición los de Duboys y Straub, Kalinske, Einstein (1942), Einstein y Brown (1950), Sato et al (cuando n > 0.025), Yalin, Pernecker y Vollmer, y Bogardi. Dada la geometría de la sección, pendiente y las propiedades del agua y de los sedimentos del fondo, el arrastre en la capa de fondo es independiente de la rugosidad total del cauce y por ende de la velocidad. Esta limitación hace que los métodos se apliquen con reservas.

b) Métodos en que G* es función de τ* y Ca. Dentro de este grupo están los de

Shields, Meyer-Peter y Müller (en función de Cá/Ca), Sato et al (cuando n > 0.025), y Frijlink (en función de Cá/Ca).

c) Métodos en que G* es función de τ*, Ca y d/D. Caen dentro de este grupo los

de Levi e Inglis Lacey.

d) Métodos en los que G* es función de τ*, Ca y S. Cumple con esta condición

únicamente el método de Shocklitsch.

e) Por último, métodos en que G* no es función de τ*. Dentro de este grupo

solo está el método de Rottner; en él, G* es solo función de Ca. Puesto que

además subvalua a gB es un método que no se recomienda utilizar.

Por otra parte, cuando τ* > 0.8. se presenta régimen superior y los métodos

se pueden agrupar de cuatro formas distintas.

1) Aquellos en que G* ≅ Aτ* ≅ BU5 (A y B son constantes para el material y el

agua). Estos métodos dan el transporte total del fondo y no el arrastre en la capa del fondo, y por tanto, no se pueden usar para este propósito. Dentro de este grupo se encuentran los de: DuBoys, Shields (para τ* > 0.3),

Pernecker y Vollmer, Inglis y Lacey, y Bogardi.

2) Aquellos en que G* ya no depende de τ*; es decir G* ≅ A ≅ BU 3

. Son válidos para obtener el arrastre en la capa de fondo. Dentro de este grupo están los de: Meyer-Peter y Müller, Sato et al, Kikkawa y Ashida, Rottner, y Yalin.

3) Aquellos en que G* ≅ A

τ

*

−1

BU. También son válidos para obtener gB, aunque

dan valores menores que los del segundo grupo. Esa diferencia es tanto mayor cuanto mayor es τ*, Caen dentro de este grupo los de: Kalinske y

Frijlink.

4) Los que no siguen alguna de las condiciones señaladas; ellos son: Shocklitsch, Levi (sobrevalúa cuando n es reducida, n < 0.25), y Einstein y Brown (solo aplica si τ* < 1.0)

(6)

Por último se pueden mencionar aquellos métodos en que no se limita el transporte de sedimentos por debajo de la condición crítica de arrastre; es decir, que indican transporte de sedimentos para cualquier velocidad del flujo, por reducida que ella sea. Los métodos que tienen esta limitación son los de Rottner, Inglis y Bogardi. Al utilizar estos métodos primero se debe conocer la condición crítica de arrastre.

a)

b)

1 2 3 4 5 6 7 8 9 4 8 1 2 3 5 6 7 9

1

2

3

4

5

6

7

8

9

Bogardi

Inglis y Lacey

Shields

Pernecker y Vollmer

DuBoys y Straub

Yalin

Sato , Kikkawa y Ashida

Frijlink

Rottner

Gx

Gx

Fig 1 Representación gráfica de algunas ecuaciones de arrastre en la capa de fondo, en el plano G* - τ*, y dos valores del coeficiente de rugosidad

Referencias

Documento similar

En cuarto lugar, se establecen unos medios para la actuación de re- fuerzo de la Cohesión (conducción y coordinación de las políticas eco- nómicas nacionales, políticas y acciones

b) El Tribunal Constitucional se encuadra dentro de una organiza- ción jurídico constitucional que asume la supremacía de los dere- chos fundamentales y que reconoce la separación

Ciaurriz quien, durante su primer arlo de estancia en Loyola 40 , catalogó sus fondos siguiendo la división previa a la que nos hemos referido; y si esta labor fue de

&#34;No porque las dos, que vinieron de Valencia, no merecieran ese favor, pues eran entrambas de tan grande espíritu […] La razón porque no vió Coronas para ellas, sería

Cedulario se inicia a mediados del siglo XVIL, por sus propias cédulas puede advertirse que no estaba totalmente conquistada la Nueva Gali- cia, ya que a fines del siglo xvn y en

No había pasado un día desde mi solemne entrada cuando, para que el recuerdo me sirviera de advertencia, alguien se encargó de decirme que sobre aquellas losas habían rodado

The part I assessment is coordinated involving all MSCs and led by the RMS who prepares a draft assessment report, sends the request for information (RFI) with considerations,

 Para recibir todos los números de referencia en un solo correo electrónico, es necesario que las solicitudes estén cumplimentadas y sean todos los datos válidos, incluido el