I.E.S. Juan Carlos I
Ciempozuelos (Madrid)
Matemáticas II
*
Análisis III: Integrales
*
1. Integrales inmediatas (o casi inmediatas):
a)
∫
4x
2– 5x
7
dx
=4· 1 3x 3– 5· 1 2x 2+7 x +C= 4 x3 3 – 5 x 2 2 +7 x + Cb)
∫
3 x
3– 5 x
2+
3 x +4 dx
=3· 1 4x 4– 5· 1 3x 3+3· 1 2x 2+4 x +C= 3 x4 4 – 5 x 3 3 + 3 x2 2 +4 x + Cc)
∫
1
2 x
7
dx
= 1 2ln∣2 x + 7∣+ C =ln√
∣2 x +7∣+Cd)
∫
5dx
x
∫
x −15 dx = 5 4x 4 5+C= 5 5√
x4 4 +Ce)
∫
x – sen x
dx
∫
x dx+∫
−sen x dx=1 2x 2 +cos x +Cf)
∫
sen x+7 cos x – 1 dx
∫
sen x dx+7∫
cos x dx−∫
dx=−cos x +7 sen x − x +Cg)
∫
tg
2x dx
∫
1+tg2x −1dx=∫
1+tg2x dx−∫
dx=tg x − x +Ch)
∫
√
x – 2 dx
∫
x 1 2dx−2∫
dx=2 3x 3 2−2x= 2√
x3 3 −2 x +Ci)
∫
2
√
x
dx
∫
4 2√
xdx= 4∫
1 2√
xdx=4√
x +Cj)
∫
e
2 x +1dx
∫
122e2 x + 1dx=1 2∫
2e 2 x +1dx=1 2e 2 x +1 +Ck)
∫
cos(a x +b)dx
∫
1aa· cos(a x +b)dx=1a
∫
a· cos(a x +b)dx= 1 asen(a x+ b)+Cl)
∫
x
2
4 x
x
2−
1
dx
=∫
x4+4 x3 −x2−4 x dx=1 5x 5 +x4 −1 3x 3 −2 x2 +Cm)
∫
3
x
2
dx
= 1 3√
2∫
x 1 3dx= 1 3√
2 3 4x 4 3+C=3 4 3√
x4 2 +Cn)
∫
x−1
dx
=ln∣x− 1∣+ Co)
∫
x
x
x
2dx
=∫
1x+√
xx2dx=∫
1 xdx +∫
x −3 2dx=ln∣x∣− 2 x− 1 2+Cp)
∫
3
1
x
2dx
=3∫
1 1+x2dx=3arctg x +Cq)
∫
5
2 – 3 x
2dx
= 5√
2∫
1√
1−3 2x 2 dx= 5√
2∫
1√
1−(
√
3 2x)
2dx= 5√
2√
2 3arcsen(
√
3 2x)
= 5√
3arcsen(
√
3 2x)
r)
∫
1
(
x−2)
2dx
=∫
(x−2) −2dx=−( x−2)−1+C=− 1 x −2+Cs)
∫
e
2x −3dx
=1 2e 2 x −3 +Ct)
∫
5 dx
1+7 x
2 =5∫
1 1+(√
7x )2dx= 5√
7arctan(√
7x )+Cu)
∫
x
2– 5 x+4
x +1
dx
x2 = −5 x+ 4=(x−6 )(x +1)+ 10∫
x−6+ 10 x+1dx= 1 2x 2−6x +10 ln∣x+1∣+Cv)
∫
x
3– 3x
2
x – 1
x
−
2
dx
x3 = −3 x2 +x+1=(x−2)(x2 +x+3)+5∫
x 2 +x+3+ 5 x −2dx= x 3 3+ x 2 2+3x +5ln∣x− 2∣+Cw)
∫
x – 1
√
2 x –
√
x +1
dx
=∫
(x –1)(√
2x +√
x +1) (√
2x –√
x +1)(√
2 x+√
x+1)dx =∫
(x –1)(√
2x +√
x +1) x−1 dx=∫
(√
2x +√
x +1)dx= 2√
2 3 x 3 2+2 3(x+ 1) 3 2+Cx)
∫
e
x(
x−1) – e
x(
x−1)
2dx
Derivada de un cociente= ex x −1+Cy)
∫
2 e
2 x+e
2 xe
xdx
=∫
3 exdx =3ex+Cz)
∫
3
11
xdx
=3∫
e −ln 11· xdx =− 3 ln11e −ln11 · x+C = 3 11xln11+C2. Integrales de funciones compuestas / cambio de variable:
a)
∫
(2 x+6)
5dx
= t=2 x + 6 d t =2dx∫
t5dt 2= 12∫
t 5dt= 1 12t 6 +C=(2x +6)6 12 +Cb)
∫
5
7 x – 9
dx
t=7 x −9= d t=7 dx∫
5 t dt 7= 57∫
1 t dt= 57ln∣t∣+C= 57ln∣7x −9∣+Cc)
∫
3 x e
5 x2−7dx
= t =5 x2−7 d t =10 x dx∫
103 etdt = 3 10e t+C=3 10e 5 x2 −7+Cd)
∫
x
(
5x+3)(5x−3)
dx
∫
x 25 x2−9dx t =25 x=2−9 d t =50 x dx∫
501 ·1 tdt = 1 50ln∣t∣+C= 1 50ln∣
25 x 2−9∣
+Ce)
∫
cos x sen
3x dx
= t=sen x d t =cos x dx∫
t3dt = 1 4t 4+C= sen4x 4 +Cf)
∫
x
3√
x
4– 1
dx
t2==x4+1 2 t d t= 4 x3 dx∫
2tt dt=1 2∫
dt= 1 2t +C=√
x4−1 2 +Cg)
∫
sen x cos x dx
= t=sen x d t =cos x dx∫
t dt = 1 2t 2+C= sen2x 2 +Ch)
∫
4 x – 3
2 x
2– 3 x−14
dx
t =2 x2=−3 x −14 d t =(4 x−3)dx∫
1tdt =ln∣t∣+C=ln∣
2 x2−3 x −14∣
+Ci)
∫
1
x ln x
dx
= t =lnx d t =dx x∫
1tdt=ln∣t∣+C=ln(
∣ln∣x∣∣)
+Cj)
∫
x
(
x
2+
3)
5dx
t =x=2 +3 d t =2 x dx∫
t15 dt 2= 1 2∫
t −5dt =−1 8t −4 +C=− 1 8( x2+3)4+Ck)
∫
1
x
ln
3x dx
t =lnx= d t =dx x∫
t3dt =1 4t 4+C=1 4ln 4∣x∣+Cl)
∫
2 x dx
9−x
2dx
t=9− x= 2 d t =−2xdx∫
−1√
tdt =−2√
t +C=−2√
9− x2+Cm)
∫
sen x dx
cos
5x
d t=−senx dxt =cos x=∫
−1 t5dt =−∫
t −5dt =1 4t −4 +C= 1 4cos4x+Cn)
∫
x−1
x
2– 2 x dx
= t2 =x2−2 x 2 t d t =(2 x −2)dx t dt =(x−1)dx∫
t2dt= 1 3t 3+C=(x2−2 x ) 3 2 3 +Co)
∫
arcsen x
1 – x
2dx
= t =arcsenx d t = dx √1−x2∫
t dt= 1 2t 2 +C= arcsen2x 2 +Cp)
∫
1
ln x
2x
dx
= t=1 +ln x d t = dx x∫
t2dt= 1 3t 3+C=(1 +ln x )3 3 +Cq)
∫
x
2
x
3−
1
3 5dx
= t =x3 −1 d t=3 x2dx∫
t 3 5dt 3= 524t 8 5+C=5( x3−1) 8 5 24 +Cr)
∫
x
4e
x53dx
= t =x5+3 d t=5 x4dx∫
etdt 5= 1 5e t+C=ex 5 +3 5 +Cs)
∫
x sen
x
2
dx
= t =x2 + π d t =2 x dx∫
sen t dt 2=− 12cos t +C=− cos ( x2+ π ) 2 +Ct)
∫
x ln
x
2
3
x
2
3
dx
= t =ln(x2 +3 ) d t = 2 x x2+3dx∫
t dt 2= 14t 2+C=ln2(x2+3) 4 +Cu)
∫
e
x1
e
2xdx
= t =ex d t =exdx∫
1 1+t2dt=arctan t +C =arctan(e x)+Cv)
∫
1
tg
2x
tg x
dx
d t =(1 +tgt =tg x=2x )dx∫
1tdt =ln∣t∣+C=ln∣tg x∣+ Cw)
∫
tg x dx
∫
sen xcosxdx t =cosx=d t =−senx dx
∫
−1 tdt =−ln∣t∣+C=−ln∣cos x∣+C=ln∣sec x∣+Cx)
∫
3
x1
9
xdx
∫
3x 1 +(3x)2dx t =3=x d t=ln 3· 3xdx∫
ln31 · 1 1+t2dt= 1ln3arctant +C= arctan(3x ) ln 3 +Cy)
∫
x
3sen
x
4– 3
dx
= t =x4−3 π d t= 4 x3 dx∫
sen t dt 4=− 14cos t +C=− cos( x4−3π ) 4 +Cz)
∫
e
x5
x
dx
= t =√x d t = dx 2√x∫
52etdt = 2 5e t+C= 2e√x 5 +C3. Integrales por partes:
a)
∫
2 x e
−xdx
= u=2 x →u ' =2 v '=e−x →v =−e−x −2x e−x+∫
2e−xdx=−2x e−x– 2e−x+C=−2( x +1) e−x+Cb)
∫
x e
− x3dx
u =x =→u '=1 v '=e− x3 →v=−3 e− x3 −3x e− x 3+∫
3e− x 3dx=−3 x e− x 3–9e− x 3+C=−3( x +3)e− x 3+Cc)
∫
x
2e
2 xdx
= u=x2 →u ' =2x v ' =e2 x →v = 1 2e 2 x 1 2x 2e2x −∫
x e2xdx = u= x →u '=1 v '=e2 x →v= 1 2e 2 x 1 2x 2e2x −1 2x e 2x +1 2∫
e 2 xdx= =1 2x 2e2x−1 2x e 2x+1 4e 2x+C=2 x2−2 x +1 4 e 2 x+Cd)
∫
[
x e
x]
3dx
=∫
x3e3 xdx = u =x3 →u '=3 x2 v ' =e3 x →v =1 3e 3 x 1 3x 3e3 x −∫
x2e3xdx = u =x2 →u ' =2 x v '=e3 x →v =1 3e 3 x =1 3x 3e3 x−1 3x 2e3 x+2 3∫
x e 3 xdx = u= x →u ' =1 v '=e3 x →v=1 3e 3 x 1 3x 3e3 x−1 3x 2e3 x+2 9x e 3 x−2 9∫
e 3 xdx = 1 3x 3e3 x− 1 3x 2e3 x+ 2 9x e 3 x− 2 27e 3 x+C =9 x3−9 x2+6 x− 2 27 e 3 x+Ce)
∫
x ln x dx
u=lnx=→u ' =1x v ' =x →v =1 2x 2 1 2x 2ln x− 1 2∫
x dx = 12x 2ln x − 1 4x 2= x2 4 (2ln∣x∣− 1)+Cf)
∫
x
2ln xdx
u =lnx= →u ' = 1x v '= x2 →v =1 3x 3 1 3x 3ln x − 1 3∫
x 2dx = 1 3x 3ln x− 1 9x 3= x3 9 (3 ln∣x∣−1)+Cg)
∫
ln x
x
dx
u =lnx=→u '=1 x v ' =1 x →v=ln x ln2x−∫
ln x x dx⏟
I→I=ln2x −I →2 I =ln2x+C →I =ln2∣x∣
2 +C
h)
∫
x
√
x +1 dx
u= x =→u ' =1 v '=√x+ 1 →v =2 3(x +1) 3 2 2 3x ( x+1) 3 2−2 3∫
(x +1) 3 2dx =2 3x ( x +1) 3 2− 4 15(x +1 ) 5 2+Ci)
∫
2 x
2 3√
x +1 dx
= u =2 x2 →u '=4 x v '=3 √x+ 1 →v = 34(x +1 ) 4 3 3 2x 2 (x +1) 4 3 −∫
3 x (x +1) 4 3dx = u=3 x →u '=3 v '=(x +1 ) 4 3 →v= 37(x +1 ) 7 3 =3 2x 2(x+1)34−9 7x ( x+1) 7 3+9 7∫
(x +1) 7 3dx=3 2x 2(x +1)43−9 7x ( x +1) 7 3+27 70(x+ 1) 10 3 +Cj)
∫
e
xsen x dx
= u =ex →u '=ex v ' =sen x →v =−cos x −cos x ex+∫
excos x d x⏟
u=ex →u '=ex v ' =cosx →v=sen x =−cos x ex+sen x ex−∫
exsen x dx⏟
II=−cos x ex+sen x ex−I→ 2I=(sen x−cos x)ex+C→I =1
2(sen x −cos x ) e x +C
k)
∫
e
x2
x+1dx
= u =2x + 1 →u '=ln 2 ·2x+ 1 v '=ex →v=ex ln 2·ex2x +1−ln 2∫
ex2x +1dx⏟
I →I =ln2ex2x +1−ln2· I →I= ln2 1+ln2e x2x +1l)
∫
3 x cos x dx
u=3 x =→u' =3 v ' =cosx →v =sen xm)
∫
sen
2x dx
=∫
⏟
sen x · senx dx I = u= sen x →u ' =cosx v '=sen x →v =−cosx−sen x cos x +
∫
cos x · cos x dx=−sen x cos x +∫
cos2x dx==−sen x cos x +
∫
(1−sen2x)dx=−sen x cosx +∫
dx−∫
sen2x dx⏟
I→ 2I=−senx cos x +x → I=−1
2sen x cos x + x 2+C
n)
∫
arctan x dx
= u =arctanx →u '= 1 √1+x2 v '=1 →v= x x · arctanx −∫
x√
1+ x2dx t =√=1 +x2 dt = x √1+x2dxx · arctan x−
∫
dt=x · arctan x−t =x · arctan x−√
1+ x2+Co)
∫
arccos x dx
= u =arccos x →u '=− 1 √1−x2 v ' =1 →v =x x · arccos x +∫
x√
1−x2dx t =√=1− x2 dt =− x √1 −x2dxx ·arccos x −
∫
dt =x · arccosx −t =x ·arccos x−√
1− x2+Cp)
∫
x
ln x
2dx
= u=ln2 x →u '=2 lnxx v ' =x →v =1 2x 2 1 2x 2ln2x −∫
x ln x dx = u =lnx →u ' =1x v '= x →v=1 2x 2 1 2x 2ln2x−1 2x 2ln x +1 2∫
x d x = =1 2 x 2ln2 ∣x∣−1 2 x 2ln∣x∣+1 4x 2 +Cq)
∫
x
1
2e
xdx
= u =( x+1)2 →u ' =2(x +1) v '=ex →v=ex (x +1)2ex−∫
2(x +1)exdx = u =2(x +1) →u ' =2 v '=ex →v =ex (x +1)2ex−2(x +1)ex+∫
2exdx==(x +1)2ex−2( x+1)ex+2ex=(x2+1)ex+C
r)
∫
x
2– 3 x
2
ln x dx
= u=ln x →u ' =1 x v ' =x2−3 x+ 2 →v =1 3x 3 −3 2x 2+2 x(
1 3x 3− 3 2x 2+2 x)
ln x−∫
(
1 3x 2− 3 2x+2)
dx =(
1 3x 3− 3 2x 2+2 x)
ln∣x∣− 1 9x 3+ 3 4x 2−2 x +Cs)
∫
ln
1
x
1
x
3dx
=∫
(1+ x)− 3 2ln(1+ x)dx = u=ln(1+x ) →u '= 11+x v ' =(1+ x)− 3 2 →v =−2 (1+x )− 1 2 −2(1+x )− 1 2ln(1+x )+2∫
(1+ x)− 3 2dx= =−2(1+x )− 1 2ln(1+x )−4(1+x )− 1 2=−ln(1+ x )2+4√
1+ x +C4. Integrales racionales:
a)
∫
1
x
2
x –6
dx
=∫
1 (x +3)(x−2)dx=∫
(
A x+3+ B x−2)
dx=∫
A(x−2)+B(x +3) (x +3)(x −2) dx x=2 → 5 B=1= x=−3 → −5 A=1 =∫
−1 5· 1 x+3+ 1 5· 1 x−2dx=− 1 5ln( x+3)+ 1 5ln(x −2)= 1 5·ln(
∣
x −2 x +3∣
)
+Cb)
∫
3 x
3x
2−
4
dx
3 x3:( x2−4)=3x (Resto : 12 x) →∫
(
3 x+ 12x (x +2)(x−2))
dx=∫
(
3 x + Ax +2+ Bx −2)
dx = =∫
(
3 x +A( x+2)+B(x −2) (x +2)(x−2))
dx x= 2 → 4A= 24= x=−2 → −4 B=−24∫
(
3x + 6 x+2+ 6 x −2)
dx= 3 2x 2+6ln(x +2)+6ln (x−2)=3 x2 2 +ln(
x 2−4)
6+Cc)
∫
1
x
3– 4x
2– 25 x
100
dx
=∫
1 (x− 4)(x +5 )(x−5)dx =∫
(
A x−4+ B x+5+ C x−5)
dx =∫
A(x +5)(x −5 )+B (x−4)(x−5)+C (x−4 )(x +5 ) (x −4)(x +5)(x −5 ) dx x=4 → −9 A=1= x =−5 → 90B =1 x=5 → 10 C=1 =∫
(
−1 9· 1x−4+ 190· 1x +5+ 110· 1x−5)
dx =− 19ln∣x −4∣+ 190ln∣x +5∣+ 110ln∣x − 5∣+ Cd)
∫
x
2x
2
x
−
2
dx
=∫
x 2+x−2−x +2 x2+x −2 dx=∫
(
1+ −x +2 (x +2)(x−1))
dx=∫
(
1+ Ax +2+ Bx−1)
dx= =∫
(
1+A(x −1)+B( x+2) (x+2)(x−1))
dx x =−2 → −3 A=4= x=1 → 3 B=1∫
(
1− 4 3· 1x+2+ 13· 1x−1)
dx= =x −4 3ln(x +2)+ 1 3ln(x−1)= x+ 1 3ln∣
x−1 (x +2)4∣
+Ce)
∫
x
3– 2x
2
x – 1
x
2– 3 x
2
dx
(x3−2 x2+x−1): (x2−3x +2)=x +1 (Resto : 2 x−3) →∫
(
x +1+ 2 x−3 (x−2)(x−1))
dx= =∫
(
x+1+ A x −2+ B x −1)
dx=∫
(
x+1+ A( x−1)+B (x−2) (x−2)(x−1))
dx x=1 → −B =−1= x=2 → A=1 =∫
(
x+1+ 1 x −2+ 1x −1)
dx= 12x 2 +x +ln(x −2)+ln(x−1)= x2 2+x +ln∣
x 2 −3 x+ 2∣
+Cf)
∫
1
x
3+
x
2– x−1
dx
=∫
1 (x +1)2(x−1)dx=∫
(
A x +1+ B (x+1)2+ C x−1)
dx =∫
A(x +1)(x−1)+B(x−1)+C(x +1)2 (x+1)2(x−1) dx x =1 → 4 C=1= x =−1 → −2 B=1 x=0 → − A−B +C=1 =∫
(
−1 4· 1 x +1− 1 2· 1 (x +1)2+ 1 4· 1 x −1)
dx=− 1 4ln(x+1)+ 1 2· 1 x+1+ 1 4ln( x−1)= 1 2( x +1)+ 1 4ln∣
x−1 x+1∣
+Cg)
∫
2x – 4
x
−
1
2
x
3
dx
=∫
(
A x−1+ B (x −1)2+ C x +3)
dx=∫
A(x−1)(x+3)+B(x +3)+C (x−1)2 (x−1)2(x+3) dx x=1 → 4 B=−2= x=−3 → 16 C=−10 x =0 → −3 A+ 3 B+ C=−4 =∫
(
5 8· 1 x −1− 1 2· 1 (x−1)2− 5 8· 1 x+3)
dx= 5 8ln( x−1)+ 1 2· 1 x−1− 5 8ln(x +3)= 1 2( x− 1)+ 5 8ln∣
x− 1 x +3∣
+Ch)
∫
1
x
−
1
x
3
2dx
=∫
(
A x−1+ B x +3+ C (x +3)2)
dx=∫
A(x +3)2+B(x−1)(x+3)+C(x−1) (x −1)(x+3)2 dx x=1 → 16 A=1= x=−3 → −4 C=1 x=0 → 9 A−3 B−C=1 =∫
(
1 16· 1 x−1− 1 16· 1 x+3− 1 4· 1 (x +3)2)
dx = 1 16ln( x−1)− 1 16· ln(x+3)+ 1 4· 1 x +3= 1 4( x +3)+ 1 16ln∣
x− 1 x +3∣
+Ci)
∫
3 x−2
x
2−4
dx
=∫
3x−2 (x +2)(x−2)dx=∫
(
A x+2+ B x−2)
dx=∫
A(x−2)+B (x+2) (x +2)(x −2) dx x =2 → 4 B=4= x =−2 → − 4 A=−8 =∫
(
2 x +2+ 1 x −2)
dx=2ln(x+2)+ln(x −2 )=ln∣
(x+ 2) 2 (x− 2)∣
+Cj)
∫
2x
2
5 x –1
x
3
x
2– 2 x
dx
=∫
2 x 2+5 x−1 x (x−1)( x+2)dx =∫
(
A x+ B x −1+ C x +2)
dx=∫
A(x−1)(x +2)+B x (x+2)+C x (x−1) x (x−1)( x+2) dx x =0 → −2 A=−1= x=1 → 3 B=6 x =−2 → 6C=−3 =∫
(
1 2· 1 x+ 2 x −1− 1 2· 1 x+2)
dx= 1 2ln x+2ln(x−1)− 1 2ln(x +2)=2ln∣x −1∣+ 1 2ln∣
x x+ 2∣
+Ck)
∫
x
2−
3
– 3 x
dx
=∫
−3 x (x−3)dx=∫
(
A x+ B x−3)
dx=∫
A(x−3)+B x x (x−3) dx x =0 → −3 A=−3= x =3 → 3 B=−3 =∫
(
1 x− 1 x−3)
dx =ln x −ln( x−3)=ln∣
x x− 3∣
+Cl)
∫
−
3 x
2
x
3−
x
dx
=∫
−3 x+2 x (x +1)(x−1)dx =∫
(
A x+ B x +1+ C x−1)
dx =∫
A(x +1)(x−1)+B x (x−1)+C x (x +1) x (x +1)(x−1) dx x=0 → −A=2= x=1 → 2 C=−1 x=−1 → 2 B=5 =∫
(
− 2 x+ 52· 1x +1− 12· 1x−1)
dx=−2 ln∣x∣+ 52ln∣x +1∣− 12ln∣x −1∣+Cm)
∫
−
4 x
2
16 x
16
x
2– 4
2dx
=∫
−4x 2+16 x +16 (x+2)2(x−2)2 dx=∫
(
A x+2+ B (x +2)2+ C x −2+ D (x −2)2)
dx= =∫
A(x +2)(x−2) 2+B (x−2)2+C(x +2)2(x−2)+D(x +2)2 (x+2)2 (x−2)2 dx x= 2 → 16 D=32= x=−2 → 16B =−32 x=0 → 8 A+4 B−8 C+4D=16 x =1 → 3 A+ B−9C+ 9 D=28 =∫
(
1 x+2− 2 (x+2)2− 1 x−2+ 2 (x−2)2)
dx=ln( x+2)+ 2 x+2−ln(x−2)− 2 x−2=− 8 x2−4+ln∣
x+ 2 x− 2∣
+Cn)
∫
5 x
2x
3– 3 x
2
3 x – 1
dx
=∫
5x 2 (x−1)3dx=∫
(
A x−1+ B (x−1)2+ C (x−1)3)
dx= =∫
A(x−1) 2+B(x −1)+C (x−1)3 dx x=1 → C=5= x =0 → A−B+C =0 x=−1 → 4 A−2B +C=5 =∫
(
5 x−1+ 10 (x −1)2+ 5 (x −1)3)
dx=5ln(x−1)− 10 x −1− 5 2· 1 (x−1)2=− 20 x−15 2( x−1)2+5ln∣x−1∣+Co)
∫
x
4
2 x – 6
x
3
x
2– 2 x
dx
(x4+2x−6):(x3+x2−2 x)= x−1 (Resto : 3 x2−6) →∫
(
x−1+ 3 x 2−6 x (x +2)(x −1))
dx= =∫
(
x−1+A x+ B x +2+ C x−1)
dx=∫
(
x−1+ A( x+2)(x−1)+Bx(x −1)+Cx (x+2) x (x +2)(x −1))
dx x=0 → −2 A=−6= x =−2 → 6 B=6 x =1 → 3 C=−3 =∫
(
x−1+3 x+ 1 x +2− 1 x −1)
dx= 1 2x 2−x+3ln x +ln(x +2)−ln(x−1)=x2 2−x +ln∣
x4+2 x3 x −1∣
+Cp)
∫
2 x – 3
x
3– 2 x
2– 9 x
18
dx
=∫
2 x−3 (x−2)(x +3)(x−3)dx =∫
(
A x −2+ B x +3+ C x −3)
dx =∫
A(x+3)(x−3)+B(x−2)(x−3)+C (x−2)(x +3) (x−2)(x +3)(x −3 ) dx x =2 → −5A=1= x=−3 → 30 B=−9 x =3 → 6 C=3 =∫
(
−1 5· 1x−2− 310· 1x +3+ 12· 1x−3)
dx =− 15ln∣x −2∣− 310ln∣x +3∣+ 12ln∣x −3∣+Cq)
∫
1
x
3+
x
dx
=∫
1 x (x2+1)dx =∫
(
A x+ B x+C x2+1)
dx =∫
A(x2+1)+Bx2+C x x (x2+1) dx =∫
(A+B)x2+C x+ A x (x2+1) dx =A+ B=0 C =0 A=1 =∫
(
1 x− x x2+1)
dx =ln∣x∣− 1 2ln( x 2+1)+Cr)
∫
x
2x
+
3+
x+1
x
dx
=∫
x 2+x+1 x (x2+1)dx =∫
(
A x+ B x+C x2+1)
dx =∫
A(x2+1)+Bx2+C x x (x2+1) dx =∫
(A+B)x2+C x+ A x (x2+1) dx =A+ B=1 C =1 A=1 =∫
(
1 x+ 1 x2+1)
dx =ln∣x∣+arctan x +Cs)
∫
x+3
x
2+6 x+10
dx
=∫
x +3 x2+6 x +9+1dx=∫
x+3 (x +3)2+1dx =t = x +3 dt=dx∫
t t2+1dt =12ln(t 2+1)=1 2ln(
(x +3) 2+1)
+Ct)
∫
x
1− x
3+
x
dx
=∫
1−x x (x2+1)dx =∫
(
A x+ B x+C x2+1)
dx =∫
A(x2+1)+Bx2+C x x (x2+1) dx =∫
(A+B)x2+C x+ A x (x2+1) dx =A+ B=0 C=−1 A=1 =∫
(
1 x− x +1 x2+1)
dx =∫
(
1 x− x x2+1− 1 x2+1)
dx =ln∣x∣− 1 2ln( x 2+1)− arctan x + Cu)
∫
8 x
2+
x
(
x−2)( 4 x
2+1)
dx
=∫
(
A x −2+ B x +C 4 x2+1)
dx=∫
A(4 x2+1)+Bx (x−2)+C (x−2) (x−2)(4 x2+1) dx=∫
(4 A+B)x2+(C−2B)x +A−2C x (x2+1) dx 4 A+ B=8= C−2B =1 A−2 C=0 =∫
(
2 x −2+ 1 4 x2+1)
dx=∫
2 x −2dx+∫
1 (2 x)2+1dx⏟
t =2x → dt=2 dx =∫
2 x−2dx + 1 2∫
1 t2+1dt=ln( x− 2) 2+1 2arctan(2 x )+Cv)
∫
2
x
4−1
dx
=∫
2 (x +1)(x−1)( x2+1)dx=∫
(
A x +1+ B x−1+ C x +D x2+1)
dx= =∫
A(x−1)(x 2+1)+B(x +1)(x2+1)+C x (x +1)(x−1)+D(x+1)(x−1) (x+1)(x −1)(x2+1) dx x=1 → 4 B=2= x =−1 → −4 A=2 x =0 → − A+B−D=2 x =2 → 5 A+ 15B + 6C+3D=2 =∫
(
−1 2· 1 x +1+ 1 2· 1 x−1− 1 x2+1)
dx= 1 2ln∣
x−1 x+ 1∣
−arctan x+ Cw)
∫
3 x+ 4
x
3– 3 x
2+4 x−12
dx
=∫
3x +4 (x−3)(x2+4)dx∫
(
A x−3+ B x+C x2+4)
dx =∫
A(x2+4)+Bx( x−3)+C (x−3) (x −2 )(4x2+1) dx =∫
(A+B) x2+(C −3B) x+4A −3C (x−2)( x2+4) dx = = A+B =0 C −3 B=3 4 A−3C =4∫
(
x−31 − x x2+4)
dx=∫
1 x −3dx −∫
x x2+4dx⏟
t =x2+4 → dt =2 x dx =∫
1 x −3dx − 1 2∫
1 tdt=ln∣x− 3∣− 1 2ln( x 2+4 )+Cx)
∫
3 x
2+
x+10
x
3– 2 x
2+4 x−8
dx
=∫
3 x 2+x +10 (x−2)(x2+4)dx∫
(
A x −2+ B x +C x2+4)
dx =∫
A(x2+4)+Bx (x−2)+C (x−2) (x −2)(x2+4) dx =∫
(A+B) x2+(C −2B)x +4A−2C (x−2)(x2+4) dx= = A+B=3 C −2 B=1 4 A−2 C =10∫
(
x−23 + 1 x2+4)
dx =∫
3 x−2dx +∫
1 4(
(
x 2)
2 +1)
dx⏟
t= x 2 → d t = 12dx =∫
3 x−2dx + 1 2∫
1 t2+1dt=3 ln∣x− 2∣+ 1 2arctan(
x 2)
+Cy)
∫
x
x
23+6 x+3
+
x
2– 2
dx
=∫
x 2+6 x +3 (x−1)(x2+2 x+2)dx∫
(
A x−1+ B x +C x2+2x +2)
dx=∫
A(x2+2x +2)+Bx (x −1)+C(x −1) (x −1)(x2+2 x+2) dx= =∫
(A+B) x 2+(2 A−B+C) x+2A−C (x −2)(x2+4) dx A+B =1= 2 A−B+ C=6 2 A−C=3∫
(
x−12 + −x+1 x2+2x +2)
dx =∫
2 x−1dx+∫
−x+1 x2+2x +1+1dx= =∫
2 x−1dx+∫
−(x +1)+2 (x+1)2+1dx⏟
t =x +1 → dt =dx =∫
2 x−1dx−∫
t t2+1dt +∫
2 t2+1dt=2ln∣x−1∣− 1 2ln(
(x+1) 2+1)
+2arctan( x+1 )+ Cz)
∫
3 x – 3
x
2– x +2
dx
∫
3 x –3 x2– 2 ·1 2· x + 1 4− 1 4+2 dx =∫
3 x –3 2− 3 2(
x –1 2)
2 +7 4 dx=∫
3(
x –1 2)
− 3 2 7 4[
(
2√
7(
x – 1 2)
)
2 +1]
dx = t = 2 √7(
x− 12)
dt= 2 √7dx =∫
3 t − 3√
7 7 t2+1 dt =∫
3 t t2+1dt −∫
3√
7 7 t2+1dt = 3 2ln(
4 7(
x− 1 2)
2 +1)
−3√
7 7 arctan(
2√
7(
x − 1 2)
)
+C5. Integrales trigonométricas:
a)
∫
cos
7x dx
=∫
(
cos2x)
3cos x dx =∫
(
1−sen2x)
3cos x dx⏟
t =sen x → dt = cosx dx =∫
(1−t2)3dt =∫
(1−3 t2+3t4−t6)dt = =t −t3+3 5t 5−1 7t 7+C=sen x −sen3x + 3 5sen 5x − 1 7sen 7x +Cb)
∫
cotg x dx
=∫
cos x sen xdx⏟
t = sen x → dt =cos x dx =∫
1 tdt =lnt +C=ln( sen x)+ Cc)
∫
3 sen x cos x dx
= t =sen x dt=cos x dx∫
3t dt=3 2t 2+C=3 2sen 2x + Cd)
∫
4 sen
3x cos
2x
=
∫
4sen2cos2x sen x dx =∫
4(
1−cos2x)
cos2x sen x dx⏟
t =cosx → dt =−sen x dx =−∫
4(1−t2)t2dt = =∫
(4t4−4t2)dt=4 5t 5−4 3t 3+C=4 5cos 5x−4 3cos 3x + Ce)
∫
sen x
cos
2x
dx
= t =cos x dt=−sen x dx∫
−1 t2dt =∫
−t −2dt=t−1 +C= 1 cos x+Cf)
∫
sen x – tg x
cos x
dx
=∫
sen x−sen x cos x cos x dx =∫
1− 1 cos x cos x sen x dx⏟
t =cos x → dt =−sen xdx =∫
1 t−1 t dt =∫
(
1 t2− 1 t)
dt= =−1 t−ln t +C=− 1 cos x−ln∣cos x∣+Cg)
∫
sen
5xcos
3x dx
=
∫
sen5x cos2x cos x dx=∫
⏟
sen5x (1−sen2x) cos x dxt =sen x → dt =cosx dx =
∫
t5(1−t2)dt =∫
(t5−t7)dt = =1 6t 6−1 8t 8+C=1 6sen 6x − 1 8sen 8x +Ch)
∫
cos
3x
1– sen x
dx
=∫
cos 2x 1−sen xcos x dx=∫
1−sen2x 1−sen x cos x dx⏟
t =sen x dt= cosx dx =∫
1−t 2 1−t dt =∫
(1+t )(1−t ) 1−t dt = =∫
(1+t )dt =t +1 2t 2+C=sen x +1 2sen 2x +Ci)
∫
1
dx
sen x
=∫
1−sen x (1+sen x)(1−sen x )dx =∫
1−sen x 1−sen2xdx=∫
1−sen x cos2x dx=∫
1 cos2xd x +∫
−sen x cos2x dx⏟
t =cos x dt =−sen x dx = =tan x +∫
1 t2dt =tan x− 1 t+C=tan x− 1cos x+C=tan x−sec x +C =
sen x−1
j)
∫
dx
sen
2xcos
2x
=∫
(
1 sen2x+ 1 cos2x)
dx=∫
1 sen2xdx⏟
t= π 2−x → dt =−dx +∫
1 cos2xdx=∫
−1 sen2(
π2−t)
dt⏟
sen(π2−t)=cost +∫
1 cos2xdx=∫
−1 cos2tdt +∫
1 cos2xdx==−tant +tan x+C=−tan
(
π2−x
)
+tan x +C=tan x −1 tan x+C=
sen x−cos x
sen x cos x +C
También con el cambio t = tan x → d t= dx
cos2x sen 2x =1−cos2x =1− 1 1+tan2x= tan2x 1+ tan2x= t2 1+t2
∫
sen2d xx cos2xt =tan x=∫
1+t2 t2 dt=
∫
(
1 t2+1)
dt= −1 t +t +C=tan x− 1 tan x+C6. Determina las siguientes integrales por el método que consideres más conveniente:
a)
∫
x
1
3x
dx
= x=t6 dx =6t5d t∫ √
t6 1+3√
t66t 5dt =∫
6 t8 1+t2dt⏟
t8: (t2+1)=t6 −t4 +t2−1 (Resto: 1) =6∫
(
t6−t4+t2−1+ 1 1+t2)
dt = =6 7t 7−6 5t 5+6 3t 3−6t +6 arctan(t )+C=6 7 6√
x7−6 5 6√
x5+2√
x−66√
x +6 arctan√
6x +Cb)
∫
ln
1
x
dx
=∫
ln(
x−1)
dx=∫
−ln x dx = u =ln(x) → u '= 1x v '=−1 → v =−x −x ln x +∫
1dx=x−ln x +C=x (1−ln∣x∣)+Cc)
∫
x
1 ln
x
1
dx
= u =ln(x+ 1) → u ' = 1x +1 v '=√x +1 → v =2 3(x +1) 3 2 2 3(x+1) 3 2ln(x +1)−2 3∫
√
x +1dx= 2 3(x+1) 3 2ln∣x +1∣−4 9(x + 1) 3 2+Cd)
∫
dx
x
1
ln
2x
= t =ln x dt =dx x∫
1+tdt2=arctan(t )+C=arctan(ln∣x∣)+ Ce)
∫
cos(ln x)dx
∫
⏟
cos (ln x )dx I = u=cos(lnx ) → u '=− 1xsen(ln x) v '=1 → v= x x cos(ln x)+∫
sen(ln x)dx = u =sen(lnx ) → u '= 1xcos(ln x) v '=1 → v=x=x cos(ln x)+ x sen(ln x)−
∫
⏟
cos(ln x)I
→ 2I=x cos(ln x)+ x sen(ln x)+C → I =x
2
(
cos(ln∣x∣)+ sen (ln∣x∣))
f)
∫
1 – x
2dx
=x=sent → dx =cost dt
√1− x2
=√1−sen2t =√cos2t =cost
∫
cos2t dt⏟
I = u =cost → u '=−sent v ' =cost → v =sen tsent cost +
∫
sen2t dt ==sen t cost +
∫
(
1−cos2t)
dt =sent cost +∫
dt −I → 2I =sent cost +t +C I=1 2sen t cost + t 2+C= 1 2x cos(arcsen x)+ arcsen x 2 +C= x√
1− x2 2 + arcsen x 2 +Cg)
∫
x
x
1
dx
= t =√x +1 → dt= 12 dx √x +1 x =t2−1∫
2(t2−1)dt =2 3t 3−2t +C=2 3(x +1) 3 2−2√
x +1+Ch)
∫
dx
x
x
1
t=√x +1 → dt =1= 2 dx √x +1 x=t2−1∫
t2−12 dt=∫
(
A t +1+ B t−1)
dt =∫
A(t −1)+B(t +1) (t +1)(t −1) dt x=1 → 2 B=2= x =−1 → −2 A=2 =∫
(
1 t−1− 1t +1)
dt=ln(t−1)−ln(t +1)+C=ln∣
√
x +1−1√
x+ 1+1∣
+Ci)
∫
x
5e
−x3dx
=∫
x3e−x3 x2d x = t =x3 → dt =3 x2dx∫
1 3te −tdt = u= 1 3t → u ' =13 v ' =e−t → v=−e−t −1 3t e −t +1 3∫
e −tdt= =−1 3t e −t−1 3e −t+C=−1 3(
1+ x 3)
e−x3 +Cj)
∫
e
xe
2x
3 e
x
2
dx
= t=ex → dt =ex dx∫
1 t2+3t +2dt=∫
(
A t +1+ B t +2)
dt =∫
A(t +2)+B(t +1) (t +1)(t +2) dt x =−1 → A=1= x=−2 → −B=1 =∫
(
1 t +1− 1 t +2)
dt =ln(t +1)−ln(t +2)+C=ln(
ex+1 ex+2)
+C7. Calcula la función f(x) que cumple que f''(x) = 6x+1, f(0)=1 y f(1)=0.
f ' (x)=
∫
f ' ' (x )dx =3 x2 +x +C f (x )=∫
f ' ( x)dx= x3 +1 2x 2 +C x +D →{
x =0 → f (0)=D=1 x =1 → f (1)=1+1 2+C+1=0 → f (x )= x3+1 2x 2−5 2x+ 18. Encuentra la familia de funciones que tienen como segunda derivada f''(x)=4x sabiendo que
tienen un máximo relativo en x=-1.
Determina cuál de las funciones de la familia pasa por el punto
1,
−
5
6
.
f ' (x )=∫
f ' ' (x)dx =2x2+C f (x )=∫
f ' (x )dx=2 3x 3 +C x +D →{
f ' (−1)=0 →Máximo 2+C=0 Familia: f ( x )=2 3 x 3 −2 x +D → Por el punto(
1,− 5 6)
f ( x)= 2 3x 3 −2 x +1 29. Busca una primitiva F(x) de la función f(x)=2x – 4 que verifique que
F
x
≥
0
∀
x
∈[
0, 4
]
.
F ( x)=
∫
(2 x – 4)dx= x2– 4 x+C Si hacemos C=4 tendremos: F ( x )= x2−4 x + 4=(x−2)2≥0∀ x ∈ℝ10.Halla f(x) sabiendo que:
f ' '
x
=
cos
x
2
f '
2
=
0
f(0)=1
f ' (x)=∫
cos(
x 2)
dx=2sen(
x 2)
+C f (x )=∫
[
2sen(
x 2)
+C]
dx=−4cos(
x 2)
+Cx+D →{
f ' (2 π)=0 → C=0 f (0)=1 → −4+D=1 → f ( x)=−4cos(
x 2)
+511.Calcula el área encerrada entre la gráfica de las funciones
f x=x , g x=2 x , hx=x
2.
A=
∫
0 1(
g(x )−f ( x))
dx +∫
1 2(
g(x )−h(x))
dx =∫
0 1 (2 x−x )dx +∫
1 2(
2x −x2)
dx= =[
1 2x 2]
0 1 +[
x2−1 3x 3]
1 2 =1 2+4− 8 3−1+ 1 3= 7 6u.d.s.12.Integrales definidas:
a)
∫
0 sen2x dx
=[
−1 2cos 2x]
0 π =−1 2cos2 π+ 1 2cos0=0b)
∫
1 2x
2ln xdx
u =lnx → u '= 1= x v '=x2 → v =1 3x 3[
1 3x 3 ln x]
1 2 −∫
1 2 x2 3dx= 8 3ln 2−0−[
x3 9]
1 2 =8 3ln 2− 8 9+ 1 9= 24 ln(2)− 7 9c)
∫
−1 3∣2 x
−
4∣dx
= ∣2 x− 4∣={
4−2 x si x ≤2 2 x− 4 si x >2∫
−1 2 (4−2 x)dx +∫
2 3 (2 x−4)dx =[
4x −x2]
−1 2 +[
x2−4 x]
2 3 =4+5−3+4=10d)
∫
−1 0x
1
x dx
u =x → u ' =1= v ' =√1+ x → v= 2 3( 1+x ) 3 2[
2 3x (1+x ) 3 2]
−1 0 −∫
1 2 2 3(1+x ) 3 2dx=0−[
4 15(1+x ) 5 2]
−1 0 =− 4 15e)
∫
−3 3∣
x
−
1∣dx
= ∣x −1∣={
1− x si x≤1x−1 si x>1∫
−3 1 (1−x)dx +∫
1 3 (x−1)dx=[
x −1 2x 2]
−3 1 +[
1 2x 2−x]
1 3 =1 2+ 15 2+ 3 2+ 1 2=10f)
∫
0 1
x dx
=[
2 3x 3 2]
0 1 =2 3−0= 2 3g)
∫
1 eln x
x
dx
= t =lnx → d t = 1 xdx x =1→t =0 x =e→t =1∫
0 1 t dt =[
1 2t 2]
0 1 =1 2−0= 1 2h)
∫
0 2x
x
2
1
dx
= t =x2+1 → d t =2 x dx x=0→t =1 x =2→t =5∫
1 5 1 2√
tdt=[√
t]
1 5 =√
5−1i)
∫
1 e e2 ln x dx
= u =lnx → u '= 1 x v '=2 → v=2 x[
2x ln x]
1 e e −∫
1 e e 2dx=2e+2 e−[
2x]
1 e e =2e+2 e−2e+ 2 e= 4 ej)
∫
−3 3x
2x
2
1
dx
función= par 2∫
0 √3 x2 x2+1dx=2∫
0 √3 x2+1−1 x2+1 dx=2∫
0 √3(
1− 1 1+x2)
dx=2[
x −arctan x]
0√ 3 =2(
√
3− π 3)
13.Dadas la parábola
y
=
x
2−
1
y la recta y=5 – x, representa y calcula el área de los
siguientes recintos:
a) Recinto acotado limitado por ambas curvas.
Intersección de funciones: x2−1=5−x → x2+x−6=0 → x 1=−3 x2=2 A=
∫
−3 2(
(5−x )−( x2−1))
dx=∫
−3 2 (−x2−x +6)dx=[
−1 3x 3−1 2x 2+6 x]
−3 2 =22 3 −(
− 27 2)
= 125 6 u.d.s.b) Recinto acotado limitado por la parábola a la izquierda, la recta a la
derecha y el eje OX por debajo.
A=
∫
1 2 (x2−1)dx +∫
2 5 (5− x)dx=[
1 3x 3−x]
1 2 +[
5x −1 2x 2]
2 5 =2 3+ 2 3+ 25 2−8= 35 6 u.d.s.c) Recinto acotado limitado por el eje OY a la izquierda, la parábola a la
derecha, la recta por encima y el eje OX por debajo.
A=
∫
0 1 (5−x )dx +∫
1 2[
(5− x)−(x2−1)]
dx=[
5 x−1 2x 2]
0 1 +[
−1 3x 3−1 2x 2+6x]
1 2 =9 2+ 22 3− 31 6= 20 3 u.d.s.14. Calcula el área encerrada entre las gráficas de las siguientes funciones en cada caso:
a)
f
x
=
x
2– 5 g
x
=−
x
2
5
Intersección de funciones: x2−5=−x2+5 → 2x2−10=0 → x=±√
5 A=∫
−√5 √5(
(5− x2)−(x2−5))
dx = Función par 2∫
0 √5 (10− 2x2)dx=2[
10 x−2 3x 3]
0 √5 =20√
5−4√
125 3 u.d.s.b)
f
x
=
4 – x
2g
x
=
8 – 2 x
2 Intersección de funciones: 4−x2=8−2x2 → x2=4 → x =±2 A=∫
−2 2(
(8−2 x2)−(4−x2))
dx = Función par 2∫
0 2 (4−x2)dx=2[
4 x−1 3x 3]
0 2 =32 3 u.d.s.c)
f ( x)= x( x−3) g( x)=2 x−4
Intersección de funciones: x (x−3)=2 x− 4 → x2−5 x +4=0 → x 1=1 x2=4 A=∫
1 4(
(2x−4)−x (x−3))
dx=∫
1 4(
−x2+5 x−4)
dx=[
−1 3x 3+5 2x 2−4 x]
1 4 =9 2 u.d.s.d)
f
x
=
6
x
g
x
=
7
−
x
Intersección de funciones:6 x=7−x → x 2−7 x+6=0 → x 1=1 x2=6 A=∫
1 6(
7−x−6 x)
dx=[
7x − 1 2x 2−6ln x]
1 6 =35 2−6ln6 u.d.s.e)
f
x
=
sen x g
x
=
cos x
con 0
≤
x
≤
2
Intersección de funciones:sen x=cos x → tanx=1 → x1= π 4
⏟
45º x2=5 π 4⏟
235º A=∫
π 4 5 π 4(sen x −cosx ) dx=
[
−cos x−sen x]
π 4 5 π 4=2√
2 u.d.s.f)
f
x
=
x
2
g
x
=
∣1
−
x∣
Intersección de funciones:√
x 2=∣1−x∣ → x 2=(1− x) 2 → 2 x2−5 x +2=0 → x 1= 1 2 x2=2 A=∫
1 2 2(
√
x 2−∣(1− x)∣)
dx ∣1−x∣={
1− x si x ≤1x −1 si x>1=∫
1 2 1(
√
x 2−(1− x))
dx+∫
1 2(
√
x 2−(x−1))
dx= =[
2x√
x 3√
2 −x + 1 2x 2]
1 2 1 +[
2 x√
x 3√
2 − 1 2x 2+x]
1 2 =13 24 u.d.s.g)
f
x
=
x
3−
2x g
x
=
x
2 Intersección de funciones: x3−2 x= x2 → x3−x2−2 x=0 → x 1=−1 x2=0 x3=2 A=∫
−1 0(
(x3−2x )−x2)
dx+∫
0 2(
x2−(x3−2 x))
dx=[
1 4x 4−1 3x 3−x2]
−1 0 +[
−1 4x 4+1 3x 3+x2]
0 2 =37 12 u.d.s.15.Halla el área del recinto acotado limitado por las gráficas de las funciones
f
x
=
e
x2,
g
x
=
e
−xy el eje OY
Intersección:ex+2=e−x → x +2=−x → x =−1 A=∫
−1 0(
ex +2−e−x)
dx=[
ex +2+e−x]
−1 0 =e2+1− 2e u.d.s.16.Considera el área de la región encerrada entre la parábola
y
=
x
2y la recta y=1.
Esta región se divide mediante una recta horizontal y=a.
Determina a que hace que dicha región quede dividida en mitades de igual superficie.
Intersección con y=1: x2=1 → x=±1 Intersección con y=a : x2=a → x =±a ATOTAL=
∫
−1 1(
1−x2)
dx=[
x −1 3x 3]
−1 1 =43u.d.s. Área bajo y=a: A(a)=−
∫
√a√a (a −x2)dx=