• No se han encontrado resultados

ECUACIONES. En el presente capitulo repasaremos y estudiaremos a profundidad los siguientes items:

N/A
N/A
Protected

Academic year: 2021

Share "ECUACIONES. En el presente capitulo repasaremos y estudiaremos a profundidad los siguientes items:"

Copied!
8
0
0

Texto completo

(1)

ECUACIONES

En el presente capitulo repasaremos y estudiaremos a profundidad los siguientes items: • Ecuaciones de Primer Grado con una incógnita.

• Ecuaciones de Segundo Grado con una incógnita. • Ecuaciones de Tercer Grado con una incógnita. • Ecuaciones con Valor Absoluto con una incógnita. • Ecuaciones Racionales e Irracionales con una incógnita. • Matrices y Determinantes.

• Sistema de Ecuaciones Lineales con 2 y 3 incógnitas.

Las ecuaciones son un tema recurrente en los distintos niveles de la educación secundaria, en los primeros años se desarrollan las destrezas fundamentales para resolverlas y en los últimos años en áreas como física o química el estudiante tiene la posibilidad de aplicarlas de manera mucho mas especificas. Sin embargo, la experiencia docente nos ha demostrado que muchos estudiantes al llegar a la universidad presentan serias dificultades en este tema al momento de enfrentarse al desarrollo de los cursos de calculo y más aún en asignaturas como Ecuaciones Diferenciales.

A continuación presento una serie de realidades que el estudiante debe entender para completar su visión general sobre las ecuaciones, aspectos que durante los cursos del bachillerato no son estudiados pero que, para estudiantes que se inician en las arduas tareas universitarias, se convierten en consideraciones necesarias para su éxito académico.

I. ASPECTOS GENERALES

Definición 1. Una Ecuación es una igualdad del tipo

Ax , y , z ,..., t=Bx , y , z ,..., t

Definición 2. Llamamos Solución de la Ecuación a cada conjunto de valores que satisfaga la ecuación, esto es, que sustituidos en lugar de las letras (incógnitas) transformen esta en identidad numérica.

Si la ecuación tiene una sola incógnita la denotaremos como Ax=Bx

(2)

CLASIFICACIÓN DE LAS ECUACIONES DE ACUERDO A SUS SOLUCIONES Determinada Compatibles Indeterminada Ecuaciones Incompatibles

Definición 3. Una Ecuación es compatible cuando tiene solución, en caso contrario es incompatible. Las ecuaciones compatibles son determinadas si sus soluciones son finitas e indeterminadas si sus soluciones son infinitas.

Definición 4. Dos ecuaciones son equivalentes cuando tienen las mismas soluciones.. Ejemplos:

(a) 2x=3 y 10x=15 son ecuaciones equivalentes pues ambas tienen solución x=3 2

(b) 3x−1=x7 o su equivalente 2x=8 tienen como solución única x=4 por lo tanto es una Ecuación compatible determinada.

(c) 2x3y−6=0 o su equivalente y=6−2x

3 tienen como solución general

x=x , y=6−2x

3 . En este caso x toma infinitos valores para obtener y por lo tanto la ecuación es compatible indeterminada. Algunas soluciones son 0,2;1,4

3;2, 2 3 . (d) x2=x5 es incompatible o absurda.

CLASIFICACIÓN DE LAS ECUACIONES DE ACUERDO AL TIPO DE EXPRESIÓN Enteras

Algebraicas Fraccionarias

Ecuaciones Irracionales

(3)

Ejemplos:

(a) Ecuación algebraica x

23xy

xy =5x−3xy (b) Ecuación trascendente xy−sinxy=x−logx

y

(c) Ecuación entera 3x²yx−5

3 8= xy

3 2z (d) Ecuación fraccionaria 5xy3

yz=

3

8

z⁴

(e) Ecuación irracional

y 3x − 4xyz 3 = 4

zxxy z

Resolver una ecuación consiste en calcular todas sus soluciones, y esto lo podemos hacer reduciendo la ecuación dada a una forma de ecuación conocida y fácil de resolver (ecuaciones equivalentes). En términos generales funcionan todas las reglas vista en bachillerato, pero debemos tener mucho cuidado cuando trabajamos con ecuaciones racionales o fraccionarias, por ello es necesario entender las siguientes propiedades en su contexto más profundo pues se constituyen en detalles que, matemáticamente son fatales. Veamos entonces los aspectos a considerar cuando transformamos o reducimos una ecuación para obtener sus resultados.

II. TRANSFORMACIONES EN LAS ECUACIONES

Como he dicho anteriormente, resolver una ecuación consiste en transformarla en una mas sencilla, para ello nos valemos de todos aquellos trucos y propiedades aprendidas en el bachillerato.

Ahora, es necesario aclarar que, como el proceso de migración bachillerato – universidad debe darse en varios aspectos, uno de ellos es en la escritura y lenguaje matemático, razón por la cual expresiones como: “LO QUE ESTA SUMANDO PASA AL OTRO LADO RESTANDO” o “SI ESTA MULTIPLICANDO PASA A DIVIDIR” deben quedar en el pasado, pues no todas las cosas que los profesores nos enseñan en bachillerato son verdad absoluta, y esto se debe sobre todo al hecho que los temas de bachillerato están diseñados de acuerdo a las limitaciones propias de razonamiento del joven. Debemos tomar en cuanta que el proceso de migración del cual estamos hablando es en si,un proceso de abstracción donde nuestra forma de ver una realidad debe cambiar, lo abstracto debe privar por encima de lo coloquial.

Presento a continuación una serie de propiedades ya vistas en el bachillerato, pero que de ahora en adelante deben entenderse y razonarse desde el lenguaje matemático universal y que aclaran ciertos aspectos de dichas propiedades donde no todo es cierto.

(4)

1. Sumando a los dos miembros de una ecuación Ax=Bx una misma expresión entera Ex o en particular un número, se obtiene otra ecuación AxEx=BxEx equivalente. Esta propiedad es la equivalente a la usada en los cursos de bachillerato donde los términos de una ecuación pasan de un lado a otro cambiando su signo.

1.1. Si se suma a los dos miembros de una ecuación Ax=Bx una expresión fraccionaria Fx obtendremos una ecuación AxFx=BxFx que no será equivalente a la primera, si Fx carece de valor numérico para algunas raíces de la primera, en este caso diremos que se han perdido dichas raíces.

a) Ejemplo: 3x³−4x²−4=2x³−2x²5x−10 tiene raices −2, 1y3 . Si sumamos a los dos miembros de la ecuación la expresión fraccionaria Fx= 1

x−1 obtenemos 3x³−4x²−4 1

x−1=2x³−2x²5x−10 1

x−1 cuyas soluciones son únicamente −2, 3 es decir la raíz x=1 de la primera ecuación no lo es de la segunda, y esto se debe a que al anular el denominador de la expresión sumada a los dos miembros de la ecuación, hace que ambos miembros carezcan de significado numérico para x=1 y que por lo tanto, no sea raíz de esta segunda ecuación. Se ha perdido pues esta raíz. 1.2. La simplificación de una expresión no entera Fx , que figure como sumando en

los dos miembros de una ecuación AxFx=BxFx tampoco puede hacerse siempre, pues puede suceder que la ecuación simplificada Ax=Bx tenga entre sus raíces alguna x= para la cual carezca de significado numérico Fx y qe, por lo tanto, esta raíz de la segunda ecuación no lo sea de la primera. En este caso a x= se le llama raíz extraña.

a) Ejemplo: La ecuación 3x²−x 1

x−3=2x²3x 1

x−3−3 tiene raíz x=1 , en cambio al simplificar la expresión fraccionaria, tenemos la ecuación 3x²−x¿2x²3x±3 que tiene las raíces x=1 y x=3 ; esta segunda raíz es extraña introducida al simplificar en la ecuación la expresión fraccionaria.

2. Si se pasan con signo cambiado todos los términos de una ecuación Ax=Bx de un miembro a otro, se obtiene una nueva ecuación Ax−Bx=0 que tiene por lo menos todas las soluciones que la primera.

a) Ejemplo: La ecuación  1

x−4=9x

1

x−4−20 tiene raíz x=5 . Ahora bien, si trasponemos términos y simplificamos se tiene −9x20=0 cuyas raíces son

x=5 y x=4 , esta última es pues, una raíz extraña.

3. Si se multiplican los dos miembros de una ecuación Ax=Bx por un mismo número h≠0 se obtiene una nueva ecuación h.Ax=h.Bx que es equivalente a la primera. 3.1. Si en una ecuación entera figuran denominadores, se pueden quitar éstos,

multiplicando aquella por el m.c.m de los denominadores, sin que ello altere la equivalencia.

(5)

4. Sise multiplican dos miembros de una ecuación Ax=Bx por una expresión entera Ex , se obtiene una ecuación Ax.EX=Bx.Ex que tiene por lo menos todas las raíces de la primera.

4.1. Si la expresión Fx no es entera, puede suceder que alguna de las raíces de Ax=Bx , al ser llevadas a las expresiones Ax.Fx y Bx.Fx , haga que estas expresiones carezcan de sentido y por lo tanto habremos perdido las raíces.

a) Ejemplo: La ecuación 2x²−5x=−4x6 tiene las raíces x=−2 y x=3 . Ahora bien, si multiplicamos ambos miembros de la ecuación por la expresión no entera

5

x2 , como esta carece de sentido para x=−2 , la nueva ecuación 52x²−5x

x2 =5

−4x6

x2 tiene solamente como solución la raíz x=3 .

4.2. Como dividir por una expresión entera Ex , equivale a multiplicar por la expresión no entera E1

x , resulta:si se dividen los dos miembros de una ecuación por una expresión entera Ex , pueden perderse las raíces de la ecuación Ex=0 .

a) Ejemplo: La ecuación =x tiene las raíces x=0 y x=1 . Si dividimos los dos miembros por x se tiene x=1 , se perdió la raíz x=0 .

b) Ejemplo: La ecuación x−2x−5=0 tiene las raíces x=2 y x=5 . Si dividimos por x−2 la ecuación obtenida es x−5=0 , que solo tiene raíz x=5 ; se perdió pues la raíz x=2 .

5. Si se elevan a un mismo exponente natural los dos miembros de una ecuación Ax=Bx , se obtiene otra que tiene todas las soluciones de la primera.

a) Ejemplo: La ecuación x=3 admite como única solución el número 3 , en cambio =9 o su equivalente −9=0 , es decir x−3x3=0 tiene como raíces ademas de 3 a −3 .

b) Ejemplo: La ecuación 3=4x tiene las raíces x=1,x=3 , ahora bien, i elevamos al cuadrado tenemos x⁴6x²9=16x² cuyas soluciones son

x=1,x=3,x=−1,x=−3 . Las dos últimas son extrañas. III. REDUCCIÓN DE LAS ECUACIONES A FORMA ENTERA

Si partimos de una ecuación algebraica racional con una incógnita, comenzaremos por reducir a cero sus miembros, luego haremos las operaciones indicadas, simplificamos y ordenamos con respecto a las potencias decrecientes, obteniendo entonces alguno de estos dos casos:

px=0 o bien PxQx para el segundo caso basta multiplicar por Qx para reducirlo.

(6)

De las operaciones efectuadas, las únicas que pueden alterar la equivalencia, introduciendo raíces extrañas (nunca perdiéndolas), son:

a) La reducción de un miembro a cero. b) La supresión del denominador.

Las introducidas como consecuencia de reducción de un miembro a cero son las que no dan significado numérico ni a Ax ni a Bx y esto se reconoce de inmediato por sustitución directa.

Las introducidas por supresión del denominador son las que anulan a Px y Qx y que por lo tanto no dan significado numérico al cociente Px

Qx , cosa que no ocurrirá si se ha tomado la precaución de hacer irreductible la fracción.

Ejercicios: calcular las raíces de las ecuaciones 1) 2x−13 2x−8 2x−6 x−8 = 7 8 25x−39 3x−8 . Solución: x=12 . 2) x1 x−1− x2 x3 4 2x−3=0 . Solución: x= 1 2 .

Como las transformaciones a que se somete una ecuación faccionaria para reducirla a forma entera, solamente pueden introducir soluciones extrañas, nunca perderlas, será norma general en la resolución de este tipo de ecuaciones, comprobar las soluciones obtenidas, con el objeto de desechar aquellas que no verifiquen la ecuación propuesta pues estas se habrán introducido como extrañas, bien al pasar todos los términos de un miembro a otro o bien al quitar denominadores que dependen de la incógnita.

BIBLIOGRAFÍA.

1. Matemáticas Generales. Alfonso Burgos. Selecciones Científicas. Madrid. 1975 2. El Mentor de matemáticas. Enciclopedia OCEANO. España. 2012

(7)

EJERCICIOS

Resolver las ecuaciones siguientes: 1) x−3x−2 5 =3− 2x−5 3 . Solución: x=4 . 2) x−3 8  x9 12 = 3x7 20 3 . Solución: x=51 . 3) x 6− x−1 2 3 − 1 3 2 5− x 3=0 . Solución: x=3 5 . 4) x−1 4 − 1 8 x−5 4 − 14−2x 5 = x−9 2 − 7 8 . Solución: x=17 . 5) 7x218− x4 8x−11= x 3 . Solución: x=4 . 6) 4 x2 7 x3= 37 5x6 . Solución: x=1 . 7) x1 −1− 2 x−2 1 x−3=0 . Solución: incompatible.

8) Repartir 4.000 bolívares entre dos personas de manera que la primera reciba540 bolívares mas que la segunda. Solución: La primera debe recibir 2.270 y 1.730 la segunda.

9) Los dos factores de una multiplicación suma 91. Si se aumentan 5 unidades al multiplicando y se disminuye 2 al multiplicador el producto aumenta a 67. ¿Cuáles son los factores? Solución: Los factores son 54 y 37.

10) ¿Qué día del año marcará la hoja de un almanaque cuando el número de hojas arrancadas exceda en 2 a los 3

8 del número de hojas que quedan?. Suponga que el año no es bisiesto. Solución: 12 de abril.

11) Averigüe en que día y en que hora del mes de abril se verifica que la fracción transcurrida del mes es igual a la fracción transcurrida del año. Suponga el año bisiesto. Solución: 9 de abril a las 3 horas.

12) Se tienen 3 aleaciones de cobre y oro, cuyas leyes son: 0,750, 0,840y 0,920. Se desea saber el peso que debe tomarse de cada una de ellas para obtener una aleación de 4,500 kg y ley 0,890, entrando los pesos del primero y segundo lingotes en la relación 72 . Solución: 0,30kg la primera, 1,050kg la segunda y 3,150kg la tercera.

13) Un padre tiene 44 años y su hijo 20. ¿Cuánto tiempo ha pasado desde que la edad del padre fue cuádruple de la del hijo?. Solución: 12 años.

(8)

TABLA DE PROPIEDADES QUE PUEDEN SER ÚTILES PARA SOLUCIONAR ECUACIONESa n =a

...a nvecesa⁰=1,=aan=1 an • a.bn=an.bn • Para b≠0 se tiene a bn =a n bnam.an =amn • Para a≠0 se tiene a m an=a mn • amn=amn • ab2=a2 2ab • ab2=a²2ab=abab • ab3=a3 3a2b 3ab² • ab³=−3a²b3a b²=ababb2 

• Para ax²bxc=0 se tiene que x=−b

−4ac 2a • Para ax⁴bx²c=0 se tiene que x

b±

b

2 −4ac 2a

Referencias

Documento similar

- Un curso formativo para los técnicos de laboratorio de la UPV sobre la prevención de los residuos en los laboratorios, que se llevará a cabo los días 23, 24, 25, 26 y 27

Volviendo a la jurisprudencia del Tribunal de Justicia, conviene recor- dar que, con el tiempo, este órgano se vio en la necesidad de determinar si los actos de los Estados

Se han publicado obviamente tratados sobre la historia de las ideas en América Latina (9), pero aún falta una sociología política diferenciada de los intelectuales, que examine

¿Cómo se traduce la incorporación de ésta en la idea de museo?; ¿Es útil un museo si no puede concebirse como un proyecto cultural colectivo?; ¿Cómo puede ayudar el procomún

El núcleo de la estrategia de la UE esbozada en la sección 2 —que es el apoyo al fortalecimiento de los sistemas nacionales de salud en los PMA— podría lograrse esencialmente

Tras establecer un programa de trabajo (en el que se fijaban pre- visiones para las reuniones que se pretendían celebrar los posteriores 10 de julio —actual papel de los

Se estima una distancia de más de 11 millones de años luz hablando de una cantidad de sistemas solares que no tendrían espacio en nuestra mente y esto solo hablando del grupo

En el capítulo de desventajas o posibles inconvenientes que ofrece la forma del Organismo autónomo figura la rigidez de su régimen jurídico, absorbentemente de Derecho público por