• No se han encontrado resultados

Aplicación de tratamientos electroquímicos combinados al hormigón armado: extracción electroquímica de cloruros más protección catódica

N/A
N/A
Protected

Academic year: 2020

Share "Aplicación de tratamientos electroquímicos combinados al hormigón armado: extracción electroquímica de cloruros más protección catódica"

Copied!
9
0
0

Texto completo

(1)

Availableonlineat

ScienceDirect

www.sciencedirect.com

www.e-ache.com HormigónyAcero2018;69(S1):43–51 www.elsevierciencia.com/hya

Application

of

combined

electrochemical

treatments

to

reinforced

concrete:

Electrochemical

chloride

extraction

plus

cathodic

protection

Aplicación

de

tratamientos

electroquímicos

combinados

al

hormigón

armado:

extracción

electroquímica

de

cloruros

más

protección

catódica

Miguel

Ángel

Climent

a,

,

Jesús

Carmona

b

,

Pedro

Garcés

a

aDr.enCienciasQuímicas,Catedrático,DepartamentodeIngenieríaCivil,UniversidaddeAlicante,Alicante,Spain bDr.IngenierodeCaminos,ProfesorAyudanteDoctor,DepartamentodeIngenieríaCivil,UniversidaddeAlicante,Alicante,Spain

Received11December2017;accepted17May2018 Availableonline14July2018

Abstract

Ithasbeenstudiedthepossibilityofusingagraphite–cementpasteanodeforcombinedtreatmentsofelectrochemicalchlorideextractionplus

cathodicprotectiononreinforced concreteelements.These treatmentswouldbeinterestingincases ofstructuresheavilycontaminated with

chloridesandcontinuouslyexposedtoaharshchlorideenvironment.Ithasbeenshownthat,intheexperimentalconditionsofthiswork,theanode

isnotdamagedduringtheelectrochemicalchlorideextractionstep.Theapplicationofapreviouschlorideextractionstepallowsworkingwitha

lowercurrentdensityatthecathodicprotectionstep,whichreducestheriskofdamagesoftheanodicsystem.Achloridebarriereffectparameter

hasbeendefined,basedonthereductionofthechlorideuptakebyconcrete,duetocathodicprotectionaction,referredtothechlorideuptakeof

thereference(nottreated)specimens.Thevaluesofthechloridebarriereffectparameterfoundinthisworkareabout20%.

©2018Asociaci´onEspa˜noladeIngenier´ıaEstructural(ACHE).PublishedbyElsevierEspa˜na,S.L.U.Allrightsreserved.

Keywords:Steelreinforcedconcrete;Corrosion;Electrochemicalchlorideextraction;Cathodicprotection;Cathodicprevention

Resumen

Sehaestudiadolaposibilidaddeutilizarunánododepastadegrafito-cementoparatratamientoscombinadosdeextracciónelectroquímicade

clorurosyproteccióncatódicadeelementosdehormigónarmado.Dichostratamientosseríaninteresantesencasosdeestructurascontaminadas

conclorurosypermanentementeexpuestasaunambientesalinoagresivo.Sehademostradoque,enlascondicionesdeestetrabajo,elánodono

resultada˜nadodurantelaetapadeextraccióndecloruros.Laaplicacióndeunaetapapreviadeextraccióndeclorurospermiteaplicarlaprotección

catódicaconunadensidaddecorrientemenor,hechoquereduceelriesgodeda˜nosdelsistemaanódico.Sehadefinidounparámetrodeefecto

barreradecloruros,basadoenlareduccióndelapenetracióndecloruros,debidaalaproteccióncatódica,referidaalapenetracióndeclorurosde

referencia(sinproteccióncatódica).Losvaloresdedichoparámetroencontradosenestetrabajosondel20%,aproximadamente.

©2018Asociaci´onEspa˜noladeIngenier´ıaEstructural(ACHE).PublicadoporElsevierEspa˜na,S.L.U.Todoslosderechosreservados.

Palabrasclave: Hormigónarmado;Corrosión;Extracciónelectroquímicadecloruros;Proteccióncatódica;Prevencióncatódica

1. Introduction

Severalelectrochemicaltechniques havebeensuccessfully usedtotheprotectionandremediationofsteelcorrosionin

rein-∗Correspondingauthor.

E-mailaddress:ma.climent@ua.es(M.Á.Climent).

forced concretestructures. Allthese techniquesare based on theloweringoftheelectricpotentialofsteel[1–7].Thiseffect canbe obtained bothbyconnectiontoaless noble metal,as incathodicprotection(CP)bysacrificialanodes,orby connec-tiontothenegativepoleofanelectricdirectcurrentsource,as inCPbyimpressedcurrent[8–12].Thetechniquescanalsobe classifiedinpermanentandtemporary techniques.Permanent

https://doi.org/10.1016/j.hya.2018.05.003

(2)

techniquesareCP,whoseaimistostopthesteelreinforcement corrosion,anditsvariantcalledcathodicprevention(CPre), fol-lowingPedeferrietal.[9,11].TheobjectiveofCPreistoprevent theinitiationofsteelcorrosioninnewstructures.Ontheother hand,temporary techniques are thoseintended tochange the prevailing corrosion conditions of the structures by lowering its chloride content, such in electrochemicalchloride extrac-tion(ECE)[13–18],orbyincreasingthepHofconcrete,such inelectrochemicalrealkalization(ER)[19,20].Inthisworkwe concentrateonapplicationsofthetechniquesaimedtoprevent theonsetofcorrosion(CPre),improvetheprevailingconditions (ECE)orstopthecorrosionofsteelreinforcement(CP),dueto chloridecontaminationofconcrete,excludingsacrificialanode applications.

Alltheelectrochemicaltechniqueshaveincommonthe reac-tionsatthesurfaceofsteel,thecathode,i.e.oxygenreductionto producehydroxideions(thebasisofER),andeventual hydro-gen gas evolution if negative enough potentials are reached. Hydrogen production is considered as a potentially harmful process, dueto the possibility of hydrogen embrittlement of highstrength steels [5,6].Besides to thesereactions the sys-tembenefitsalsofromeffectsduetomigrationofionsinduced bytheelectricfield:hydroxide(OH−)andchloride(Cl−)ions movefromcathodetotheexternalanode. Thislattereffectis thebasisofECE.Thepermanenttechniques,i.e.CPreandCP canbeconsideredasmoresophisticatedinthesensethatthey needtoguaranteethemaintenance(CPre),orthenew forma-tion andmaintenance(CP), of the passivatinglayer onsteel, bymaintaining the potentialof steel belowthe pitting poten-tial imposed by the presence of a certain Cl− concentration in the concrete’s inner pore solution [9–12]. These electro-chemical conditions induce a reduction of the ratio of the concentrations of chloride andhydroxideions, [Cl−]/[OH−], near the steel. A non-negligible contribution to the mainte-nanceofthepassivatinglayercomesfromtheso-calledchloride barriereffectactinginCPreandCPapplicationsonsteel rein-forcedstructurespermanentlyexposedtoanaggressivechloride environment[9,11].

The operation conditions of the abovementioned electro-chemicaltechniquesdifferineachcase.CPandCpre,applied toreinforced concrete,needusingapermanentlyfixedanode, whichisusuallyanembeddedmetallicwiremesh,typicallya titaniummeshactivatedwithmixedmetaloxides,ortheyuse conductive coatings or overlays, such as conductive cemen-titious overlays [21–24]. CPtypically applies current density values between 5 and 20mA/m2, while CPre needs only 1–3mA/m2. Nevertheless, in the case of CP the actual cur-rentdensityneededtoeffectivelyprotectthesteelishigherthe higheristheCl−contentofconcrete.ThesuccessofCPorCPre dependsgreatlyonanoptimumdesignoftheanodicsystem,able toprovideanadequatecurrentdistributiononthesteel reinforce-ment[9].ECE,asatemporarytechniqueaimedtoreducetheCl− contentofconcrete,usesexternalanodesandelectrolytes[25], althoughit hasbeendemonstratedthataconductive cementi-tious anodic overlay can also be used as the anode for ECE

[26,27,28,29].ThetypicalcurrentdensityforECEapplications onreinforcedconcreteelementsisintherange1–5A/m2,while

thetotalelectricchargepassedisusuallybetween1×106and 5×106C/m2.Fromanelectrochemicalpointofviewthe cur-rentdensityshouldbedefinedasreferredtoelectrodesurface, i.e. the surface ofthe steel cathode. However,in engineering fieldapplicationsitissometimesdifficulttoknowthesteel rein-forcementarea.So,manytimesthecurrentdensityisreferredto exposedconcretesurface,which,inthecaseofanodicoverlay systemsisequaltotheanodearea.

InthecaseofCPacriticalpointofconcernisthepossibilityof malfunctionoftheanodicsystem,duetotheacidityproducedby theelectrochemicalreactionsattheanode,whichcanimpairthe contactbetweentheembeddedconductingmaterialoftheanode andthesurroundingcementpaste.Thisriskincreaseswhenthe appliedcurrentdensityishigherthan20mA/m2[21].

The Departmentof CivilEngineering of the University of Alicantehasbeenconductingresearchontheuseofconductive cementpastes(CCP),basedonmixesofcementwithdifferent carbonaceousmaterials,asanodiccoatingsforapplicationsof electrochemicaltechniquesonreinforcedconcrete[24,26–31]. Oneofthemostappealingpossibilitiesofferedbythese perma-nentanodicoverlaysisthepossibilityofcombinedsuccessive treatments ofECEplusCP,withoutchangingtheanode.This combination of treatments may be convenient in the case of structuresheavilycontaminatedwithCl−ions,whosechloride environmental load is expected tobe maintained highin the future, forinstancethecaseofreinforcedconcreteexposedto de-icingchloridesalts,oraharshmarineenvironment.Inthese casesitmaybedeemednecessarytofirstreducetheCl−content ofconcretebyapplyingECE,andlatermaintainthesteel pro-tectedbyapermanentCPtreatment,withouttheneedtoapplya toohighCPcurrentdensity,thusreducingtheriskofmalfunction oftheanodeduetotheacidityproducedatitssurface.

2. Methodology

(3)

Table1

Nomenclatureofspecimensforapplicationoftheelectrochemicaltechniques.

Studiedtechniques Initial%Cl−inconcrete Referencesample Treatedsample

CP 2 R(noelectrochemicaltreatment) A(CPtreated)

CPre 0 P(noelectrochemicaltreatment) B(CPretreated)

ECE+CP 2 ER(treatedonlywithECE) EA(ECE+CPtreated)

ECE+CPre 2 EB(ECE+CPretreated)

Figure1.Sketchofreinforcementofsamplesandconnectionofthecathodicsystem(steelreinforcement). Adaptedfrom[24].

ontotheconcreteoranodicoverlaysurface,inordertosimulate thecontinuedchloridecontaminationduetoexposuretoavery aggressiveenvironmentasmentionedabove.

2.1. Reinforcedconcretespecimens

Thespecimenswereprism-shapedreinforcedconcrete ele-ments, with a dimension of 18×18×8cm3, which were reinforced by agrid 16×16cm2 composedof six steel bars (5mmdiameter)weldedsymmetricallyformingsquaresof5cm side,and placed 2cm under the anode, Fig.1.The concrete dosagewasasshowninTable2.Twomixeswereprepared:one withoutaddedchloride for preparing the specimens intended for pure cathodic prevention (CPre) treatments, and another mixcontaining2%Cl−relativetocementmassforthe speci-mensusedincathodicprotection(CP)applicationsorcombined treatments (ECE+CP) and (ECE+CPre), see Table 1. Once the formworkwasremoved, thespecimens were moist-cured at95–98%relativehumidity(RH)for28days.The

character-Table2

Concretedosageforpreparationofthetestspecimens.

Material Dosage

PortlandcementCEMI42.5R 250kg/m3

w/cratio 0.65

Limestoneaggregatemax.size 12mm

1890kg/m3

Superplasticizer 2.50kg/m3

NaCl Nilor3.3%(2%Cl−

relativetocementmass)

istics of the hardenedconcretewere as follows: compressive strength37.8N/mm2[32],porosity11.1%[33],andbulkdensity 2.38T/m3[34].

Fig. 1 also shows the system used for connecting the reinforcement(cathodesystem)tothenegativepoleofthe elec-tric powersource, through plastic isolated copperconnectors screwedtotherebar.

2.2. Commonexperimentaldetailsoftheelectrochemical tests

(4)

Figure2. Sketchofspecimenassembly. Adaptedfrom[24].

theratiobetweenthesurfaceofconcretecoveredbytheanodic overlayandthetotalsurfaceofthesteelbarswas1.7,Fig.2.All current densityandelectric chargedensityvalues reportedin thisworkarerelativetosurfaceofconcrete,(equaltotheanode surface),exceptotherwisestated.

Theresistivityofthe graphite–cementpastewasmeasured through the four-probemethod.To thisend, pastespecimens werecastin4×4×16cm3moulds,andmoist-curedat95–98% RH during 14 days. The experimental details of the mea-surementscanbefoundelsewhere[35].Theaverageobtained resistivitywas1.5m.

Themeasurementsofsteelcorrosionpotential(Ecorr)andall thesingleelectrodepotentials,wereperformedusingAg–AgCl referenceelectrodes.Theseelectrodeswerehousedinrespective holesdrilled fromthe exposedsurface of the concrete speci-men(that bearing thegraphite–cement anode)tothe vicinity oftherebar,Fig.2.Forthispurpose,theholesweresheathed withaplastictube,andfilledwithaKOH0.2Maqueous solu-tion,tryingtoapproachthephysical-chemicalconditionsofthe concrete’sinnerporesolution.

In thisway ninespecimens were prepared,seven of them with salt in the mixing water and two without it. Two of thesaltedspecimens wereusedonlyfordetermining the effi-ciencyoftheECEprocess.Concretecoreswereextractedfrom them,andtheir chloride contentprofiles weredetermined, in one casebefore and in the other caseafter ECE. Thesetwo specimens were discarded after coring.The seven remaining specimenswereintendedforthetestscorrespondingtoCP,CPre, and the combined treatments (ECE+CP) and (ECE+CPre), seeTable1.

TheECEefficiencieswerecalculatedasthepercentagesof reduction of the initial chloride content. Obtainingthe chlo-ride content profiles before and after the ECE trials allowed calculatingthelocalandoverallefficiencies.Attheendofthe 24weeksof exposuretoasevereCl−load,i.e.thefirstphase of CP andCPretreatments,see Section2.4,chloride content profileswere obtained from all the reinforced concrete spec-imens. The Cl− profileswere measuredfollowingessentially RILEM recommended procedures [36]. Cylindrical concrete cores,95mmdiameterand20mmheight(uptotherebardepth),

wereextracted.Fromthesecores,concretedustsampleswere obtainedbygrindingthin(2mmthick)successiveparallellayers totheexposedsurface[36].Inthisway10concretedust sam-ples weregainedfromeachcore, thusallowingthe obtention ofsufficientlydetailedchloridecontentprofiles.The determina-tionofthesamples’acidsolublechloridecontentswascarried outbypotentiometrictitration[37,38].Allthechloridecontent valuesareexpressedinthisworkas%Cl−relativetocement mass.

2.3. ECEtreatments

Fourofthespecimensmadewithsalinemixingwaterwere subjected toECE.Forthispurpose,thespecimenswere elec-tricallyconnectedinseriesbypairstoadirectcurrentsource. The relevant parameters of the ECEtreatments are shownin

Table3.Alowchargedensitywasapplied,only1.5MC/m2 rel-ativetoconcretesurface(2.6MC/m2relativetosteelsurface). Thecurrentsourcefeedingvoltage(Efeed)wascontrolledata levelbelow40Vduringtheprocesses,forsafetyreasons.Itwas necessary inthis respect tointerrupt the current passage two times (twopausesof 24h eachone)alongthe treatment.The wholeprocesseswereperformedinsideafumehoodto elimi-natethechlorine,Cl2(g),producedbyelectrochemicaloxidation of the Cl− ionsextracted from the concrete. When the ECE processeswerefinished,thepHvaluesoftheelectrolyteswere measuredinordertochecktheacidifyingeffectcausedbythe electrochemicalanodicreactions.

2.4. ApplicationofCP,CPreandthecombinedtreatments ECE+CPandECE+CPre

Thissectiondescribesthedetailsoftheexperimentscarried outtodemonstratetheapplicabilityoftheGCPanodesfor com-binedprotectivetreatmentsofECE+CPandECE+CPre,please refertoTable1.

(5)

Table3

SummaryofECEdata.

ECE.SpecimenswithGCPasanode. Electrolyte:dammeddistilledwater

Initial%Cl− 2%relativetocementmass

Currentdensity 2A/m2ofconcreteexposedsurface(3.4A/m2ofsteelsurface)

InitialΔEfeed 16–24V FinalΔEfeed 23–22V

Electricchargedensity 1.5MC/m2ofconcreteexposedsurface(2.6MC/m2ofsteelsurface)

handtheapplicationofCPrewith2mA/m2ofcurrentdensity (relativetoconcretesurface)toasamplepreviouslyECEtreated (EBinTable1)andtoanothermanufacturedwithoutsaltandnot ECEtreated(BinTable1).Thevaluesofthecurrentdensities relativetothesteelbarssurfaceare25.5mA/m2and3.4mA/m2 fortheCPandCpretreatments,respectively.Thedirectcurrent sourcewasprogrammedtomaintainaconstantcurrentdensity alongthe wholeprocesses. Eachapplicationhasits reference samplewithouttreatmentofCPorCPretocomparetheresults. Thereferencesampleforthespecimenssubjectedtocombined treatments(EAforECE+CP,andEBforECE+CPre)isER.R isthereferenceforA,andPisthereferenceforB.

TheapplicationofCPandCPreconsistedoftwophases: Phase1.First24weeks.TheaforementionedtreatmentsCP andCPrewerecontinuouslyappliedduringthefirst13weeks. Then,thecurrentwasswitchedofffor4weeksandafterthat, treatmentswereresumedtotheend.Chloridecontaminationwas continuouslyapplied,evenduringtheswitchoffperiods.

While applying the CP and CPre treatments some elec-trochemical parameters were measured. During the current passingperiodsthefeedingvoltageofeachspecimen,Efeed, wasobtainedas thepotential differencebetweencathode and anode; andthe individual anodicand cathodic potentials,Ea andEc,respectively,weremeasuredagainstthereference elec-trode Ag–AgCl. Finally, in order to check the efficiency of CPandCPreasmaintainersof protectionconditions ofsteel, the “100mV decay” criterion was used, as is specified in ISO12696:2012[39].Thiscriterionhasbeenalsoextensively employedforthispurposebyseveralresearchers[21,40].The methodconsistsinobtainingthe4hpotentialdecay(Edecay), thatisthedifferencebetweenEc4h(thevalueofEc4hafterthe currentswitchoff),andtheinstant-offcathodicpotentialEcio, whichinthiscasewasmeasured1safterthecurrentswitchoff. Theminimumvalueofthe4hdepolarizationmustbe100mV foranadequatecorrosionprotectionofsteel[39].Thevaluesof Ecioweremonitoredwithanautomaticdataloggerabletoobtain andrecord500measurementsin6s,afterthecurrentswitchoff. Once the 24 weeks processes were fulfilled, cores were extractedfromallspecimensofTable1,andtheirrespectiveCl− contentprofileswereobtained.Thiswasdonewiththepurpose ofevaluatingtheneteffectoftheelectrochemicaltreatmentson theCl−ionuptakebythereinforcedconcretespecimensduring thecontinuedexposuretoaveryaggressiveenvironment.

Phase2.Attheendof Phase1 itwasobservedthatallthe specimens had lost the steel protection condition, evidenced by Edecay values lower than 100mV. Then, it was decided tostartthissecond phasewiththeobjectiveof recoveringthe

protectionconditionsofsteelbyadjustingthecurrentdensityof theCPtreatments.Theprocedurewastoincreaseprogressively the current density during 4 weeks, starting with a value of 20mA/m2,untilobtainingtheprotectionconditions.

3. Resultsanddiscussion

3.1. ApplicationofECE

Four of the reinforced concrete specimens weresubjected toan ECEtreatment beforestarting thefirst phaseof theCP andCPretreatments,see Section2.3.Oncefinished the ECE processwiththesettledparameters,Cl− contentprofileswere obtained,correspondingtothestatesbeforeandaftertheECE treatment. ThelocalECE efficiencies,understood as percent-ageofCl−contentremoved,areplottedinFig.3.Theaverage of removedCl− was51%of theinitialcontent,i.e. the resid-ualCl− contentof concreteafterECEwasapproximately1% referredtocementmass.Thisindicatesagoodperformanceof the ECEprocessapplied onaconventionalordinaryPortland cement concrete with the GCP anodic overlay system, for a relativelylowchargedensityof1.5×106C/m2relativeto con-cretesurface.Thisresultcanbecomparedtothe41%efficiency obtainedforaverysimilarreinforcedconcreteelement,withthe sameinitialamountofCl−,subjecttoanECEtreatment,using aTi–RuO2 meshanode,andpassingatotalchargedensityof 1MC/m2relativetoconcretesurface[26].

ThepHvaluesdeterminedfortheelectrolytes,aftertheECE experiments,wereintherange5–5.5.Thismeansthattheacidity

0 20 40 60 80

0 2 4

0 4 8 12 16

Ef

fi

c

ie

nc

y(

%

)

Depth (mm) Efficiency

Initial content of chlorides

Final content of chlorides

Cl

- co

n

ten

t (

%

r

e

la

ti

ve t

o

cemen

t

ma

ss)

Figure3.ChlorideconcentrationprofilesbeforeECE(initial)andafterECE (final),andlocalefficienciesoftheextractionprocess.ECEdetails:current density:2A/m2,chargedensity:1.5MC/m2,bothrelatedtoexposedconcrete surface.

(6)

-100 100 300 500 700 900

0 5 10 15 20 25

Δ

Edec

a

y

(m

V)

Time (weeks of treatment) B

A

EB

100 mV EA

Figure4.EvolutionofΔEdecayduringtheCPorCPretreatments.A:CP;B: CPre;EA:ECE+CP;EB:ECE+CPre.AllofthemsubjectedtoCl− contam-inationduringthe24weeks.Theelectrochemicaltreatmentswereinterrupted betweenweek13andweek17.

Adaptedfrom[24].

oftheelectrolyteshadincreasedslightly,(theinitialelectrolyte wasdistilledwater).Thisacidifyingeffectmaybeduetoseveral ofthe electrochemicalanodicreactions,namelytheoxidation ofhydroxideionsorwatertoO2(g) andthe oxidationof car-bontoCO2(g).Itispossiblethatthealkaline characterofthe graphite–cementpasteanodemayhavereducedtheacidity pro-ducedbythoseelectrochemicalprocesses.Itisworthnotingthat nosharpincreaseofthefeedingvoltagewasobservedduringthe ECEtreatments.Thissuggeststhatnoimportantdamageofthe GCPoverlayhasbeenproducedduringECE[21],eventhough thesetrialsareperformedwithahighcurrentdensityof2A/m2. WemustrecallthattheECEtrialsareperformedunder continu-ousliquidpondingoftheanode,anditsdurationisshort,about eightdays.

3.2. FirstphaseofCPandCPretreatments

Inthissectionwedescribetheresultsoftestscarriedoutto investigatetheperformanceoftheGCPanodesduring protec-tiveelectrochemicaltreatmentstoreinforcedconcreteelements affected by steel corrosion due to chloride contamination, such are CP, CPreand combined treatments of ECE+CP or ECE+CPre,seeTable1.

ToverifytheeffectivenessofCPandCPretreatmentsfor pro-tectingsteelfromcorrosion,the“100mVdecay”criterion[39]

wasused,asstatedinSection2.4.Fig.4 showstheevolution oftheEdecayvaluesforthespecimensinTable1,duringthe 24weeksexperiments.TheEdecay valuesoftheAspecimen, treatedonly withCP, practically never reached the threshold valueof100mV.Itseemsthata15mA/m2currentdensitywas notsufficienttoprovideprotectiontosteelinsuchharsh condi-tions:initialCl−contentof2%plusthecontinuedsaltingregime (65mlNaCl0.5Mweeklysprayedontotheanodicoverlay sur-face).RegardingtheEAspecimen(ECE+CP),theprotection conditionsof steelwerekeptduring11weeksbecause ofthe currentcirculation,despiteexternalCl−loading.Cathodic pro-tectionof15mA/m2currentdensity,relativetoconcretesurface, wasabletokeepprotectiveconditionsforthesteelreinforcement iftheinitialCl−contentofthespecimenwasabout1%(EA).

0 2 4 6

0 5 10 15 20

C

lori

de c

o

n

ten

t

(%

r

el

a

tiv

e to

c

em

en

t

mass)

Depth (mm)

%Cl-ER

%Cl-EA

%Cl-EB

Figure5.ProfilesofCl−contentinspecimenstreatedpreviouslywithECEand afterwithCP(EA),withECEandafterCPre(EB),andinthereferencesample onlytreatedwithECE(ER),allofthemsubjectedtoCl−contaminationprocess, afterECEandfirstphaseofCPorCPre(24weeks).

Adaptedfrom[24].

In the caseofthe specimen withinitialCl− contentof about 2%(A),ahighercurrentdensitywouldbeneededforreaching theprotectionconditions[9,11].Theseobservationscorroborate themainhypothesisofthepresentresearch,i.e.incasesof rein-forcedconcretestructureswithahighCl−contaminationsubject toveryharshchlorideenvironments,itwouldbeadvantageous toapplysuccessivelyaninitialECEtreatmenttoreducetheCl− content,andthenmaintainprotectiveconditionstosteelthrough acontinuousCPtreatmentwithouttheneedofusingatoohigh CP currentdensity,whichcouldeventuallyimpairthe perfor-manceoftheanodicsystem[21].Thesecombinedtreatments, ECE+CP,wouldbemoreconvenientlyimplementedwiththe CCPcoatings,sincethesameanodecanservebothfortheECE andfortheCPtreatments.

RegardingtheCPretreatedspecimens(cathodiccurrent den-sity2mA/m2relativetoconcretesurface),specimenBshowed

ΔEdecayvalueshigherthan100mVuptothecurrentswitchoff at13thweek, confirmingthecapacityofcontinuouslyapplied CPretreatmentstokeepsteelprotectionconditionsfor an ini-tially Cl− freereinforced concrete, despiteextensiveexternal Cl− load[9,11,41,42]. Onthe other handsuch alow current densityisunabletoprotectsteelifconcreteispreviously contam-inatedatalevelofabout1%relativetocementmass,andsteel hasstartedtocorrode,asshownforspecimenEB(ECE+CPre) inFig.4.

AttheendofPhase1allthereinforcedconcretespecimens hadreached avery highdegreeof Cl−contamination, ascan beappreciatedinTable4.Nevertheless,somecomparisonscan be doneonthebehaviour ofthedifferentcases. Forinstance,

(7)

Table4

Finalaveragedchloridecontents(expressedin%Cl−relativetocementmass)attheendofthe24weeksofexposuretoasevereCl−load(firstphaseofCPand CPretreatments).

Specimen InitialCl−content (%ref.cem.mass)

Electrochemicaltreatmentprevious tothe24weeksfirstphase

Electrochemicaltreatmentduring the24weeksfirstphase

FinalaveragedaCl

content(%ref.cem.mass)

P 0 – – 4.93

R 2 – – 6.08

ER 2 ECE – 4.26

A 2 – CP 5.39

B 0 – CPre 3.94

EA 2 ECE CP 3.41

EB 2 ECE CPre 3.42

a ThefinalClcontentwascalculatedasthemeanvalueofthosefoundintheClcontentprofiledeterminedthroughtheconcretecoverzone(20mmwidth).

(Cl−BEP),whichisdefinedhereasthepercentageofreduction oftheCl−uptakebyconcrete,duetoCPorCPreactions,referred totheCl−uptakeofthereference,(nottreated)specimens,see Eq.(1).

ClBEP=(Cl

UptakebyReference)(ClUptakebyTreatedSpecimen)

(ClUptakebyReference) ∗100 (1)

Table 5 shows the net values of the Cl− barrier effect parameterfoundforthespecimenstestedinthiswork,putting in evidence that this parameter reaches values of about 20%intheexperimentalconditionsofthiswork.

3.3. SecondphaseofCPtreatments

Giventhatafterthe24weeksoftreatmentsofPhase1, includ-ing rest periods between the 13th and 17th weeks, the steel reinforcementsinallconcretespecimens hadcompletely lost theirprotectionconditions,andhavingbeendemonstratedthat aCPof15mA/m2wasunabletorestoretheprotective condi-tions(Fig.4),thePhase2wasstarted.TheexternalCl−loadwas discontinuedsinceallthespecimenshadreachedveryhighCl− contents,seeTable4.Intheseconditions,CPwasappliedwith highercurrentdensities.Thequestionwasifitwouldbepossible torecovertheprotectionconditionsofsteelbyincreasingthe cur-rentdensitytotheappropriatevalue.Inthebeginningofthislast phase,thecurrentdensitywassetat20mA/m2.After4weeks inoperation the thresholdvalue of 100mV ΔEdecay was not reached,i.e.theprotectionconditionswerenotobtained,Fig.6. Neithersuccesswasobtainedinasecondattemptat25mA/m2 (datanotshowninFig.6).Finally,athirdstepof40mA/m2was set.Inthiscase,after4weeks,theruleof100mVofΔEdecay wasachievedforEA,AandBspecimens.

Table5

Valuesofthechloridebarriereffectparameterforthetestedspecimens.

Specimen Treatmentof specimen

Reference Treatmentof reference

Cl−BEP (%)

A CP R None 17.0

B CPre P None 21.0

EA ECE+CP ER ECE 26.0

EB ECE+CPre ER ECE 25.7

-100 -50 0 50 100 150 200 250

0 2 4 6 8

Δ

Ede

c

a

y

(mV)

Time (weeks of CP phase 2)

20 mA/m² 40 mA/m²

B

EA

EB 100mV

A

Figure6.EvolutionofΔEdecayduringPhase2ofCP.Firststepof4weekswith 20mA/m2ofcurrentdensity,andthirdstepwith40mA/m2.SpecimensA,B, EAandEB.

Adaptedfrom[24].

Moreover,protectionconditionswereverifiedwiththe mea-surementof depolarization potential difference values7 days after switch off [39]. In fact, more than150mV of ΔEdecay wasreached after7days (209mVforEA,211mVforAand 153mVforB).ThisefficiencyofCPissimilartothatobtained byotherresearchers[40,43].However,thiswasnotthecasefor EB.After4weekswithacathodiccurrentdensityof40mA/m2 the protection conditions were not recovered for this latter specimen.

4. Conclusions

Theresultsofthisworkpointoutthatitispossibletousea graphite–cementpaste, overlaidonthesurfaceofareinforced concreteelement,astheanodeforsuccessivetreatmentsof elec-trochemicalchlorideextraction,toreducethechloridecontent, andthencathodicprotectiontomaintainprotectiveconditions forthesteelreinforcement.Thefollowingaspectscanbe empha-sized,namely:

(8)

• The chloridebarriereffectparameter(Cl− BEP)is defined asthepercentageofreductionoftheCl−uptakebyconcrete, duetoCPorCPreactions,referredtotheCl−uptakeofthe reference(nottreated)specimens.Thisparameterallows eval-uatingthemagnitudeofthechloridebarriereffectduetothe application of CP or CPre toreinforced concreteelements continuouslyexposedtoaharshchlorideenvironment.The foundvaluesof thisparameter,bothforsimpleCP orCPre trialsandforthecombinedtreatmentsofECE+CP,areabout 20%,intheexperimentalconditionsofthiswork.

• Acathodiccurrentdensityof2mA/m2,typicalofCPre appli-cations,isunabletoprotectsteelafteranECEtreatment.

• Itispossibletorecoverprotectiveconditionsagainstcorrosion of steel reinforcementinconcretebyapplying acombined treatmentofECEfollowedbyacontinuousCPtreatment.The currentdensityvalueoftheCPstepmustbesetattheproper value,accordingtotheresidualchloridecontentinconcrete. TheneededCPcurrentdensityvaluewillbelowerthanifthe ECE wasnot applied,thusreducing the riskof damage of theanode. Inthissense theGCPoverlaysonconcretemay showanadvantageousversatility,overothertypesofanodic systems,sincethesameanodeisusedonthetwostepsofthe combinedtreatment.

Acknowledgements

ThisresearchwasfundedbytheSpanishAgenciaEstatalde Investigación(AEI),andFondoEuropeodeDesarrolloRegional (FEDER) through project BIA2016-80982-R. We acknowl-edge also funding from the Spanish Ministerio de Ciencia e Innovación (MAT2009-10866), and Generalitat Valenciana (PROMETEO/2013/035).

Theauthorswouldliketodedicatethisworktohonourour masterandfriendProf.CarmenAndradePérdrix,whosuggested ourresearchgroupundertakingresearchontheapplicationof electrochemicaltechniquestoreinforcedconcretestructures.

References

[1]C.L.Page,Interfacialeffectsofelectrochemicalprotectionmethodapplied tosteelinchloridecontainingconcrete,in:D.W.S.Ho,F.Collins(Eds.), Proceedings oftheInternationalRILEM/CSIRO/ACRAConference on RehabilitationofConcreteStructures,Melbourne,Australia1992,RILEM, Melbourne,Australia,1992,pp.179–187.

[2]J.Mietz,Electrochemicalrehabilitationmethodsforreinforcedconcrete structures:astateoftheartreport,in:PublicationNumber24ofthe Euro-peanFederationofCorrosion,IOMCommunicationsLtd,London,UK, 1998,pp.57.

[3]C. Andrade,M. Castellote,C. Alonso,Anoverviewof electrochemi-calrealkalisationandchlorideextraction,in:D.W.S.Ho,I.Godson,F. Collins(Eds.),RehabilitationofStructures,Proceedingsof2nd Interna-tionalRILEM/CSIRO/ACRAConference,Melbourne,Australia,21–23 September1998,RILEM,Melbourne,Australia,1998,pp.1–12.

[4]J.Tritthart,ElectrochemicalChlorideRemoval:AnOverviewand Scien-tificAspects,TheAmericanCeramicSociety,Westerville,OH,USA,1998, pp.401–441.

[5]P.Pedeferri,L.Bertolini,Tecnicheelettrochimiche(Electrochemical tech-niques),in:LaDurabilitàdelCalcestruzzoArmato(TheDurability of ReinforcedConcrete),McGraw-Hill,Milano,Italy,2000,pp.253–273(in Italian).

[6]L.Bertolini,B.Elsener,P.Pedeferri,R.B.Polder,Electrochemical tech-niques, in: Corrosion of Steel in Concrete, Wiley-VCH, Weinheim, Germany,2004,pp.345–374.

[7]R.B.Polder,Electrochemicaltechniquesforcorrosionprotectionand main-tenance,in:H.Böhni(Ed.),CorrosioninReinforcedConcreteStructures, WoodheadPublishing,Cambridge,UK,2005,pp.215–241.

[8]C.L.Page,Cathodicprotectionofreinforcedconcrete.Principlesand appli-cations,in:Proceedings of theInternationalConference on Repairof ConcreteStructures,Svolvaer,Norway,1997,pp.123–132.

[9]P.Pedeferri,Cathodicprotectionandcathodicprevention,Constr.Build. Mater.10(1996)391–402.

[10]R.B. Polder, Cathodic protection of reinforced-concrete structures in TheNetherlands–experienceand developments,Heron43(1)(1998) 3–14.

[11]L.Bertolini,F.Bolzoni,P.Pedeferri,L.Lazzari,T.Pastore,Cathodic pro-tectionandcathodicpreventioninconcreteprinciplesandapplications,J. Appl.Electrochem.28(1998)1321–1331.

[12]G.K.Glass,J.R.Chadwick,Aninvestigationintothemechanismsof pro-tectionaffordedbyacathodiccurrentandtheimplicationsforadvancesin thefieldofcathodicprotection,Corros.Sci.36(1994)2193–2209.

[13]J.E.Slater,D.R.Lankard,P.J.Moreland,Electrochemicalremovalof chlo-ridesfromconcretebridgedecks,Mater.Perform.15(1976)21–26.

[14]Ø.Vennesland,O.A.Opsahl,A.P.Russell-Rayner,Removalofchlorides fromconcrete.EuropeanPatentApplicationnumber86302888.2. Publica-tionnumber0200428,1986.

[15]I.L.H.Hansson,C.M.Hansson,Electrochemicalextractionofchlorides fromconcrete.PartI–Aqualitativemodeloftheprocess,Cem.Concr. Res.23(5)(1993)1141–1152.

[16]B.Elsener,M.Molina,H.Böhni,Theelectrochemicalremovalofchlorides fromreinforcedconcrete,Corros.Sci.35(1993)1563–1570.

[17]P.Garcés,M.J.SánchezdeRojas,M.A.Climent,Effectofthe reinforce-mentbararrangementontheefficiencyofelectrochemicalchlorideremoval techniqueappliedtothereinforcedconcretestructures,Corros.Sci.48 (2006)531–545.

[18]M.J.SánchezdeRojas,P.Garcés,M.A.Climent,Electrochemical extrac-tionofchloridesfromreinforcedconcrete:variablesaffectingtreatment efficiency,Mater.Constr.56(284)(2006)17–26.

[19]R.B.Polder,H.J.VanderHondel,Electrochemicalrealkalizationand chlo-rideremovalofconcrete,in:D.W.S.Ho,F.Collins(Eds.),Proceedings oftheInternationalRILEM/CSIRO/ACRAConferenceonRehabilitation ofConcreteStructures,Melbourne,Australia,1992,RILEM,Melbourne, Australia,1992,pp.135–147.

[20]G.Sergi,R.I.Walker,C.L.Page,Mechanismandcriteriaforthe realkalisa-tionofconcrete,in:C.L.Page,P.B.Bamforth,J.W.Figg(Eds.),Corrosion ofReinforcementinConcreteConstructions,RoyalSocietyofChemistry, Cambridge,UK,1996,pp.491–500.

[21]L.Bertolini,F.Bolzoni,T.Pastore,P.Pedeferri,Effectivenessofa conduc-tivecementitiousmortaranodeforcathodicprotectionofsteelinconcrete, Cem.Concr.Res.34(4)(2004)681–694.

[22]L.Westhof,Fieldexperiencewithaconductivecement-basedcomposite asanodeforthecathodicprotectionofreinforcedconcretestructures,in: M.G.Grantham,R.Jaubertie,C.Lanos(Eds.),Proceedingsofthe2nd InternationalConferenceonConcreteSolutions,BREPress,Watford,UK, 2006,pp.400–409.

[23]J.Xu,W.Yao,Currentdistributioninreinforcedconcretecathodic protec-tionsystemwithconductivemortaroverlayanode,Constr.Build.Mater. 23(6)(2009)2220–2226.

[24]J. Carmona, P. Garcés, M.A. Climent, Efficiency of a conductive cement-basedanodicsystemfortheapplicationofcathodicprotection, cathodic prevention and electrochemical chloride extraction to con-trolcorrosionin reinforcedconcretestructures, Corros.Sci.96(2015) 102–111.

[25]M.A.Climent,M.J.SánchezdeRojas,G.deVera,P.Garcés,Effectoftype ofanodicarrangementsonefficiencyofelectrochemicalchlorideremoval fromconcrete,ACIMater.J.103(4)(2006)243–250.

(9)

[27]A.Ca˜nón,P.Garcés,M.A.Climent,J.Carmona,E.Zornoza,Feasibility ofelectrochemicalchlorideextractionfromstructuralreinforcedconcrete usingasprayedconductivegraphitepowder–cementasanode,Corros.Sci. 77(2013)128–134.

[28]B.delMoral,O.Galao,C.Antón,M.A.Climent,P.Garcés,Usabilityof cementpastecontainingcarbonnanofibresasananodeinelectrochemical chlorideextractionfromconcrete,Mater.Constr.63(309)(2013)39–48.

[29]J.Carmona,M.A.Climent,C.Antón,G.deVera,P.Garcés,Shapeeffect ofelectrochemicalchlorideextractioninstructural reinforcedconcrete elementsusinganewcement-basedanodicsystem,Materials8(2015) 2901–2917.

[30]M.A. Climent,J.Carmona, P. Garcés, Graphite–cement paste: a new coatingofreinforcedconcretestructuralelementsfortheapplicationof electrochemicalanti-corrosiontreatments,Coatings6(2016)32.

[31]J.CarmonaCalero,M.A.ClimentLlorca,P.GarcésTerradillos,Influenceof differentwaysofchloridecontaminationontheefficiencyofcathodic pro-tectionappliedonstructuralreinforcedconcreteelements,J.Electroanal. Chem.793(2017)8–17.

[32]UNEEN12390-3:2009EnsayosdeHormigónEndurecido.Parte3: Deter-minacióndelaResistenciaaCompresióndeProbetas(TestingHardened Concrete–Part3:CompressiveStrengthofTestSpecimens),Asociación Espa˜noladeNormalizaciónyCertificación(AENOR),Madrid,Spain,2009 (inSpanish).

[33]UNE83980:2014DurabilidaddelHormigón.MétodosdeEnsayo. Deter-minacióndelaAbsorcióndeAgua,laDensidadylaPorosidadAccesibleal AguadelHormigón(ConcreteDurability.TestMethods.Determinationof theWaterAbsorption,DensityandAccessiblePorosityforWaterin Con-crete),AsociaciónEspa˜noladeNormalizaciónyCertificación(AENOR), Madrid,Spain,2014(inSpanish).

[34]UNEEN12390-7:2009EnsayosdeHormigónEndurecido.Parte7: Den-sidaddelHormigónEndurecido(TestingHardened Concrete–Part7: DensityofHardenedConcrete),AsociaciónEspa˜noladeNormalización yCertificación(AENOR),Madrid,Spain,2009(inSpanish).

[35]O.Galao,F.J.Baeza,E.Zornoza,P.Garcés,Strainanddamagesensing propertiesonmultifunctionalcementcompositeswithCNF,Cem.Concr. Comp.46(2014)90–98.

[36]Ø.Vennesland,M.A.Climent,C.Andrade,RecommendationofRILEM TC 178-TMC:testing andmodelling chloride penetrationinconcrete, Methodsforobtainingdustsamplesbymeansofgrindingconcreteinorder todeterminethechlorideconcentrationprofile,Mater.Struct.46(2013) 337–344.

[37]M.A. Climent, E. Viqueira, G. de Vera, M.M. López, Analysis of acid-soluble chloride in cement,mortar and concrete by potentiomet-ric titrationwithout filtration steps,Cem. Concr.Res.29 (1999) 893 –898.

[38]M.A.Climent,G.deVera,E.Viqueira,M.M.López,Generalizationofthe possibilityofeliminatingthefiltrationstepinthedeterminationof acid-solublechloridecontentincementandconcretebypotentiometrictitration, Cem.Concr.Res.34(2004)2291–2300.

[39]ISO 12696: 2012(en) Cathodic Protection of Steelin Concrete, ISO, Geneva,Switzerland,2012.

[40]G.K.Glass,A.M.Hassanein,N.R.Buenfeld,Cathodicprotectionafforded byanintermittentcurrentappliedtoreinforcedconcrete,Corros.Sci.43 (2001)1111–1131.

[41]Y.Liu,X.Shi,Modelingcathodicpreventionforunconventionalconcrete insalt-laden environment,Anti-Corros.MethodsMater.59(2012)121 –131.

[42]M.Dugarte,A.A.Sagüés,K.Williams,Cathodicpreventionforreinforcing steelincrackedconcreteofchloridecontaminatedstructures,in: Proceed-ingsofCORROSION2015Conference,NACE-2015-6102,Houston,TX, USA,15–19March2015,NACEInternational,Houston,TX,USA,2015, p.11.

Referencias

Documento similar

Two series of coatings (using two different peak powers) were deposited with increasing V content, in order to evaluate the effect of V addition on the surface and cross

No obstante, como esta enfermedad afecta a cada persona de manera diferente, no todas las opciones de cuidado y tratamiento pueden ser apropiadas para cada individuo.. La forma

ilex leaf metabolome, the identification of novel metabolites with an emphasis on those with bioactivity previously reported, the characterization of tolerance to drought from

mRNA relative expression in human pancreatic cancer-derived cells (MIA PaCa-2) treated with two different concentrations of Yarrow extract (30 and 70 μg/mL) in comparison

The addition of nisin and carvacrol to Listeria monocytogenes and Salmonella enterica cells, previously heat treated to 55ºC for 15 minutes, showed a synergistic

The aim of this presentation is to report one case of lateral peritalar dislocation with associated fracture in a young female patient treated unconventionally with closed

* Experiment 2. Sets of two Madam Vinous sweet orange plants were simultaneously co- inoculated with any of the 15 mild isolates indicated in Table 2 and the severe isolate T388.

LCMNF and CMNF were applied as reinforcing agents in chitosan aerogels in order to elucidate the optimal formulation to be applied as food pads, together with the evaluation of