Analysis of the relation between accelerated carbonation, porosity, compressive strength and capillary absorption in concrete, in the search of a new control method by durability = Análisis de la relación entre carbonatación acelerada, porosidad, resisten

(1)Análisis de la Relación entre Carbonatación Acelerada, Porosidad, Resistencia a Compresión y Absorción Capilar en Hormigones, en la Búsqueda de un Nuevo Método de Control por Durabilidad. Analysis of the Relation between Accelerated Carbonation, Porosity, Compressive Strength and Capillary Absorption in Concrete, in the Search of a New Control Method by Durability. Autores CARVAJAL, A. M. - MATURANA, P. PINO, C. - POBLETE, J.. Pontificia Universidad Católica de Chile, Facultad de Ingeniería, Escuela de Construcción Civil emails: acarvajg@uc.cl - pmaturan@uc.l. Fecha de recepción. 29/10/2009. Fecha de aceptación. 16/11/2009. Revista de la Construcción Volumen 8 No 2 - 2009. [ 129.

(2) Abstract. Carbonation of concrete is the second reason of corrosion on reinforced concrete structures. This has led to study the methods that might be useful for defining, from the phase of project, the conditions that a certain concrete must have, besides resisting mechanically, to be resistant to external attacks like it is the effect of the CO2 of industrial environments.. were prepared under the same procedures and with the same cement, sand, gravel and additives.. With the purpose of establishing a simple method of testing that complements the compressive strength, and that allows to predict the useful life of the concrete in terms of its carbonation, possible relations were studied between four parameters: depth of carbonation, capillary absorption, porosity and compressive strength.. The results showed a direct relation between coefficient of capillary absorption and depth of accelerated carbonation on a concrete. The tests of porosity did not show any correlation with the depths of carbonation and with the coefficient of absorption either.. Samples were made by concretes with w/c 0.45 – 0.53 – 0.59. The three concretes. The samples were tested to compressive strength, capillary absorption and porosity, at different times of accelerated carbonation in a chamber designed for such purpose.. Finally it was found that the coefficient of absorption can be used as tool for the development of a new method of quality control for concrete durability.. Key words: Accelerated carbonation, capillary absorption, concrete durability, porosity.. Resumen. La carbonatación del hormigón es la segunda razón de la corrosión en estructuras de hormigón armado. Esto ha llevado a estudiar métodos que podrían ser útiles para definir, desde la fase de proyecto, las propiedades que un hormigón debe tener, mecánica y químicamente. Con la intención de establecer un método simple de análisis del hormigón que complemente a la resistencia a compresión, y que permita predecir la velocidad de carbonatación del hormigón, se examinaron posibles relaciones entre cuatro variables: profundidad de carbonatación, absorción capilar, porosidad y resistencia a compresión. En el presente estudio se analiza la profundidad de carbonatación acelerada Las probetas de hormigón fueron realizadas con relaciones a / c: 0,45; 0,53 y 0,59. Los tres tipos de hormigón fueron preparados bajo los mismos procedimientos. y con el mismo tipo de cemento, agua, arena, grava y aditivos. Las muestras fueron expuestas a ambiente de carbonatación acelerada; para distintos tiempos de exposición se analizó resistencia a compresión, absorción capilar y porosidad. Los resultados mostraron una relación directa entre el coeficiente de absorción capilar, la resistencia a compresión y la profundidad de carbonatación acelerada en un hormigón. Las pruebas de porosidad no mostraron correlación con la profundidad de carbonatación ni con el coeficiente de absorción. Debido a los resultados obtenidos, se estima que el coeficiente de absorción podría ser utilizado como herramienta para el desarrollo de un método de control de calidad para la durabilidad del hormigón, junto con el ensayo de resistencia a compresión.. Palabras clave: Durabilidad del hormigón, carbonatación acelerada, absorción capilar, porosidad.. 130 ] Revista de la Construcción o Volumen 8 N 2 - 2009. ]. Carvajal, A. M. - Maturana, P. - Pino, C. - Poblete, J.. [. páginas: 129 - 135.

(3) Introduction In the presence of aggressive agents to the concrete, the most important for the durability is the “resistance to the entrance”, either by means of permeability, diffusion or capillary absorption. This resistance is the most important to minimize the deterioration of the concrete for chemical actions. In fact, it is the cement paste that opposes to the entrance of the aggressive agents, like chloride ions and CO 2 from the exterior toward the interior of the concrete. It is for this reason that it is required to specify the minimum w/c to be able of maintain a low porosity and this way to be able to guarantee a good behavior in front of an aggressive atmosphere (1). However there are factors that alter the condition given by the w/c, and therefore it produces variations in the durability projected for a structure of reinforced concrete. Some of the factors that have more influence in the durability are water, cured, covers, cement, aggregates, mixture proportions, workability, additions and others. All these factors are related with the microstructure of the cement paste and the environment that it surrounds them. (2) With respect of the carbonation, the presence of small concentrations of CO 2 (0.035% in the air without environmental contamination), achieves to reduce the permeability, porosity and capillary suction of the concrete (3). These involve more difficulty that have the aggressive agents to penetrate in the concrete and therefore increase their durability. When the concentration is more than the normal ranges, like in high contamination areas (as the city of Santiago, Chile), the production of carbonic acid that reacts with calcium hydroxide forming calcium bicarbonate (Ca(HCO3)2), more soluble. Increment in the porosity, reduction of pH, decreasing of mechanical resistance and the passive layer of oxide, accelerate the corrosion of the bars. It can increase the development of microfisures and the decrease of the durability of the concrete (4-8). Depending on the environment, the carbonation will have effects so much positive as negative. Depth of carbonation is not possible to obtain in a short period of time, for this reason the studies related with this variable it is possible with an appropriated controlled system of accelerated carbonation, to compare in similar. páginas: 129 - 135. ]. conditions the carbonation in two weeks as maximum time. In this form, it was possible to investigate in comparative form, in different concretes of Chilean cement, the influence that has the accelerated carbonation in the compressive strength, porosity and capillary absorption, with the purpose of analyze the alterations that such condition produce, and analyzing if the capillary absorption and porosity can give information about the quality of the concrete, supporting the mechanical tests that are carried out to all concretes produced.. Methods applied The objective of analyze the relationship among accelerated carbonation, capillary absorption and porosity of the concrete, is to find a parameter that supplements the compressive strength test and to begin the development of a new method of control of quality for durability. In this investigation it was studied, for different w/c and times of accelerated carbonation, the relationships that exist among the variables: Capillary absorption and carbonation depth. Carbonation depth and porosity. Carbonation depth and compressive strength. Capillary absorption and porosity. Capillary absorption and compressive strength Compressive strength and porosity. Experimentally, and as a first investigation, for one Chilean cement and three w/c, to determine the most appropriate parameter to relate the behavior of the concrete in front of the accelerated carbonation.. Variables The tests applied to the specimens were: compressive strength, porosity for immersion in water, capillary absorption and carbonation depth. The control variables in this investigation are: Type of arid: a same type of arid was used for all the specimens. Cement type: pozzolanic portland cement Additives: to improve the workability and to achieve the required cone (6 to 8) for the dosage, the same additive super plasticizer was used for all the samples. Curing conditions: all the specimens were in a moist cabinet for 28 days with temperature (22 - + 2ºC) and relative humidity (95%) controlled.. Carvajal, A. M. - Maturana, P. - Pino, C. - Poblete, J.. [. Revista de la Construcción Volumen 8 No 2 - 2009. [ 131.

(4) It was used potable water for all the concretes, and the same sequence inside the mixer in according to the international regulations and Chilean standards: NCh 101 Of 75 (12) and NCh 1019 Of 74 (13). The cubic specimens were called themselves “specimens type 1” and the cut prisms “specimens type 2”. The first ones were used for compressive strength and carbonation depth, and the seconds for porosity and capillary absorption. (Figures. 1, 2) (Table 3).. All the specimens were dried in the same oven, and depending on the test (suction or porosity), to temperatures until 60º C or 100º C.. The carbonation depth was measured according to RILEM CPC-18. The values exposed correspond to the averages of the results made respectively in the left and right face of each specimen.. Independent variables. In the present investigation, the variables manipulated were: w/c, cement content and exhibition time in accelerated carbonation system. (Table 1). Results of capillary absorption and porosity are summarized in Table 4 for each concrete type and time of carbonation.. Dependent variables. Carbonation depth, compressive strength, porosity and capillary coefficient.. he porosity of the concretes is calculated as the average of the volume of permeable pores of three specimens, expressed in percentage.. The mixture proportion used for the concretes are shown in Table 2 The making procedure of specimens was carried out according with the standards: NCh 171 Of 75 and NCh 1019 Of 74. (14). Table 1 Independent and dependent variables, their variation categories and units Independent variables. Variation categories. Dependent Variables. Units. Cement content. 265, 300, 355 kg/m. Carbonation depth. Millimeter. W/C ratio. 0.45; 0.53; 0.59. Compressive strength. MPa. Time of accelerated carbonation. 2, 4, 6, 10 days. Absorption Coefficient. kg / (m2*√t). Porosity. %. 3. Table 2 Concrete mixture proportions CONCRETE CONCRETE A B Materials. CONCRETE C. Design. Design. Design. W/C ratio. 0,59. 0,53. 0,45. Cement (kg). 265. 300. 355. Water (kg). 156. 160. 160. Coarse aggregates (kg). 775. 805. 793. Small grave (kg). 425. 365. 395. Sand (kg). 840. 847. 754. 1064. 1210. 1560. 3. 3. 3. Plasticizer (ml) Total charge (m ) 3. 132 ]. Revista de la Construcción Volumen 8 No 2 - 2009. ]. Figure 1 Denomination of specimens for different analysis. Carvajal, A. M. - Maturana, P. - Pino, C. - Poblete, J.. [. páginas: 129 - 135.

(5) Figure 2. Tabla 4. Denomination for all type of specimens. Results for each type of concrete and experiences. Tabla 3 Experiences in specimens Type 1 and 2. Time 0 0 days. w/c. Time 1 2 days. 0,45. Time 2 4 days. 0,53 Carbonation system(36) 0,59. (45). Time 3 6 days. Compressive strength (3). Compressive Volume of Coefficient strength permeable of (MPa) pores (%) absorption. Concrete. Carbonation (mm). A0. 0. 32,8. 12,63. 0,40. A1. 15,5. 35,9. 13,39. 0,62. A2. 18,2. 35,4. 12,73. 0,62. A3. 19,4. 36,7. 12,70. 0,79. A4. 23,4. 40,4. 13,09. 1,00. B0. 0. 33,2. 13,16. 0,52. B1. 11,3. 40,7. 14,11. 0,80. B2. 14,0. 41,0. 13,54. 0,57. B3. 16,7. 42,5. 13,21. 0,79. Capillary Absorption / Porosity (3). B4. 19,4. 44,5. 12,79. 1,04. C0. 0. 52,4. 11,29. 0,27. Compressive strength / phenolphthalein (3). C1. 8,4. 56,2. 13,48. 0,36. C2. 9,0. 54,0. 11,92. 0,42. C3. 10,8. 62,3. 10,53. 0,46. C4. 13,3. 61,3. 11,94. 0,56. Capillary Absorption / Porosity (3) Compressive strength / phenolphthalein (3) Capillary Absorption / Porosity (3) Compressive strength / phenolphthalein (3) Capillary Absorption / Porosity (3). Compressive strength / Time 4 phenolphthalein (3) 10 days Capillary Absorption / Porosity (3). Discussion and conclusions In relation with Concrete Compressive Strength, it is observed: An increase in the resistance, for the three concretes, between T0 and T4. However this increase doesn’t show up in a sustained way and in some cases they even show up decreases as it increases the time of carbonation (Figures. 3, 4, 5). The above-mentioned is also completed when analyzing it from the point of view of the age of the concrete, since it is not observed a clear behavior or uniform.. páginas: 129 - 135. ]. An increase was expected in the resistances to more carbonation depth, because the salts formed have a bigger volume and therefore they increase the compactness of the concrete. However, with the obtained results, it cannot make sure that the observed variations are attributable only to this factor, since the age of the concrete is also incident. (Figure 6) The influence that has the carbonation depth in the compressive strength, to settle down it would be necessary to make a new test where they took all the specimens, not carbonated and carbonated at different times, and to rehearse them to oneself age. After analyzing the different tests for specimens of three w/c and four times of accelerated carbonation, its possible conclude the following: 1. Capillary absorption and carbonation depth: a directly proportional relationship was determined between accelerated carbonation and coefficient of absorption. This is coherent with results of scientific recent publications that demonstrate that the attack of CO2 in quantities that are aggressive, tends to form calcium bicarbonates (acid carbonate of calcium) that have more solubility in water, then, they increase the capillary size and therefore the capillary absorption under those conditions.. Carvajal, A. M. - Maturana, P. - Pino, C. - Poblete, J.. [. Revista de la Construcción Volumen 8 No 2 - 2009. [ 133.

(6) Figure 6 Compressive strength values for each type of concrete, at different times of accelerated carbonation. Compressive Strength (MPa). Figure 3 Change of compressive strength in concrete A in 138 days for different times of carbonation, and real carbonation at 218 days. Compressive Strength Concrete A at Compressive Strength (MPa). different times of carbonation 70 60 50 40 30 20 10 0. Compressive strength concretes A, B and C at different times of carbonation 70 60 50 40 30 20 10 0. 0. 2. 4. 6. Time of carbonation (days) C o n cre te A. A0. A1. 28 d ay s. A2. A3. 128 d ay s. A4 138 d ay s. 8. 10. C o n cre te B. 12. C o n cre te C. A01. Figure 7. 218 d ay s. Porosity in concretes A, B and C at different times of carbonation. Real age of concrete. Porosity of concretes A, B and C at different times of carbonation 15 14. Figure 4. 13. Porosity (%). Change of compressive strength in concrete B in 131 days for different times of carbonation, and for real carbonation at 211 days. Compressive Strength (MPa). 11 10 9. Compressive Strength Concrete B at different times of carbonation. 8. 70 60 50 40 30 20 10 0. 0. 2. 4. 6. 8. 10. 12. Time of carbonation (days) C o n cre te A. B0. B1. 28 d ay s. B2. B3. 121 d ay s. B4. B01. 131 d ay s. 211 d ay s. Real age of concrete. 2. 3.. Figure 5 Change of compressive strength in concrete C in 117 days for different times of carbonation, and in 197 days with real carbonation. Compressive strength concrete C at different times of carbonation Compressive Strength (MPa). 12. 70 60 50 40 30 20 10 0. 4. C0 28 d ay s. C1. C2. C3. 107 d ay s Real age of concrete. 134 ] Revista de la Construcción o Volumen 8 N 2 - 2009. ]. C4. C 01. 117 d ay s. 197 d ay s. 5.. C o n cre te B. C o n cre te C. Carbonation depth and porosity: it was not possible to establish correlation between these variables (Figure 7). Carbonation depth and compressive strength: when the different concretes were compared for each time of carbonation, an inverse relationship was found: a concrete of low w/c presents bigger resistance to the carbonation that a concrete of bigger w/c. However, when analyzing all the data, without distinguishing for concrete type and time of carbonation, a light inverse correlation is obtained. This allows deducing that the compressive strength of any concrete doesn’t guarantee a certain behavior in front of the carbonation. A concrete could have the same compressive strength value for different carbonation depths. Capillary absorption and porosity: a correlation was not possible to find between these variables. Capillary absorption and compressive strength: the compressive strength was not enough information to determine the quality of a concrete, because a. Carvajal, A. M. - Maturana, P. - Pino, C. - Poblete, J.. [. páginas: 129 - 135.

(7) 7.. 8.. 9.. Figure 8 Coefficient of capillary absorption in concretes A, B and C Coefficient absorption concretes A, B and C for different times of carbonation. Coefficient absorption. 6.. concrete of certain compressive strength can have the same absorption coefficient that other concretes of more or smaller resistance. Compressive strength and porosity: a light relationship settled down inversely proportional among the variables, according to the models settled down in other investigations.(15) However, because of not existing a relationship between the porosity and the carbonation depth, it cannot use the compressive strength to determine the behavior of a concrete in front of the carbonation. The most appropriate parameter to relate the behavior of the accelerated carbonation of the studied concretes was the coefficient of capillary absorption (Figure 8). To determine the coefficient of capillary absorption of a concrete it was used based on the Chilean Standard. NCh 2456. Of 2001.(16) similar to Fagerlund test. The anomalies presented in the concrete B in relation with their carbonation depth and speed of carbonation, it was expected were lower that those of the concrete A. The same it was possible to detect in the coefficient of absorption and in smaller grade in the compressive strength. This is a demonstration of the relevance that has the analysis of capillary absorption to estimate the resistance in front of the carbonation.. 2.. 3.. 4.. 5.. 6.. 7.. páginas: 129 - 135. ]. 0,6 0,4. 0,0 0. 2. 4. 6. 8. 10. 12. Time of carbonation (days) C o n cre te A. C o n cre te B. C o n cre te C. 10. The increase in the compressive strength observed in the concretes in different times of carbonation cannot be attributed neither to the hydration of the cement pasta neither the carbonation exclusively, with the only analysis of the results obtained in this investigation.. 8. NEVILLE A.; Consideration of durability of concrete structures: Past, present, and future; Materials And Structures: (Vol 34), nº 114-118, Marzo; 2001. BASHER P.A., CHIDIACT S.E., LONG A.E.; Predictive models for deterioration of concrete structures; Construction And Building Materials, (Vol 10), nº 1, 1996, pp:27-37. STEFFENS A., DINKLER D., AHRENS H.; Modeling carbonation for corrosion risk prediction of concrete structures; Cement And Concrete Research; (Vol 32), 2002, pp: 935-941. BASHER P.A., CHIDIACT S.E.,. LONG A.E; Predictive models for deterioration of concrete structures; Construction And Building Materials, (Vol 10), nº 1, 1996, pp:27-37. STEFFENS A., DINKLER D., AHRENS H.; Modeling carbonation for corrosion risk prediction of concrete structures; Cement And Concrete Research; (Vol 32), 2002, pp: 935-941. CHI J M., HUANG R., YANG C.C.; Effects of carbonation on mechanical properties and durability of concrete using accelerated testing method; Journal Of Marine Science And Technology (Vol 10), nº 1, 2002, pp: 14-20. HOUST Y. F., WITTMANN F. H.; Depth profiles of carbonates formed during natural carbonation; Cement. 0,8. 0,2. References 1.. 1,0. 9.. 10. 11.. 12. 13.. 14. 15.. 16.. And Concrete Research, (Vol 32), nº 12, Diciembre 2002, pp: 1923-1930. CHANG J. J., YEIH W., CHEN C. T.; Suitability of several current used concrete durability indices on evaluating the corrosion hazrd for carbonated concrete; Materials Chemistry And Physics, (Vol.84), Marzo 2004, pp: 71-78. NCh. 1019. EOf 74; Construcción – Hormigón Determinación de la docilidad – Método del asentamiento del cono de Abrams; NORMA CHILENA OFICIAL. NCh. 170 Of 85; Hormigón - Requisitos generales; NORMA CHILENA OFICIAL. RILEM TC 56-MHM; CPC-18 Measurement of hardened concrete carbonation depth; MATERIALS AND STRUCTURES, (Vol 21), nº126, Enero 1988, pp 453:455. NCh. 171. EOf 75; Hormigón - Extracción de muestras del hormigón fresco; NORMA CHILENA OFICIAL. NCh. 1019. EOf 74; Construcción – Hormigón Determinación de la docilidad – Método del asentamiento del cono de Abrams; NORMA CHILENA OFICIAL NCh. 171. EOf 75; Hormigón - Extracción de muestras del hormigón fresco; NORMA CHILENA OFICIAL. DURAN C.; Carbonation-Porosity-strength model for fly ash concrete; Journal Of Materials In Civil Ingeneering; Enero – Febrero; 2004. NCh 2456. Of 2001, “Materiales de construcción Determinación del coeficiente de absorción; NORMA CHILENA OFICIAL.. Carvajal, A. M. - Maturana, P. - Pino, C. - Poblete, J.. [. Revista de la Construcción Volumen 8 No 2 - 2009. [ 135.

(8)

Nuevo documento

deshidratación a la mora en el secador de bandejas y de realizar su respectivo análisis nutricional, tanto en fresco como en deshidratado se deduce que el tiempo de secado más eficiente

Ella odiaba el azul, el azul era opaco, aburrido y monótono, ella no quería ser como el azul, ella quería tener una vida divertida y llena de emociones y colores, colores como el rojo,

Son muy pocos los estudios de arsénico en alimentos que se encuentran en literatura, es este el motivo de la presente investigación con el fin de identificar la inocuidad que estos

La comunicación digital se erige como un medio de inserción en el contexto de la Sociedad de la Información y el Conocimiento, donde los gobiernos tienen la responsabilidad de generar

En este trabajo se analiza el desempeño, entre los años 1924 y 1929, del Banco Edificador Rosarino en el mercado de viviendas de la ciudad de Rosario; entendiendo que su accionar fue

Gráficas de la concentración promedio de arsénico en las muestras de papas 75 Solanum tuberosum, zanahorias Daucus carota y leche cruda procedentes de la parroquia Pilco cantón Quero y

Las tumbas fueron excavadas por miembros del Laboratorio de Arqueología y Etnohistoria LAyE de la Facultad de Ciencias Humanas de la Universidad Nacional de Río Cuarto y luego remitidos

9 PORCENTAJE DE ISRS RECETADOS EN EL GRUPO DE PACIENTES CON DEPRESIÓN A QUIENES SE BRINDÓ EL SFT EN EL H.P.D.A DURANTE EL PERÍODO FEBRERO-NOVIEMBRE 2008... De los ISRS el que más fue

En último lugar, se plantea el modo en que este maestro parece haber procesado, según lo muestra su estilo, el dilema entre enseñar o cuidar a niños maltratados y excluidos escolar y

Una vez concluida la “Auditoría De Gestión a la Empresa DISENSA ARCHIDONA, del Cantón Archidona, Provincia Napo, durante el Periodo 01 de Enero Al 31 de Diciembre del 2014” me permito