• No se han encontrado resultados

Latin American Journal of Aquatic Research ISSN X

N/A
N/A
Protected

Academic year: 2021

Share "Latin American Journal of Aquatic Research ISSN X"

Copied!
344
0
0

Texto completo

(1)
(2)

CHIEF EDITOR Sergio Palma

Pontificia Universidad Católica de Valparaíso, Chile lajar@ucv.cl

ASSOCIATE EDITORS Patricio Arana

Pontifícia Universidad Católica de Valparaíso, Chile

José Angel Alvarez Perez Universidade do Vale do Itajaí, Brasil

Claudia S. Bremec

Instituto de Investigación y Desarrollo Pesquero, Argentina

Walter Helbling Estación de Fotobiología Playa Unión, Argentina Nelson Silva

Pontificia Universidad Católica de Valparaíso, Chile

Oscar Sosa-Nishizaki

Centro de Investigación Científica y Educación Superior de Ensenada, México

Erich Rudolph Universidad de Los Lagos, Chile

Ingo Wehrtmann

Universidad de Costa Rica, Costa Rica

EDITORIAL COMMITTEE Juan Carlos Castilla

Pontificia Universidad Católica de Chile, Chile

Fernando L. Diehl Asociación Brasilera de Oceanografía, Brasil Enrique Dupré

Universidad Católica del Norte, Chile

Rubén Escribano Universidad de Concepción, Chile Pierre Freón

Institut de Recherche pour le Developpement, Francia

Michel E. Hendrickx Universidad Nacional Autónoma de México, México Carlos Moreno

Universidad Austral de Chile, Chile

Oscar Pizarro

Universidad de Concepción, Chile Guido Plaza

Pontificia Universidad Católica de Valparaíso, Chile

Ricardo Prego Instituto de Investigaciones Marinas (CSIC), España

Financiamiento parcial de CONICYT obtenido en el Concurso “Fondo de Publicación de Revistas Científicas año 2011”

Escuela de Ciencias del Mar, Pontificia Universidad Católica de Valparaíso Casilla 1020, Valparaíso, Chile-Fax: (56-32) 2274206, E-mail: lajar@ucv.cl

(3)

Ramón Ahumada

Universidad Católica de la Santísima Concepción, Concepción, Chile

Christopher Aiken

Pontificia Universidad Católica de Chile, Santiago, Chile

Marcelo Araneda

Universidad Marista, Mérida, México

Javier Arata

Instituto Antártico Chileno, Punta Arenas, Chile

Miguel Araya

Universidad Arturo Prat, Iquique, Chile

Allison Astuya

Universidad de Concepción, Concepción, Chile

Trevor Avery

Acadia University, Nova Scotia, Canada

Pedro Báez

Museo Nacional de Historia Natural, Santiago, Chile

Asbjørn Bergheim

International Research Institute of Stavanger AS, Stavanger, Norway

José Luis Blanco

Instituto de Fomento Pesquero, Valparaíso, Chile

Bjørn R. Braaten

Consultant, Norway

Sandra Bravo

Universidad Austral de Chile, Puerto Montt, Chile

Timothèe Brochier

Institut de Recherche pour le Développement, Sète Cedex, France

Aliro Bórquez

Universidad Católica de Temuco, Temuco, Chile

Enrique E. Boschi

Instituto de Investigación y Desarrollo Pesquero, Mar del Plata, Argentina

Germán Bueno

Universidad Arturo Prat, Iquique, Chile

Ángel Campa

Centro de Investigaciones Biológicas del Noroeste, La Paz, México

Mariel Campalans

Pontificia Universidad Católica de Valparaíso, Valparaíso, Chile

Cristian Canales-Ramírez

Instituto de Fomento Pesquero, Valparaíso, Chile

Cristian Canales-Aguirre

Universidad de Concepción, Concepción, Chile

Wilmer Carbajal

Universidad Nacional Pedro Ruiz Gallo, Lambayeque, Perú

Bernard Casellez

Ecole Normale Superieure, Paris, France

José Francisco Cerna

Instituto de Fomento Pesquero, Valparaíso, Chile

Javier V. Chong

Universidad Católica de la Santísima Concepción, Concepción, Chile

Patricio Dantagnan

Universidad Católica de Temuco, Temuco, Chile

Roberto de Andrade

Consultor FAO, Santiago, Chile

Patricio de los Ríos

Universidad Católica de Temuco, Temuco, Chile

Juan Pablo Díaz

Universidad Arturo Prat, Iquique, Chile

Asbjørn Drengstig

HOBAS, Norway

Enrique Dupré

Universidad Católica del Norte, Coquimbo, Chile

Esteban Emparanza

Billund Aquaculture Chile S.A., Puerto Montt, Chile

Juan Manuel Estrada

Universidad Andrés Bello, Quintay, Chile

Ronan Fablet

Ecole National Telecom, Bretagne, France

Héctor Flores

Universidad Católica del Norte, Coquimbo, Chile

José Gallardo

Pontificia Universidad Católica de Valparaíso, Valparaíso, Chile

Marcelo García

Subsecretaría de Pesca, Valparaíso, Chile

Orlando Garrido

Universidad Austral de Chile, Valdivia, Chile

Enric Gisbert

Institut Recerca I Tecnologia Agroalimentàries, Sant Carles de la Ràpita, España

María L. González

Universidad de Los Lagos, Osorno, Chile

Marcelo González

Instituto Antártico Chileno, Punta Arenas, Chile

Ángel Guerra

Consejo Superior de Investigaciones Científicas, Madrid, España

Juan Carlos Gutiérrez

(4)

Carlos Felipe Hurtado

Pontificia Universidad Católica de Valparaíso, Valparaíso, Chile Instituto del Mar de Perú, Callao, Perú Rocío Joo

Myounghee Kang

MIRYAX, Tasmania, Australia Institut de Recherche pour le Développement, Montpellier, France David Kaplan

Narayanan Kutty

Aquaculture/Fisheries Consultant, Palakkad, India Pontificia Universidad Católica de Valparaíso, Valparaíso, Chile Jaime Letelier

Karin Lohrman

Universidad Católica del Norte, Coquimbo, Chile Universidad de Los Lagos, Osorno, Chile Daniel López

Adrián Madirolas

Instituto Nacional de Investigación y Desarrollo Pesquero, Mar del Plata, Argentina

Jaques Masse

Institut Français de Recherche pour l`Exploitation de la Mer, Nantes, France

Germán Merino

Universidad Católica del Norte, Coquimbo, Chile Universidad Católica del Norte, Coquimbo, Chile Jaime Meruane

Vivian Montecino

Universidad de Chile, Santiago, Chile Universidad Nacional de Colombia, Bogotá, Colombia Luis C. Montenegro

Carlos Moreno

Universidad Austral de Chile, Valdivia, Chile Universidad Austral de Chile, Valdivia, Chile Jorge Navarro

Edwin Niklitscheck

Universidad Austral de Chile, Coyhaique, Chile Universidad de Antofagasta, Antofagasta, Chile Alberto Olivares

Roxana Olvera-Ramírez

Instituto Politécnico Nacional, México D.F., México Pontificia Universidad Católica de Chile, Santiago, Chile Álvaro Palma

Jorge Páramo

Universidad del Magdalena, Santa Marta, Colombia Universidad Austral de Chile, Valdivia, Chile Luis Pardo

Germán Pequeño

Universidad Austral de Chile, Valdivia, Chile

Alejandro Pérez Camacho

Instituto Español de Oceanografía, La Coruña, España

Eduardo Pérez

Universidad Católica del Norte, Coquimbo, Chile Pontificia Universidad Católica de Valparaíso, Valparaíso, Chile Guido Plaza

Dante Queirolo

Pontificia Universidad Católica de Valparaíso, Valparaíso, Chile

Hugo Robotham

Universidad Diego Portales, Santiago, Chile

Joan Sebastian Salas-Leiva

Universidad Católica del Norte, Coquimbo, Chile Instituto de Fomento Pesquero, Valparaíso, Chile Rodolfo Serra

Nelson Silva

Pontificia Universidad Católica de Valparaíso, Valparaíso, Chile

Brian C. Small

Southern Illinois University, Carbondale, USA

Wolfgang Stotz

Universidad Católica del Norte, Antofagasta, Chile Instituto de Mar del Perú, Callao, Perú Jorge Tam

María Isabel Toledo

Pontificia Universidad Católica de Valparaíso, Valparaíso, Chile

Pedro Toledo

Universidad Católica del Norte, Antofagasta, Chile

Jorge Toro

Universidad Austral de Chile, Valdivia, Chile

Antonio Ugalde

Universidad de Playa Ancha, Valparaíso, Chile

Eduardo Uribe

Universidad Católica del Norte, Coquimbo, Chile

Alfonso Valenzuela

(5)

Escuela de Ciencias del Mar, Pontificia Universidad Católica de Valparaíso Casilla 1020, Valparaíso, Chile-Fax: (56-32) 2274206, E-mail: lajar@ucv.cl Ingo S. Wehrtmann

Universidad de Costa Rica, San José, Costa Rica

Mary Wicksten

Texas A & M University, College Station, Texas, USA

Oscar Zúñiga

(6)

CONTENTS Reviews

Patricio De los Rios-Escalante & Italo Salgado

Artemia (Crustacea, Anostraca) in Chile: a review of basic and applied biology. Artemia (Crustacea, Anostraca) en Chile: revisión de la biología básica y aplicada ………..………...….487-496

Ingo S. Wehrtmann, Patricio M. Arana, Edward Barriga, Adolfo Gracia& Paulo Ricardo Pezzuto

Deep-water shrimp fisheries in Latin America: a review. Pesquerías de camarones de aguas profundas en América Latina: una revisión………...……….………...…497-535 Research Articles

Héctor Flores & Alex Vergara

Efecto de reducir la frecuencia de alimentación en la supervivencia, crecimiento, conversión y conducta alimenticia en juveniles de salmón del Atlántico Salmo salar (Linnaeus, 1758): experiencia a nivel productivo. Effect of reducing the feeding frequency on the survival, growth, conversion, and feeding behavior of juvenile Atlantic salmon Salmo salar (Linnaeus, 1758): an experience at the productive level………. 536-544

Andrés Abarca, Jörn Bethke, Edgar Narváez, Roberto Flores& Luis Mercado

Parameters to evaluate the immunostimulant effect of Zymosan A in head kidney leucocytes (HKL) of salmonids. Parámetros para la evaluación del efecto de Zimosán A como inmunoestimulante sobre leucocitos de riñón cefálico (HKL) de salmónidos………...545-552 Carlos Méndez & Eduardo Uribe

Control of Branchionus sp. and Amoeba sp. in cultures of Arthrospira sp. Control de Branchionus sp. y Amoeba sp. en cultivos de Arthrospira sp..………...…553-561 Patricio Dantagnan, Astrid Domínguez, Aliro Bórquez, Javier Alcaíno, Claudio Pavez & Adrián Hernández

Influencia del α-tocoferol en la incorporación y peroxidación del ácido araquidónico en alevines parr de salmón del

Atlántico (Salmo salar L.). Influence of α-tocopherol on arachidonic acid deposition and peroxidation in Atlantic salmon

(Salmo salar L.) fingerlings ……….……….……562-577 Avelino Muñoz, Elio Segovia & Héctor Flores

Deshabituación alimentaria y crecimiento de juveniles de Graus nigra (Philippi, 1887) en condiciones de cultivo. Wearing and growth of juveniles Graus nigra (Philippi, 1887) under culture conditions ………….………..…………578-583

Avelino Muñoz, Elio Segovia& Héctor Flores

Acondicionamiento de reproductores, desove y cultivo larval de Graus nigra (Philippi, 1887) (Kyphosidae: Girellinae). Broodstock conditioning, spawning and larval culture of Graus nigra (Philippi, 1887) (Kyphosidae: Girellinae)………....584-595 Daniel A. López, Boris A. López, Sergio E. Arriagada, Oscar A. Mora, Paula C. Bedecarratz, Mauricio O. Pineda, María L. González, Lorenzo I. Andrade, José M. Uribe & Verónica A. Riquelme

Diversification of Chilean aquaculture: the case of the giant barnacle Austromegabalanus psittacus (Molina, 1782). Diversificación de la acuicultura chilena: el caso del cirripedio gigante Austromegabalanus psittacus (Molina, 1782)………596-607 Andrés Guajardo & Claudia Navarrete

Gestión adaptativa en áreas marinas protegidas de Chile: un método para su evaluación. Adaptive management of marine protected areas in Chile: a method for his evaluation ………..…….608-612

(7)

Javier Porobić, Carolina Parada, Billy Ernst, Samuel E. Hormazábal & Vincent Combes

Modelación de la conectividad de las subpoblaciones de la langosta de Juan Fernández (Jasus frontalis), a través de un modelo biofísico. Modeling the connectivity of Juan Fernández rock lobster (Jasus frontalis), subpopulations through a biophysical model.………..…...…613-632

Mariano Gutiérrez, Ramiro Castillo, Marceliano Segura,Salvador Peraltilla& Miguel Flores

Trends in spatio-temporal distribution of Peruvian anchovy and other small pelagic fish biomass from 1966-2009. Tendencias espacio-temporales en la distribución de la biomasa de anchoveta peruana y de otros peces pelágicos pequeños entre 1966 y 2009………..…633-648

Yu Tao, Chen Mingru, Du Jianguo, LuZhenbin& Yang Shengyun

Age and growth changes and population dynamics of the black pomfret (Parastromateus niger) and the frigate tuna (Auxis thazard thazard), in the Taiwan Strait. Cambios en la edad y el crecimiento y dinámica poblacional de la palometa negra (Parastromateus niger) y del atún fragata (Auxis thazard thazard), en el estrecho de Taiwán...649-656 Isabel Andrade, Samuel E. Hormazabal & Marco A. Correa-Ramirez

Ciclo anual de la clorofila-a satelital en el archipiélago de Juan Fernández (33ºS), Chile. Annual cycle of the satellite chlorophyll-a in the Juan Fernandez archipelago (33ºS), Chile ………..……657-667 Jorge E. Moreno, Carlos A. Méndez, Jaime A. Meruane & María C. Morales

Descripción histológica y caracterización de los estados de madurez gonadal de hembras de Cryphiops caementarius (Molina, 1782) (Decapoda: Palaemonidae). Histological description and characterization of the ovarian cycle of Cryphiops caementarius (Molina, 1782) (Decapoda: Palaemonidae)……….…...……668-678 Renato Molina, René Cerda, Exequiel González & Felipe Hurtado

Simulation model of the scallop (Argopecten purpuratus) farming in northern Chile: some applications in the decision making process. Modelo de simulación para el cultivo del ostión (Argopecten purpuratus) en el norte de Chile: aplicaciones para la toma de decisiones ……….……….…679-693 Alejandro Abarca, Doris Oliva, Rodrigo Gutiérrez, Ángela Celis & L. René Durán

Grown-out of seeds of the taquilla clam Mulinia edulis (King & Broderip, 1832) in the subtidal zone in northern Chile and in the intertidal zone in southern Chile. Engorda de semillas de la almeja taquilla Mulinia edulis (King & Broderip, 1832) en la zona submareal en el norte y en la zona intermareal en el sur de Chile …..……….…694-704 Marco Espino & Carmen Yamashiro

La variabilidad climática y las pesquerías en el Pacífico suroriental. Climate variability and fisheries in the southeastern Pacific...….………. 705-721

Guillermo Moyano, Guido Plaza&María Isabel Toledo

Otolith micro-structure analysis of rainbow trout alevins (Oncorhynchus mykiss) under rearing conditions. Análisis de la micro-estructura de otolitos en alevines de trucha arcoiris (Oncorhynchus mykiss) en cautiverio ………... 722-729 María C. Morales & Jaime Meruane

Indicadores de condición larvaria aplicados al camarón de río del norte Cryphiops caementarius (Molina, 1782), en condiciones de cultivo controlado. Larval condition indicators applied to the northern river shrimp Cryphiops caementarius (Molina, 1782), under condition of controlled cultivation ………..………... 730-742

Alvaro Saavedra, Jorge Castillo, Edwin J. Niklitschek& J.C. Saavedra-Nievas

Reducing uncertainty and bias in acoustic biomass estimations of southern blue whiting (Micromesistius australis) in the southeastern Pacific: transducer motion effects upon acoustic attenuation. Reduciendo el sesgo e incertidumbre de las estimaciones hidroacústicas de biomasa de merluza de tres aletas (Micromesistius australis) en el Pacífico suroriental: efectos del movimiento del transductor sobre la atenuación acústica………...………...….. 743-754

(8)

Elio Segovia, Avelino Muñoz & Héctor Flores

Water flow requirements related to oxygen consumption in juveniles of Oplegnathus insignis. Requerimientos de flujo de agua en función del consumo de oxígeno en juveniles de Oplegnathus insignis ……….. 755-762 Elizabet Rojas, Marcela Ávila & Gustavo Parada

Aplicación de estrategias nutricionales y su efecto en el crecimiento en el cultivo continuo de Spirulina (Arthrospira platensis). Application of nutritional strategies and their effect in continuous culture of Spirulina (Arthrospira

platensis)………..………..763-771

Carlos Carroza, Felipe Hurtado & Xavier Gutierrez

Nitrogenated compounds’ biofiltration under alternative bacterium fixation substrates. Biofiltración de compuestos nitrogenados bajo medios de fijación bacteriana alternativos………772-785 Andrés González, Rodrigo Vega, María Ángela Barbieri & Eleuterio Yáñez

Determinación de los factores que inciden en la captura incidental de aves marinas en la flota palangrera pelágica chilena. Determination of factors affecting the bycatch of seabirds in Chilean pelagic longline fleet………..……...786-799 Short Communications

Asbjørn Bergheim

Recent growth trends and challenges in the Norwegian aquaculture industry. Tendencias recientes de crecimiento y desafíos de la industria acuícola en Noruega……….………..800-807

Ranferi Gutiérrez, Ana Farías,Gabriel Yany & Iker Uriarte

Interacciones macho-hembra del pulpo rojo patagónico Enteroctopus megalocyathus (Cephalopoda: Octopodidae) durante el comportamiento de apareamiento. Male-female interactions of Patagonian red octopus Enteroctopus

megalocyathus (Cephalopoda: Octopodidae) during mating behavior………..……..…808-812

Marcelo Concha, Claudia Cerda & Mariana Zappi

Enfoque sistémico para el diseño de sistemas energéticos acuícolas resilientes: discusión aplicada al caso de una empresa de cultivos. Systematic approach to design resilient energy systems to aquaculture: discussion applied in a private hatchery……….……….813-821

(9)

PRESENTATION

The Pacific Ocean is the largest ocean on the planet and also the least known, particularly the southeastern Pacific region. Therefore, it is mandatory to extend the environmental knowledge of this vast basin, so as to contribute to evaluate and manage their current and potential resources on a sustainable basis. In order to contribute to the oceanographic knowledge in the southeastern Pacific, the School of Marine Sciences of the Catholic University of Valparaiso organized the International Conference “Environment and Resources in the South Pacific", which was convened mainly to address issues concerning to the understanding of this ecosystem, now under exploitation, as well as to enhance the comprehension of fishing and aquaculture activities developing in coastal and ocean areas in the Pacific Ocean.

This conference was held in Viña del Mar (Chile), between 23 and 27 November 2010. This Special Issue of the Latin American Journal of Aquatic Research contains the papers presented at that time and then accepted for publication.

PRESENTACIÓN

El océano Pacífico corresponde a la mayor extensión oceánica del planeta y al mismo tiempo la menos conocida, particularmente en la región del Pacífico suroriental. Por esta razón, es de especial relevancia ampliar el conocimiento ambiental de esta vasta cuenca para contribuir a evaluar y manejar de manera sustentable, los actuales y potenciales recursos que contiene como una forma de contribuir al conocimiento oceanográfico del Pacífico suroriental, la Escuela de Ciencias del Mar de la Pontificia Universidad Católica de Valparaíso organizó la Conferencia Internacional “Ambiente y Recursos en el Pacífico Sur”, que fue convocada fundamentalmente para abordar temas asociados a la comprensión, de este ecosistema sometido actualmente a explotación, así como también orientado a analizar las actividades pesqueras y acuícolas que se desarrollan en los sectores costeros y oceánicos de este océano.

Esta Conferencia se realizó en Viña del Mar (Chile), entre el 23 y 27 de noviembre de 2010. El presente Número Especial de la revista Latin American Journal of Aquatic Research contiene los artículos presentados en dicha oportunidad y que fueron aceptados para su publicación.

(10)

DOI: 103856/vol40-issue3-fulltext-1

Review

Artemia (Crustacea, Anostraca) in Chile: a review of basic and

applied biology

Patricio De los Rios-Escalante1 & Italo Salgado2

1

Universidad Católica de Temuco, Facultad de Recursos Naturales Escuela de Ciencias Ambientales, Casilla 15-D, Temuco, Chile

2

Universidad Católica de Temuco, Facultad de Recursos Naturales Escuela de Acuicultura, Casilla 15-D, Temuco, Chile

ABSTRACT. The brine shrimp Artemia in Chile has been studied since the 1980s, initially on populations inhabiting shallow coastal and inland mountain ponds, and saltworks in northern and central Chile. Based on morphometric and molecular evidence, these populations were identified as A. franciscana. In the 1990s, A. persimilis was recorded from southern Patagonia, a species previously considered endemic to Argentina. Recently, two new populations of A. franciscana have been recorded, from one saline coastal pond in northern Chile and from a saltwork in central Chile. The scope for further research to increase both understanding of the strain characterization and basic population ecology descriptions of the Chilean brine shrimps and improve their conservation status is discussed. It is suggested that future studies should investigate first the management of local brine shrimp population for local aquaculture or conservation resources, other direction would be the effects of ultraviolet radiation (UVR) exposition that is notoriously high in brine shrimp habitats. This last factor is very important because the UVR is an important mutagen on the genetic structure of the populations. In this scenario, it is suggest a carefully management for introduced brine shrimp populations for local aquaculture for avoid alterations in native populations that due their genetic isolation would need conservation procedures for avoid local extinctions.

Keywords: Artemia, saline lakes, ultraviolet radiation, aquaculture, Chile.

Artemia (Crustacea, Anostraca) en Chile: revisión de la biología

básica y aplicada

RESUMEN. El camarón de salmuera o Artemia ha sido estudiado en Chile desde la década de 1980, las primeras descripciones de poblaciones fueron para lagunas someras en zonas costeras y de montaña, y en salinas artificiales en la zona central y norte de Chile. Sobre la base de evidencias morfométricas y moleculares estas poblaciones fueron descritas como A. franciscana. En la década de 1990, se describió la presencia de A. persimilis en la zona sur de la Patagonia, lo cual fue una ampliación del rango de distribución significativa, pues esta especie se le consideró endémica de Argentina. Recientemente dos nuevas poblaciones de A. franciscana fueron reportadas en una laguna somera en el norte y para una salina artificial en la zona central. El objetivo del presente estudio fue realizar una investigación para entender la caracterización de poblaciones y ecología básica de las poblaciones chilenas del camarón de salmuera y discutir como mejorar el estado de la conservación de estas. Se discute que a futuro los estudios se deberían enfocar primero al manejo de poblaciones nativas para acuicultura local o como un recurso para su conservación, otras orientaciones de estudio, podrían ser los efectos de la radiación ultravioleta (UVR) que es notoriamente alta en los hábitats del camarón de salmuera. Este último factor es importante porque la radiación ultravioleta es un agente mutágeno importante en la estructura genética de las poblaciones. En este escenario, se sugiere un manejo cuidadoso de las poblaciones introducidas del camarón de salmuera para la acuicultura local, con el fin de evitar alteraciones en las poblaciones nativas que debido a su aislamiento genético necesitarían procedimientos para su conservación con el fin de evitar extinciones locales.

Palabras clave: Artemia, lagos salinos, radiación ultravioleta, acuicultura, Chile. ___________________

(11)

INTRODUCTION

The brine shrimp Artemia is a cosmopolitan crustacean inhabiting saline lakes and ponds in all continents with the exception of Antarctica. In the New World, the genus is represented by the species

Artemia franciscana Kellog, 1906, and A. persimilis

Piccinelli & Prosdocimi, 1968 (Amat et al., 1994a, 1994b; Triantaphyllidis et al., 1998). The first descriptions of Chilean brine shrimp were published in the early 1990s (Zúñiga et al., 1991, 1994; Gajardo et

al., 1992, 1995; Gajardo & Beardmore, 1993; Wilson et al., 1993; Amat et al., 1994b). Prior to 1996, A. franciscana was reported from inland and coastal

shallow ponds and one saltwork (Amat et al., 1994b, Table 1 and Fig. 1). In 1996, one population from a saline shallow pond in southern Patagonia (Campos et

al., 1996) was reported and identified as A. persimilis

(Gajardo et al., 1998, 2000; De los Ríos & Zúñiga, 2000; Table 1). More recently, two more populations of A. franciscana have been reported, from a saltwork in central Chile (De los Ríos, 2000, Table 1) and from one shallow coastal pond in northern Chile (Crespo & De los Ríos, 2004). Finally, one population of A.

persimilis from a saline lake on Fireland Island (De

los Ríos, 2005; Table 1) has been discovered. STRAINS CHARACTERIZATION

The two species in South America, A. franciscana and

A. persimilis, were first recognised by Amat (1980)

and Hontoria & Amat (1992). Gajardo et al. (1995), in a series of studies using allozymes and/or cytogenetics, investigated the genetic structure of A.

franciscana (Gajardo et al., 1992, 1995; Gajardo &

Beardmore, 1993), and A. persimilis as well (Gajardo

et al., 2000, 2001) from Torres del Paine National

Park in Chilean southern Patagonia. Gajardo et al., (1995) concluded that genetic differences between the strain affecting the individuals from all known Chilean populations of A. franciscana are correlated with the inter-population extent of its geographical distribution and ecological isolation. Later, Gajardo et al. (2001) showed that the chromocentre numbers of A.

franciscana populations from Chile and other Central

and South American localities relate directly with the latitude of the habitats (Table 2). Most recently Gajardo et al. (2004) have assessed the pattern of variation of mitochondrial DNA of Chilean brine shrimps by restriction fragment length polymorphism (RFLP) analysis. They have confirmed that the species

A. franciscana occurs between latitudes 20º to 33°S

and the species A. persimilis is distributed between latitudes 34º to 51°S.

Figure 1. Geographic locations in Chile with Artemia populations.

Figura 1. Localización geográfica de las poblaciones de

Artemia en el territorio chileno.

There is some uncertainty concerning the species identity of the Salar de Atacama and Pichilemu populations. Gajardo et al. (1995) in a study of nine populations concluded that the individuals of brine shrimp at Pichilemu (38°48’S, 72°10’W) belong to A.

franciscana. However, the results from subsequent

morphological (Gajardo et al., 1998), cytogenetic (Colihueque & Gajardo, 1996; Gajardo et al., 2001), where chromosome and chromocentre complements of 2n = 44 and 0 to 6 respectively have been recorded), and mitochondrial DNA (Gajardo et al., 2004) studies all yield evidences indicating that Pichilemu brine shrimps belong to A. persimilis. Gajardo et al. (2004) have suggested that the presence of A. persimilis at this locality is possibly indicative of an hybrid zone.

(12)

Table 1. List and geographical location of sites in Chile with presence of Artemia populations in according to the literature.

Tabla 1. Lista y localización geográfica de sitios en Chile con presencia de poblaciones de Artemia según la literatura.

Name Species Geographical localization Reference

Salar de Surire A. franciscana 18°48’S, 69°04’W Zúñiga et al. (1999)

Salar de Llamara A. franciscana 21°18’S, 69°37’W Zúñiga et al. (1999)

Plata Yape pools (Iquique) A. franciscana 20°40’S, 70°15’W Gajardo et al. (1998)

Salar de Atacama: Cejas Lagoon A. franciscana 23°02’S, 68°13’W Zúñiga et al. (1999)

Salar de Atacama: Tebenquiche Lagoon A. franciscana 23°07’S, 68°16’W Zúñiga et al. (1999)

La Rinconada Lagoon A. franciscana 23°26’S, 70°30’W Crespo & De los Ríos (2004)

Pampilla pools A. franciscana 29°58’S, 71°22’W Zúñiga et al. (1999)

Palo Colorado pools (Los Vilos) A. franciscana 31°58’S, 71°35’W Gajardo et al. (1998)

El Convento salt pond A. franciscana 33°52’S, 71°48’W De los Ríos (2000)

Pichilemu saltwork A. persimilis (?) 34°48’S, 72°10’W Gajardo et al. (1998)

Amarga Lagoon (Torres del Paine) A. persimilis 50°29’S, 72°45’W Gajardo et al. (1998)

De los Cisnes Lagoon A. persimilis 53°14’S, 70°00’W De los Ríos (2005)

Table 2. Citogenetical characteristics of Artemia populations and frontal knob diameter described in the literature.

Tabla 2. Características citogenéticas y diámetro del lóbulo frontal de poblaciones de Artemia descritas según la literatura.

Name Species Chromosome

number

Chromocentre number

Diameter frontal knob

Salar de Surire A. franciscana No data No data No data

Salar de Llamara A. franciscana No data 13.8 194.3

Plata Yape pools (Iquique) A. franciscana 42 14.82 211.0

Salar de Atacama: Cejas Lagoon A. franciscana 44 4.36 196.4

Salar de Atacama: Tebenquiche Lagoon A. franciscana No data No data No data

La Rinconada Lagoon A. franciscana No data No data No data

Pampilla pools A. franciscana No data No data 198.9

Palo Colorado pools (Los Vilos) A. franciscana 42 10.09 183.9

El Convento salt pond A. franciscana No data 10.8 148.2

Pichilemu saltworks A. persimilis 44 0 No data

Amarga Lagoon (Torres del Paine) A. persimilis No data 0 301.5

De los Cisnes Lagoon A. persimilis No data No data No data

The morphological study done by Gajardo et al. (1998), provides further evidence for the presence of both A. franciscana and A. persimilis in Chile. The size of the male frontal knob is an important distinctive character to distinguish A. franciscana from A. persimilis (De los Ríos & Zúñiga, 2000). The average diameter of the frontal knob in A. franciscana is 200 μm and in A. persimilis is 300 μm (De los Ríos & Zúñiga, 2000; Table 2). This structure is used in sexual coupling; with differences in shape allowing the reproductive isolation (Mura, 1989; Mura et al., 1989).

ECOLOGICAL STUDIES

A. franciscana: these populations are located in three

main habitat types: the first comprises coastal shallow ponds; the second are found in artificial saltworks; and the third and better studied group comprises populations in inland saline shallow ponds (Amat et

al., 1994b; Zuñiga et al., 1994, 1999; Gajardo et al.,

1998). There are three populations in coastal shallow ponds. The first population is in northern Chile, in Yape pools (20°40’S, 70°15’W). The second is located in central Chile in Pampilla (29°58’S, 71°22’W) and Palo Colorado pools (31°58’S;

(13)

Ta ble 3 . C h emical features of Artemia h ab it ats d escrib ed i n th e literatu re. Ta bla 3. C arac terí st icas quí m icas de há bi ta ts de Arte mia d escrito s en la literatu ra. Percent of tota l m ajor ions Nam e Salinit y (ppt) Na + K + Ca +2 Mg +2 Cl - SO 4 -2 CO 3 -2 HCO 3 -2 Sa la r de Surire 102 No data No data No data No data No data No data No data No data Salar d e Llamar a 167 No data No data No data No data No data No data No data No data

Plata Yape pools

(1) 52 169 680 660 202 30,400 4,720 No data 160 Salar d e Atacama: C ejas Lagoon (2) 292 51.7 2.4 0.6 2.6 64.7 43. 6 No data No data Salar d e Atacama: Tebenqu ich e Lagoon (1) 233 79,000 5,300 290 4,500 123,900 19,000 240 600 La R inconad a Lagoon 80 No data No data No data No data No data No data No data No data Pam p illa poo ls 45 No data No data No data No data No data No data No data No data Palo Color ado p

ools (Los Vilos)

75 32.5 1.3 1.3 3.8 53.3 7.6 < 0.1 0.2 El Conv

ento salt pond

No data No data No data No data No data No data No data No data No data Pichilemu saltw orks 115 No data No data No data No data No data No data No data No data Amarga Lagoon (Torres d el Pain e) (3) 123 3,661.6 187.6 14.7 1,729. 3 8,084.4 359.9 2,148.0 10,227.7 De los Cisnes Lagoon No data No data No data No da ta No data No data No data No data No data Referen ces : 1) A m at et al . (1994 b), 2) Zúñig a et al. (1994) ; 3) Campos et al. (199 6). All salinity d ata

were obtained from Zúñig

a et al. (1999), with ex ception o f La Rin conada Lagoon (Cr espo & De los Ríos, 2 004) and Amarg a Lagoon (C ampos et a l. , 1996) .

(14)

71°25’W) (Amat et al., 1994b; Gajardo et al., 1998; Zúñiga et al., 1999). The habitats in each of these areas are similar in being located in ephemeral habitats at the upper high tidal level of rock beaches and with chemical characteristics similar to seawater (Amat et al., 1994b; Gajardo et al., 1998; Zúñiga et

al., 1999, Table 3). The hydrological conditions of the

shallow coastal ponds are an important factor regulating reproductive cycles of the brine shrimp. The brine shrimp reproduce oviparously, producing cysts in natural conditions of a strong salinity increase (Amat et al., 1994b; Gajardo et al., 1998; Zúñiga et

al., 1999). No ecological studies of brine shrimp have

been undertaken in this habitat, but it is probable thatthe shrimps graze on bacteria and microalgae and simultaneously they would be prazed by occasional sea birds.

A population of A. franciscana described by Crespo & De los Rios (2004) from a previously permanent pond near Antofagasta is a noteworthy example of how changeable shallow ponds habitats may be. This habitat initially was described as hypersaline, and the halophilic microalgae

Dunna-liella salina Teodoresco and Halobacterium were

recorded from the site (Gomez-Silva et al., 1990). However, following a strong earthquake that affected the area in 1995, the pond was flooded with fresh water. A. franciscana was subsequently recorded from the pond in the years 2000 and 2003 (Crespo & De los Rios, 2004) probably as a resulted from artificial inoculation. A. franciscana probably has been introduced by human intervention into artificial saltworks (Gajardo et al., 1995; De los Ríos & Zúñiga, 2000). Although neither saltwork population has been the subject of detailed ecological studies, according to Zúñiga et al. (1994). Both salt works have been operating during the last ninety years (De los Ríos & Zúñiga, 2000) and detailed studies into the dynamics of their resident brine shrimp populations, population succession and community structures are warranted.

The brine shrimp populations of inland saline lakes occur in shallow mountain ponds located mainly between 18º to 23°S (Zúñiga et al., 1999). Northern Chile is markedly arid, experiencing weak rains during the “Bolivian winter” of January and February. The ponds of the mountain and plains are all associated with saline deposits of volcanic origin (Chong, 1984) and brines of these saline lakes have relatively high sulphate concentrations (Zúñiga et al., 1991, 1994, 1999; Gajardo et al., 1992, Table 3). The salinities of these ponds vary widely. In waters with salinity concentrations <90 g L-1, the calanoid copepod Boeckella poopoensis is the dominant member of zooplankton (De los Ríos & Crespo, 2004;

De los Ríos & Gajardo, 2010a, 2010b; De los Ríos-Escalante 2010). In lakes with water salinity concentrations >90 g L-1, members of the genus

Artemia are the dominant member of the zooplankton

(Hurlbert et al., 1986; Williams et al., 1995). Predation by adult B. poopoensis on Artemia nauplii is probably the main factor reducing the abundance of the brine shrimps with salinity concentrations <90 g L

-1

(Hurlbert et al., 1986; Hammer & Hurlbert, 1992). Where Artemia do occur abundantly, the crustacean would play a key ecological role as the main grazer, through non selective filter feeding on the producer organisms (which includes halobacteria, cyanobacteria, diatoms and halophilic microalgae such as Dunaliella salina (Zúñiga et al., 1991, 1994; Demergasso et al., 2003). These upland Artemia habitats are sites for feeding and nesting of aquatic birds such as Chilean flamingo (Phoenicopterus

chilensis), Andean flamingo (Phoeni-coparrus andinus), James flamingo (Phoenicoparrus jamesi)

and Wilson Phalarope (Phalaropus tricolor). The three species of flamingos are important for Artemia populations, because two of these species (P. andinus and P. jamesi) graze on phytoplankton and bacteria, and therefore probably compete directly with the brine shrimp for food sources. However, Chilean flamingos potentially would predate on brine shrimp because these waterfowl feed non selectively on zooplankton (López, 1990). Brine shrimp reproduce ovovivi-parously only in permanent lakes with very high salinity concentrations. In these situations there is no cyst production and the population numbers decline over time with increasing salinity. The affected populations regenerate under optimal environmental conditions of low salinity concentrations from a few surviving individuals (Zúñiga et al., 1994, 1999). Regarding dispersal, the inland saline lakes are located east and west of the Andes mountains between 18º to 23°S, an area within the migration route of flamingos. Flamingos have been implicated as an agent capable of dispersing brine shrimp. Indeed, dispersal by flamingos may explain the presence of A. franciscana in saline lakes of northern Chile (Gajardo et al., 1998, De los Ríos & Zúñiga, 2000), Argentina (Papeshi et

al., 2000) and adjacent areas of Peru and Bolivia

(Triantaphyllidis et al., 1998).

A. persimilis: the Chilean populations of A. persimilis occur mainly in southern Patagonia

(Gajardo et al., 1998; De los Rios & Zúñiga, 2000; De los Ríos, 2005; De los Ríos & Gajardo, 2010a, 2010b), with biological studies having focused on Amarga lagoon, inside Torres del Paine National Park. The water bodies in this area inhabited by A. persimilis have high chloride and sulphate concentrations

(15)

(Campos et al., 1996). According to Campos et al. (1996), the biotic components are mainly cyano-bacteria and a few diatoms grazed by rotifers and brine shrimp. Again, the predator of Artemia is probably the Chilean flamingo P. chilensis (Soto, 1990; Campos et al., 1996). In the Patagonian sites, brine shrimp and copepods can coexist in spite of the different salinity tolerances of both groups (De los Ríos & Gajardo, 2010, De los Ríos-Escalante & Gajardo, 2010). The presence of A. persimilis in southern Patagonia may be due to dispersal via water birds migrating from central Argentina to southern Chile (Gajardo et al., 1998; De los Ríos & Zúñiga, 2000). Certainly, the very low altitude of the Andes mountains in the region would not constitute a barrier to migrating water fowl, and therefore to dispersal of brine shrimp. Further, A. persimilis probably shows optimal survival and fecundity in lower salinity concentrations and temperatures than A. franciscana (Sorgeloos et al., 1986). Lakes with low salinity concentrations and low temperatures are typically observed in southern Patagonia, and these conditions presumably suit better the presence of A. persimilis. FUTURE DIRECTIONS

This review is concluded by discussing directions for future studies on Chilean brine shrimps, mainly with respect to their ecology and management. At present time the ecological information available is restricted or relies on inferences. Also, little published information is available concerning the management and use of these biological resources (Zúñiga & Wilson, 1996). The effects of exposure to ultraviolet radiation (UVR) (Cabrera et al., 1995; Villafañe et al., 2001) needs to be investigated, particularly the impacts regulating zooplankton communities and affecting mutation rates (Hebert et al., 2002; Friedberg, 2003).

Management: the increasing demand of Artemia cysts for aquaculture has caused high levels of cysts harvesting from the main source, Great Salt Lake, Utah, USA. A flow-on effect has been the artificial inoculation of cysts in saltworks in Brazil, Vietnam and other countries, and also the search for alternative brine shrimp strains and species to culture (Lavens & Sorgeloos, 2000). The increase of aquaculture activities had led to an increase in the importation of brine shrimp cyst into Chile. However, the uncontrolled use of exotic strains and species, may potentially pose a significant threat to many Chilean

Artemia populations by displacement of native strains

(De los Ríos & Gajardo, 2004). Unfortunately insufficient information is available on the use of Chilean brine shrimp populations for aquaculture,

although some populations have relative good growth and survival response in controlled and semi-controlled conditions (Zúñiga & Wilson, 1996; De los Ríos, 2001). Nevertheless, the best results in studies of mass culture of Chilean brine shrimp were obtained using populations from coastal shallow ponds, because shrimp from these sources produce cysts in natural conditions (Zúñiga et al., 1999). Also, the brines of these habitats have ionic composition similar to seawater (Amat et al., 1994b; Zúñiga et al., 1999), representing favourable conditions for marine aquaculture because they do not need to divert energy to cope with different chemical conditions, and thereupon should grow and reproduce efficiently (Bowen et al., 1985). The opposite situation was reported for populations from the sulphate-enriched brines of inland lakes. Shrimp from these sources have low fecundity and growth rates when reared in seawater (Zúñiga & Wilson, 1996).

Consequently, local aquaculture activities based on brine shrimp will, in all likelihood, use stock from habitats with high chloride concentrations, such as A.

franciscana from coastal ponds or saltworks, or A. persimilis from southern Patagonian lakes. In the case

of A. persimilis from southern Patagonia, the shrimp inhabit regions with difficult weather conditions, namely heavy rainfall in winter and strong 100 km h-1 winds in summer (Soto et al., 1994; Campos et al., 1996). Aquaculture under such conditions may be economically difficult. Similar difficulties may apply for brine shrimp aquaculture based on saltworks in central Chile because the area sometimes experiences strong rains in winter (Niemeyer & Cereceda, 1984) that would generate considerable losses for aqua-culture producers.

Finally, northern Chile presents at least two important advantages for brine shrimp aquaculture: low rainfall, and an environment rich in natural nitrate and phosphorus fertilizers (Chong, 1988). Another important advantage includes the abundance of native, high quality live foods for Artemia such as the halophilic microalgae D. salina (Gómez-Silva et al., 1990; Araneda et al., 1992a, 1992b). High yields have been achieved using shallow coastal strains in out-door culture at intermediate production scales (Zúñiga & Wilson, 1996). The results from studies to date indicate that future directions for research into Chilean brine shrimp aquaculture must focus on achieving economical and technical advances for establishing intensive and extensive production scales.

Ultraviolet effect on brine shrimp: in recent years, levels of ultraviolet radiation (UVR) have been increasing substantially, in Chile (Cabrera et al., 1995)

(16)

mainly in southern Patagonia (Villafañe et al., 2001) but also in the tropical Andes (Villafañe et al., 1999; Helbling et al., 2002). Ultraviolet radiation is an important mutagen, changing the molecular structure of DNA (Friedberg, 2003). Consequently, the biota of shallow aquatic habitats lacking photoprotective strategies to avoid or repair the damage caused by exposure to UVR, may be particularly susceptible to UVR-induced damage (Villafañe et al., 2001; Helbling et al., 2002). Since brine shrimp have many advantages for use in culture and in genetics (Gajardo & Beardmore, 2001), three lines of study into effects of UVR on brine shrimp are likely to produce useful results.

a) Studies at the cellular scale into the mutagenic effects of UVR on the nucleotide sequence of DNA may reveal genetic changes in successive generations. Such changes are known to occur in halophilic crustaceans (Hebert et al., 2002). Gajardo & Beardmore (1993) and Gajardo et al., (1995, 2004) described genetic isolation and differentiation of Chilean brine shrimp populations. It may be important, with respect to conservation issues, to ascertain whether populations with year-round exposure to high UVR levels, for example in tropical zones, have substantially higher mutation rates compared with populations from areas with exposure to low UVR levels.

b) A second line of studies would investigate the effects of UVR on individual organisms. The shallow ponds inhabited by brine shrimps typically have a maximum depth between 1-15 m (Zúñiga et al., 1999), and UVR penetrates to the bottom of the water column (Villafañe et al., 2001). Consequently, the resident zooplankton is exposed to high levels of UVR against which the organisms require protection, such as provided by photoprotective photorepair or antio-xidant substances such as melanin, carotenoid pigments or ascorbic acid (Villafañe et al., 2001; Hessen et al., 2002). For example, freshwater Arctic daphnid crustaceans are exposed to high levels of UVR during summer, and synthezise and accumulate substances which provide protection against high levels of UVR. Boeckella titicacae (= B. gracilipes) from Lake Titicaca, in the tropical Andes (Helbling et

al., 2002) synthezise a micosporine-like amino acid,

and calanoids from shallow ponds in southern Patagonia also synthezise protective pigments (Rocco

et al., 2002), for example.

Although the response of Artemia to UVR has not been studied, it is likely that marked red or orange coloration of juveniles and adult specimens of tropical latitudes (Zúñiga & De los Ríos, personal obser-vations) have a photoprotective or photorepairing

function. Thick chorionic membranes of cysts of brine shrimp from inland mountain habitats (Zúñiga et al., 1999) may also constitute evidence of exposure to high levels of UVR. These inland shrimp does not produce cysts under natural conditions, but under extreme controlled conditions they can produce a few cysts with a thick chorionic membrane (Zúñiga et al., 1999). This feature may be an adaptative response to high levels of insolation exposure and UVR, since similar results were described for cysts from tropical populations of brine shrimp (Amat, 1982). Elucidation of the effects of UVR on Artemia would seem to be a fruitful line of investigation to follow.

c) A third line of studies would investigate the effects of UVR on the population structure and dynamics of Chilean brine shrimp. In marked contrast to the information concerning the effects of UVR on brine shrimp, much information has been published concerning daphnid exposure to UVR from northern hemisphere freshwaters.

Presumably, exposure to high levels of UVR radiation involves individuals affected in expending energy and metabolites to produce photoprotective substances (Hessen, 1996; Hessen et al., 1999). Given this possibility, exposure to UVR would cause mortality in different life stages, lower fecundity in adults, and slow growth rate of individuals. However, dissolved organic carbon (DOC) may be providing protection against UVR (Morris et al.,1995; De los Ríos, 2003). Many of the saline and brackish aquatic ecosystems of the Atacama desert and in southern Patagonia have a wide gradient of concentrations of DOC (De los Ríos, 2003). Consequently, it is reasonable to predict that there would be marked differences in the energy spent by individuals in developing photo-protection that would affect fecundity, individual growth, and absolute abundance of various populations (Rautio, 1998; Winder, 2001; Rautio & Korkhola, 2002a, 2002b). Indeed, integrated laboratory and field studies involving an array of brine shrimp natural sites and investigating the effect of variation in levels of protection provided by different concentrations of DOC protection against UVR damage, may be an important line of research to pursue in Chile from the sandpoint of conserving natural stocks of brine shrimp at a time of major changes in atmospheric conditions of planet Earth.

ACKNOWLEDGEMENTS

The authors express their gratitude to Brenton Knott for their important contributions and comments to this study. Also express their gratitude to the organizers of 5th of International Large Branchiopod Symposium,

(17)

the Faculty of Natural and Agricultural Sciences of the University of Western Australia (Australia). The information was obtained by funding of the Inter American Institute for Global Change (I.A.I), CONICYT-Chile (Grant for Doctoral Thesis support and Doctoral Grant), and Research and Development Direction of the Austral University of Chile. Finally, the authors express their gratitude to the Research Direction and Biological and Chemical Sciences Department of the Catholic University of Temuco (Chile) for the financing of the presentation of the present study in 5th of International Large Branchiopod Symposium, and Southern Pacific Conference (Valparaíso, Chile, 2010).

REFERENCES

Amat, F. 1980. Diferenciación y distribución de las poblaciones de Artemia (Crustaceo, Branquiopodo) de España. II. Incidencia de la salinidad ambiental sobre la morfología y el desarrollo. Invest. Pesq., 44: 485-503.

Amat, F. 1982. Diferenciación y distribución de las poblaciones de Artemia de España. IV Biometría de quistes y nauplius. Invest. Pesq., 46: 55-62.

Amat, F., F. Hontoria, J.C. Navarro, R. Cohen & S. Rodríguez. 1994a. Aproximación preliminar a la distribución del género Artemia (especie persimilis) en Argentina. Memorias del VIII Congreso Latinoamericano de Acuicultura y V Seminario Nacional de Acuicultura “Acuicultura y Desarrollo Sustentable”, Santa Fe de Bogotá, Colombia, pp. 73-83.

Amat, F., F. Hontoria, O. Zúñiga & R. Wilson. 1994b. Localización y caracterización de poblaciones chilenas del crustáceo Artemia (Branquiopodo, Anostraceo). Memorias del VIII Congreso Latinoamericano de Acuicultura y V Seminario Nacional de Acuicultura “Acuicultura y Desarrollo Sustentable”, Santa Fe de Bogotá, Colombia, pp. 77-90.

Araneda, P., C. Jiménez & B. Gómez-Silva. 1992a. Microalgae from northern Chile. II. Growth and betacarotene content of three isolates of Dunaliella

salina from the Atacama desert. Rev. Biol. Mar.

Valparaíso, 27: 157-162.

Araneda, P., I. Tapia & B. Gómez-Silva. 1992b. Microalgas del norte de Chile. II. Cultivo en medios de bajo costo de dos cepas de Dunaliella salina (Teodoresco, 1905) nativas del desierto de Atacama. Estud. Oceanol., 11: 53-59.

Bowen, S.T., E.A. Fogarino, K.N. Hitchner, G.L. Dana, V.H.S. Chow, M.R. Bouncristiani & J.R. Carl. 1985.

Ecological isolation of Artemia: population diffe-rences in tolerance of anion concentrations. J. Crust. Biol., 5(1): 106-129.

Cabrera, S., S. Bozzo & H. Fuenzalida. 1995. Variations in UV radiation in Chile. J. Photochem. Photobiol. B: Biol., 28(2): 137-142.

Campos, H., D. Soto, O. Parra, W. Steffen & G. Agüero. 1996. Limnological studies of Amarga lagoon, Chile: a saline lake in Patagonian South America. Int. J. Salt Lake Res., 4(4): 301-314.

Colihueque, N. & G. Gajardo. 1996. Chromosomal analysis in Artemia populations from South America. Cytobios, 88: 141-148.

Crespo, J. & P. De los Ríos. 2004. A new locality to

Artemia leach, 1819 (Branchiopoda, Anostraca) in

Chile. Crustaceana, 77(2): 245-248.

Chong, G. 1988. The Cenozoic saline deposits of the Chilean Andes between 18º00’ and 27º00’ South Latitude. In: H. Bahlburg, Ch. Breitkreuz & P. Giese (eds.). Lecture Notes on Earth Sciences. The Southern Central Andes. Springer-Verlag, Berlin, pp. 137-151.

De los Ríos, P. 2000. Morphometric description of the

Artemia (Leach, 1819) population of “El Convento”

salt pond (Valparaíso, Chile). Gayana, 64: 59-62. De los Ríos, P. 2001. Crecimiento en poblaciones de

Artemia franciscana y A. persimilis (Crustacea,

Anostraca) en condiciones controladas. Rev. Biol. Trop., 49(2): 629-634.

De los Ríos, P. 2003. Efectos de las disponibilidades de recursos energéticos, estructurales y de protección sobre la distribución y abundancia de copépodos y cladóceros zooplanctónicos lacustres chilenos. Tesis de Doctorado, Universidad Austral de Chile, Valdivia, 107 pp.

De los Ríos, P. 2005. Richness and distribution of zooplanktonic crustacean species in Chilean altiplanic and southern Patagonia ponds. Pol. J. Env. Stud., 14(6): 817-822.

De los Ríos-Escalante, P. 2010. Crustacean zooplankton of Chilean inland waters. Crustaceana Monogr., 12: 119 pp.

De los Ríos, P. & J. Crespo. 2004. Salinity effects on

Boeckella poopoensis abundances in Chilean Andean

lakes (Copepoda, Calanoida). Crustaceana, 77(4): 417-424.

De los Ríos, P. & G. Gajardo. 2004. Letter to editor: biological bases for a potential management of Chilean Artemia (Crustacea, Anostraca) populations. Rev. Chil. Hist. Nat., 77(1): 3-4.

De los Ríos, P. & G. Gajardo. 2010. A null model for explain zooplankton species associations in saline

(18)

lakes of the South American Altiplano (14-27°S). Crustaceana, 83(7): 769-777.

De los Ríos-Escalante, P. & G. Gajardo. 2010. Potential heterogeneity in crustacean zooplankton assemblages in southern Chilean saline lakes. Braz. J. Biol., 70(4): 1031-1032.

De los Ríos, P. & O. Zúñiga. 2000. Comparación biométrica del lóbulo frontal en poblaciones americanas de Artemia (Anostraca: Artemiidae). Rev. Chil. Hist. Nat., 73(1): 31-38.

Demergasso, C., G. Chong, P. Galleguillos, L. Escudero, M. Martínez-Alonso & I. Esteve 2003. Tapetes microbianos del Salar de Llamará, norte de Chile. Rev. Chil. Hist. Nat., 76(3): 485-499.

Gajardo, G., J. Crespo, A. Triantaphyllidis, A. Tzika, A.D. Baxenavis, I. Kappas & T.J. Abatzopoulos. 2004. Species identification of Chilean Artemia populations based on mitochondrial DNA RFLP analysis. J. Biogeogr., 31(4): 547-555.

Gajardo, G.M. & J.A. Beardmore. 2001. Coadaptation: lessons from the brine shrimp Artemia, "the aquatic

Drosophila" (Crustacea, Anostraca). Rev. Chil. Hist.

Nat., 74(2): 65-72.

Gajardo, G., J.A. Beardmore & P. Sorgeloos. 2001. International study on Artemia. LXII. Genomic relationships between Artemia franciscana and A.

persimilis, inferred from chromocentre numbers.

Heredity, 87: 172-177.

Gajardo, G.M., R. Wilson & O. Zúñiga. 1992. Report on the ocurrence of Artemia in a saline deposit of the Chilean Andes (Branchiopoda, Anostraca). Crustaceana, 63(2): 169-174.

Gajardo, G.M. & J.A. Beardmore. 1993. Electrophoretic evidence suggests that the Artemia found in the Salar de Atacama, Chile, is A. franciscana. Hydrobiologia, 257(2): 65-71.

Gajardo, G.M., D.A. Conceicao, L. Weber & J.A. Beardmore. 1995. Genetic variability and interpopulational differentiation of Artemia strains from South America. Hydrobiologia, 302(1): 21-29. Gajardo, G., N. Colihueque, M. Parraguez & P.

Sorgeloos. 1998. International study on Artemia. VIII. Morphologic differentiation and reproductive isolation of Artemia populations from South America. Int. J. Salt Lake Res., 7(2): 133-151.

Gajardo, G., C. Mercado, J.A. Beardmore & P. Sorgeloos. 1999. International study on Artemia. LX: Allozyme data suggest that a new Artemia population in southern Chile (50°29’S, 73°45’W) is A.

persimilis. Hydrobiologia, 405: 117-123.

Gomez-Silva, B., H. Olivares, & L. Rodríguez. 1990. Microalgae from northern Chile. I. La Rinconada, a hypersaline aquatic habitat in the Atacama desert. Estud. Oceanol., 9: 73-76.

Helbling, E.W., F. Zaratti, L.O. Sala, E.R. Palenque, C.F. Menchim & V.E. Villafañe. 2002. Mycosporine-like amino acids protect the copepod Boeckella titicacae (Harding) against high levels of solar UVR. J. Plankton Res., 24(3): 225-234.

Hebert, P.D.N., E.A. Remigio, J.K. Colbourne, D.J. Taylor & C.C. Wilson. 2002. Accelerated mole-cular evolution in halophilic crustaceans. Evolution, 56(5): 909-926.

Hessen, D.O. 1996. Competitive trade-off strategies in Arctic Daphnia linked to melanism and UV-B stress. Pol. Biol., 16: 573-579.

Hessen, D.O., J. Borgeraas, K. Kessler & U.H. Refseth. 1999. UV-B susceptibility and photoreaction of arctic

Daphnia morphotypes. Pol. Res., 18: 345-352.

Hessen, D.O., J. Borgeraas & J.B. Orbaek. 2002. Responses in pigmentation and antioxidant expre-ssion in arctic Daphnia along gradients of DOC and UV exposure. J. Plankton Res., 24(10): 1009-1017. Hammer, U.T. & S.H. Hurlbert. 1992. Is the absence of

Artemia determined by the presence of predators or

by lower salinity in some saline lakes? In: R.D, Robarts & M.L. Bothwell (eds.). Aquatic ecosystems in semiarids regions: implications for resourse managements. Saskatoon, Canada, N.H.R.I Symposium series, 7: 91-102.

Hontoria, F. & F. Amat. 1992. Morphological characte-rization of adult Artemia (Crustacea, Branchiopoda) from different geographical origins. American populations. J. Plankt. Res., 14(10): 1461-1471. Hurlbert, S.H., W. Loaysa & T. Moreno. 1986.

Fish-flamingo-plankton interactions in the Peruvian Andes. Limnol. Oceanol., 31(3): 457-468.

Lavens, P. & P. Sorgeloos. 2000. The history, present, status and prospects of the availability of Artemia cysts for aquaculture. Aquaculture, 181(3/4): 397-403.

López, M. 1990. Alimentación de flamencos altiplánicos, con énfasis en Phoenicoparrus andinus (Phillipi) en el Salar de Carcote, Chile. Actas Primer Taller Internacional de Especialistas en Flamencos Sudame-ricanos, San Pedro de Atacama, Chile, pp. 84-89. Medina, M. & P. Báez. 1999. Artemia sp. en laguna del

Cisne (Crustacea: Branchiopoda: Anostraca: Arte-miidae): registro más austral del género. Not. Mens. Mus. Nac. Hist. Nat., 337: 17-18.

Morris, D.P., H.E. Zagarese, C.E. Williamson, E.G. Balseiro, B.R. Hargreaves, B.E. Modenutti, R.E. Moeller & C.P. Queimaliños. 1995. The attenuation of solar UV radiation in lakes and the role of dissolved organic carbon. Limnol. Oceanol., 40(8): 1381-1391.

(19)

Received: 25 November 2010; Accepted: 10 March 2012

Mura, G. 1989. Artemia salina (Linnaeus, 1758) from Lymington, England: frontal knob morphology by scanning electron microscopy. J. Crust. Biol., 10(2): 364-368.

Mura, G., L. Del Caldo & A. Fanfani. 1989. Sibling species of Artemia: a light and electron microscopy survey of the morphology of the frontal knob. Part I. J. Crust. Biol., 9(3): 414-419.

Niemeyer, H. & P. Cereceda. 1984. Geografía de Chile. Volumen VIII. Hidrografía. Talleres Gráficos Instituto Geográfico Militar, Ejército de Chile, Santiago, 320 pp.

Papeschi, A.G., R.G. Cohen, X.I. Pastorino & F. Amat. 2000. Cytogenetic proof that the brine shrimp

Artemia franciscana (Crustacea, Branchiopoda) is

found in Argentina. Hereditas, 133(2): 159-156. Rautio, M. & A. Korkhola. 2002a. Effects of ultraviolet

radiation and dissolved organic carbon on the survival of subarctic zooplankton. Pol. Biol., 25: 460-468.

Rautio, M. & A. Korkhola. 2002b. UV-induced pigmen-tation in subarctic Daphnia. Limnol. Oceanogr., 47(1): 295-299.

Rautio, M. 1998. Community structure of crustacean zooplankton in subarctic ponds-effects of altitude and physical heterogeneity. Ecography, 21(3): 327-335. Rocco, V.E., O. Oppezzo, R. Pizarro, R. Sommaruga, M.

Ferraro & H.E. Zagarese. 2002. Ultraviolet damage and countering mechanisms in the freshwater copepod Boeckella poppei from Antarctic Peninsula. Limnol. Oceanogr., 47(3): 829-836.

Sorgeloos, P., P. Lavens, P. Leger, W. Tackaert & D. Versichele. 1986. Manual for the culture and use of the brine-shrimp Artemia in aquaculture. Belgian Administration for Development Cooperation; The Food and Agricultural Organization of the United Nations Organization, State University of Ghent, Faculty of Agriculture, Belgium, 319 pp.

Soto, D. 1990. Biomasa zooplanctónica de lagunas Patagónicas y su relación con el flamenco chileno (Phoenicopterus chilensis). Actas Primer Taller Internacional de Especialistas en Flamencos Sudame-ricanos, San Pedro de Atacama, Chile, pp. 84-102.

Soto, D., H. Campos, W. Steffen, O. Parra & L. Zúñiga. 1994. The Torres del Paine Lake district (Chilean Patagonia): a case of potentially N-limited lakes and ponds. Arch. Hydrobiol., Suppl., 99(1/2): 181-197. Triantaphyllidis, G.V., T.J. Abatzopoulos & P.

Sorgeloos. 1998. Review of the biogeography of the genus Artemia (Crustacea, Anostraca). J. Biogeogr., 25(2): 213-226.

Villafañe, V.E., M. Andrade, V. Lairana, F. Zaratti & E.W. Helbling. 1999. Inhibition of phytoplankton photosyntesis by solar ultraviolet radiation: studies in lake Titicaca, Bolivia. Freshw. Biol., 42(2): 215-224. Villafañe, V.E., E.W. Helbling, & H.E. Zagarese. 2001.

Solar ultraviolet radiation and its impact on aquatic ecosystems of Patagonia, South America. Ambio, 30(2): 112-117.

Williams, W.D., T.R. Carrick, I.A.E. Bayly, J. Green & D.B. Hebrst. 1995. Invertebrates in salt lakes of the Bolivian Altiplano. Int. J. Salt Lake Res., 4(1): 65-77. Wilson, R., O. Zúñiga & R. Ramos. 1993. Estudio

comparativo de la morfología del lóbulo frontal de cuatro poblaciones chilenas de Artemia con microscopía electrónica de barrido. Estud. Oceanol., 12:13-16.

Winder, M. 2002. Zooplankton ecology in high-mountain lakes. Swiss Federal Institute of Technology, 157 pp. Zúñiga, L.R., V. Campos, H. Pinochet & B. Prado. 1991. A limnological reconnaissance of Lake Tebenquiche, Salar de Atacama, Chile. Hydrobiologia, 210(1/2): 19-24.

Zúñiga, O., R. Wilson, F. Amat & F. Hontoria. 1999. Distribution and characterization of Chilean popu-lations of the brine shrimp Artemia (Crustacea, Branchiopoda, Anostraca). Int. J. Salt Lake Res., 8(1): 23-40.

Zúñiga, O., R. Wilson, R. Ramos, E. Retamales & L. Tapia. 1994. Ecología de Artemia franciscana en la laguna Cejas, Salar de Atacama, Chile. Estud. Oceanol., 13: 71-84.

Zúñiga, O. & R. Wilson. 1996. Variabilidad interpoblacional de Artemia franciscana cultivadas en condiciones estándar: biometría, parámetros repro-ductivos y perfil de ácidos grasos. Estud. Oceanol., 15: 51-60.

(20)

DOI: 103856/vol40-issue3-fulltext-2

Review

Deep-water shrimp fisheries in Latin America: a review

Ingo S. Wehrtmann1, Patricio M. Arana2, Edward Barriga3, Adolfo Gracia4 & Paulo Ricardo Pezzuto5

1

Unidad de Investigación Pesquera y Acuicultura (UNIP), Centro de Investigación en Ciencias Marinas y Limnología (CIMAR), Universidad de Costa Rica, San José, Costa Rica

2

Escuela de Ciencias del Mar, Pontificia Universidad Católica de Valparaíso, Valparaíso, Chile

3

Instituto del Mar del Perú, Callao, Perú

4

Instituto de Ciencias del Mar y Limnología, Universidad Nacional Autónoma de México, DF, México

5

Universidade do Vale do Itajaí, Itajaí, SC, Brasil

ABSTRACT. Commercial fisheries are expanding their activities into deeper water. The life history features of these deep-water resources make them more vulnerable to exploitation than most shallow-water resources. Moreover, the apparent lack of solid information about the ecology of most deep-water species represents a major limitation for the development and implementation of management strategies. This scenario has caused great concern regarding the sustainability of these resources and the possible environmental impacts on the deep-sea ecosystem. In Latin America, commercial fisheries are going deep as well, and considering the above-mentioned concerns, we felt the need to compile the available information about the deep-water shrimp resources and the current status of their fisheries in Latin America. Focusing on Mexico, Central America, Peru, Chile and Brazil, this review describes the exploited species, and, whenever available, the fishing fleet, fishery statistics, and management strategies. A total of 17 species (10 spp. of Penaeoidea; 7 spp. of Caridea) are of commercial interest in Latin America, but deep-water shrimps are currently fished only in Costa Rica, Colombia and Chile. An implemented management plan exists in Chile and Colombia, while Brazil approved fishery regulations for the aristeid fishery, which were never implemented. Considering the lack of information about the biology of the deep-water shrimps, which hinders the development of adequate management strategies, we see the urgent need to improve the communication and collaboration between the different stakeholders in Latin American. We suggest the establishment of a searchable and constantly updated database, which may serve as a valuable source of information for researcher and decision makers. Finally, we propose the development of regional research plans aimed towards supporting measurements for a sustainable use of deep-water shrimps in Latin America.

Keywords: sustainability, management, fishery statistics, Penaeoidea, Caridea, Brazil, Mexico, Central America, Colombia, Peru, Chile.

Pesquerías de camarones de aguas profundas en América Latina: una revisión

RESUMEN. La pesca comercial está expandiendo sus actividades hacia aguas profundas. Las características del ciclo de vida de estos recursos de aguas profundas los hacen más vulnerables a la explotación que la mayoría de los recursos de aguas someras. Además, la falta de información sobre la ecología de la mayoría de las especies de aguas profundas constituye una limitación importante para el desarrollo e implementación de estrategias de manejo. Este escenario ha causado preocupación sobre la sustentabilidad de estos recursos y de los posibles impactos ambientales en los ecosistemas de aguas profundas. La pesca comercial en América Latina se extiende también hacia aguas profundas y, considerando las preocupaciones anteriormente mencionadas, se requiere la necesidad de compilar la información disponible sobre los recursos de camarones de aguas profundas y la situación actual de estas pesquerías en América Latina. Esta revisión se enfoca en México, Centro América, Perú, Chile y Brasil y describe las especies explotadas, la flota pesquera (siempre cuando sea disponible), las estadísticas pesqueras y las estrategias de manejo. Un total de 17 especies (10 spp. de Penaeoidea y 7 spp. de Caridea) son de interés comercial en América Latina; sin embargo, camarones de

Referencias

Documento similar

Furthermore, the marginal utility of WATER also depends on the level of FOOD –the higher the food provision, the less people are willing to pay to increase the

A cut-off in water supply in the sector where the sensor is located causes the water to drop (Figure 5.4). These interruptions of supply are necessary to perform cleaning

No obstante, los planes de cuenca que se van a aprobar durante 2013 deben recoger algunos de los elementos positivos que pueden aprovecharse de este documento

The present study, aiming to evaluate the effects of a 15-week program of water activities adapted in aquatic skills for students with autism spectrum disorder, found that,

Key words: History of Latin American education, history of Brazilian education, models of education, educational styles, education and emancipation processes.. Fecha de aceptación

This involved identifying and interpreting characteristics and trends of distant water fishing in the wider context of global fisheries, evaluating opportunities

pressurized solvent showed higher HMGCR inhibitory activities than water extracts and

These requirements make it necessary to classify marble slabs into homogeneous classes or groups according to their quality and appearance. But since the control of these features