• No se han encontrado resultados

CAPITULO 3.4. TENSIONES Y DEFORMACIONES.

N/A
N/A
Protected

Academic year: 2020

Share "CAPITULO 3.4. TENSIONES Y DEFORMACIONES."

Copied!
23
0
0

Texto completo

(1)

C

C

A

A

P

P

I

I

T

T

U

U

L

L

O

O

3

3

T

T

E

E

N

N

S

S

I

I

O

O

N

N

E

E

S

S

Y

Y

D

D

E

E

F

F

O

O

R

R

M

M

A

A

C

C

I

I

O

O

N

N

E

E

S

S

.

.

R

R

E

E

V

V

I

I

S

S

I

I

Ó

Ó

N

N

D

D

E

E

P

P

R

R

I

I

N

N

C

C

I

I

P

P

I

I

O

O

S

S

F

F

Í

Í

S

S

I

I

C

C

O

O

S

S

División 4

(2)

1. Introducción

En esta división 4 del capítulo 2, se verán las diferentes teorías de falla estática con sus

respectivas metodologías de cálculo y análisis y aplicaciones a casos reales. Esto significa que

se analizará desde el punto de vista estático o quasi-estático la resistencia de un órgano de

máquina.

Se sabe que la “resistencia” es una propiedad o característica de un elemento mecánico. Esta propiedad depende en conjunto de diversos factores, a saber: la identidad del material, el

aspecto geométrico de la pieza, y los aspectos debidos a la solicitación. Todas estas facetas se

deben considerar apropiadamente antes de poder establecer algún cuantificador para la “resistencia de una parte del elemento”. Las tablas de materiales y tablas de dispositivos

(embragues, frenos, etc) no dan información alguna sobre la resistencia de partes específicas. La “resistencia de una parte del elemento” es una propiedad específica de un elemento de

máquina antes de ser ensamblado en la máquina. Tal propiedad es un indicador muy

importante para caracterizar la respuesta del elemento de máquina. Sin embargo se debe tener

en cuenta que este tipo de indicadores es de carácter aleatorio cuando se trate de elementos

producidos en serie o sometidos a variaciones en los procesos de carga o selección del

material.

En esta división se analizarán las relaciones entre cargas estáticas y resistencias estáticas con

el fin de tomar decisiones respecto del material y su tratamiento, condiciones de geometría y

de carga para poder garantizar un funcionamiento eficiente a un órgano de máquina.

Se analizará el concepto de falla y de rotura y la distinción entre ambas.

2. Concepto de Rotura y de Falla

La idea de rotura o de falla de una pieza está asociada a la idea de desafectar la misma del

mecanismo o máquina en la cual actúa. Sin embargo entre ellas existe una diferencia conceptual que permite efectuar un análisis diferente en cada caso y tomar decisiones afines.

Un proceso de rotura significa que la pieza se divide en dos o más partes dejando así de

cumplir con la función que tiene asignada como órgano de máquina. Un proceso de falla

aunque es entendido de la misma manera que el anterior como que la pieza deja de cumplir

con la función asignada en la máquina, de por sí constituye un concepto algo más general ya

que contempla al anterior sin embargo la falla de una pieza puede ocurrir sin necesidad de su

rotura. Esta diferencia se puede apreciar en una comparación entre dos probetas de ensayo

compresivo tal como la que se ve en la Figura 3.54

Existen diferentes mecanismos de falla en diferentes tipos de piezas construidas con

(3)

3.55, donde pueden aparecen deformación por fuerzas, impacto, erosión superficial entre

otras), algunas de las cuales se pueden enunciar a continuación:

Figura 3.54. Distinción del proceso de falla y de rotura

Figura 3.55. Multiplicidad de efectos de falla en una misma pieza

1. Deformación inducida por fuerzas y/o Temperatura

2. Desplazamientos inducidos por fuerzas o temperatura (pandeo)

3. Límite de Fluencia

4. Rotura Dúctil 5. Rotura Frágil

6. Fatiga estructural

7. Fatiga Superficial

8. Impacto o falla dinámica

9. Desgaste por fricción

10. Endurecimiento parcial

11. Daño por Radiación: típico en materiales como los plásticos.

12. Corrosión

13. Desgaste por Corrosión

14. Fatiga por Corrosión 15. Fatiga por “Fretting” 16. Desgaste por “Fretting” 17. Relajación Térmica.

18. Rotura por tensiones térmicas: Efectos concentradores de tensiones

19. Falla por efectos Creep: presencia de deformaciones sostenidas en el tiempo

20. Fatiga Térmica:

21. Shock o Golpe Térmico: modificación estructural por efecto térmico

(4)

23. Debonding: Pérdida de contacto entre fibras y resina en materiales compuestos

24. Delamination: Pérdida de contacto entre láminas de materiales compuestos

La lista anterior es solo una muestra de la gran cantidad de mecanismos de falla que se pueden

presentar en piezas construidas con diversos materiales y formas. Cada una de las precedentes

tiene un proceso de análisis específico para caracterizar el potencial estado de falla de la

pieza. Si bien cada caso es diferente en su enfoque y en las variables que se ponen en juego y

los métodos de cálculo que se utilizan (en complejidad y representatividad), todas tienen en

común la necesidad de caracterizar aspectos geométricos relativos al proceso de falla.

La concentración de Tensiones

La concentración de tensiones es un efecto geométrico sumamente localizado. En algunos

casos se puede deber a una grieta superficial, en otros se puede deber a un maquinado no

adecuado o a la selección de radios de acuerdo muy bruscos entre superficies no

concordantes. Si el material es dúctil, la carga estática de diseño, puede generar una fluencia

en el punto crítico sobre la mueca. Esta fluencia puede conducir a un endurecimiento por

deformación del material y a un incremento de la resistencia de fluencia en tal punto. Suele suceder que siendo las cargas estáticas, la fluencia localizada no conduce a fluencia general y

en consecuencia la pieza globalmente puede soportar la solicitación.

Figura 3.56. Distribución y concentración de tensiones evidenciado por foto elasticidad

Figura 3.57. Distribución y concentración de tensiones evidenciado por termo elasticidad radiométrica

(5)

3.56 a 2.57. La concentración de tensiones es la zona donde se hallan los concentradores de tensiones. Normalmente se define el factor de concentración de tensiones, como el indicador del incremento de tensiones en la concentración de tensiones, y se calcula de la siguiente

manera:

Puntual omedio

Pr Tensión

Puntual Máxima

Tensión

KC  (3.155)

Los factores concentradores de tensión, históricamente han sido y actualmente son muy útiles

para poder emplear metodologías de cálculo tradicionales (Resistencia de Materiales) sin

incurrir en graves errores de representatividad del estado tensional. De manera que el estado

tensional en un punto viene dado por la siguiente expresión:

Nom C Max K

  (3.156)

Donde Max es la tensión normal o tangencial que se pretende valorar en la zona

concentradora de tensiones, KC el coeficiente concentrador de tensiones y Nom la tensión

nominal obtenida por cálculo de resistencia de materiales (Flexión, Tracción, torsión, etc.).

Para la obtención de los factores de concentración de tensiones usualmente se recurría a

ensayos de foto-elasticidad (Figura 3.56) o termo-elasticidad radiométrica (Figura 3.57) los

cuales son métodos costosos en términos generales. Sin embargo hoy en día con el avance

computacional es mucho más fácil y obtener los factores concentradores de tensión mediante

el empleo de plataformas de cálculo por elementos finitos bidimensionales y/o

tridimensionales, con las cuales se puede hallar en forma precisa el valor de las tensiones en los puntos de interés.

Aun así en casos de importancia superlativa, por el riesgo que implica la mala predicción de

los estados de tensiones, se suelen efectuar modelos computacionales de elementos finitos y

correlacionarlos con modelos de foto elasticidad a escala o de tamaño real tal como se puede

ver en el ejemplo de un tren de aterrizaje en la Figura 3.58.

Normalmente los factores de concentración de tensiones se condensan en gráficos o ábacos o

programas de cálculo para una configuración de solicitación determinada, un elemento

estructural determinado para varias configuraciones de parámetros geométricos, como por

ejemplo relaciones de alturas de vigas a radios de acuerdo en muescas, de agujeros,

chaveteros, etc.

En las Figuras 3.59 a 2.70 se muestran las gráficas de factores de concentración de tensiones

para diferentes configuraciones geométricas y de carga. Nótese que las curvas se grafican en

función de la razón del radio de acuerdo (o agujero) a una longitud característica (diámetro

menor o altura menor, etc). En las Figuras a su vez se indican las formulas particulares de

cada caso, homónimas a la (3.156) para calcular la tensión máxima en función de la

(6)

identificados en las Figuras 2.59 a 2.70 y otros adicionales que fueron adaptados de la referencia [3]. El mencionado archivo se halla en “D:\Programas-Calculos Varios”.

Figura 3.58. Modelo de foto elasticidad de tren de aterrizaje (Tomado de Referencia [4])

(7)

Figura 3.60. Concentración de tensiones para planchuela flexionada con radio de acuerdo

Figura 3.61. Concentración de tensiones para planchuela traccionada con muesca

(8)

Figura 3.63. Concentración de tensiones para eje traccionado con radio de acuerdo

Figura 3.64. Concentración de tensiones para eje flexionado con radio de acuerdo

(9)

Figura 3.66. Concentración de tensiones para eje con muesca sometido a tracción.

Figura 3.67. Concentración de tensiones para eje con muesca sometido a flexión

(10)

Figura 3.69. Concentración de tensiones para planchuela con agujero sometida a tracción

Figura 3.70. Concentración de tensiones para planchuela con agujero sometida a flexión.

En la expresión (3.156), el factor KC cambia de significado cuando cambia el tipo de tensión

que magnifica. Esto quiere decir que en los casos de las Figuras 3.65 y 2.68, KC significa un

factor de concentración de tensiones de corte o tangenciales, en cambio para los restantes

casos se trata de un factor de concentración de tensiones normales.

La importancia en el uso de los diagramas 2.59 a 2.70 radica en que son indispensables

cuando se usa una metodología de cálculo basada en modelos de resistencia de materiales. En

caso de contar con una plataforma computacional de análisis por elementos finitos u otra

(11)

3. Predicción de falla estática

Un estado multiaxial de tensiones en un cuerpo, es el estado más general que puede

presentarse ante una condición de solicitación, sin embargo aquel puede reducirse a estados

biaxiales o triaxiales. En la práctica, suele ser complejo y hasta a veces imposible idear

experimentos que puedan cubrir cada detalle y cada particular combinación de tensiones,

puesto que tal circunstancia se debe al extraordinario costo que el procedimiento implica. Por

tal razón se necesitan modelos o teorías que permitan evaluar, comparar y relacionar las

tensiones tridimensionales con los resultados experimentales del ensayo de tracción típico,

cuyo costo es relativamente muy bajo.

TEORIAS DE FALLA PARA MATERIALES DUCTILES

Entre los materiales dúctiles se encuentran la mayoría de los metales y plásticos poliméricos.

Se debe tener presente que en términos generales, los materiales dúctiles tienen la misma

resistencia a la tracción y a la compresión y no son tan susceptibles a las zonas de

concentración de tensiones en términos comparativos con los materiales frágiles.

Se puede considerar que un material dúctil ha fallado cuando en términos globales la tensión

que está soportando alcanza la tensión de fluencia.

Teoría de la máxima tensión cortante

La teoría de la máxima tensión cortante fue introducida en forma independiente por Coulomb

(1773) y por Tresca (1868), y se la suele llamar también Criterio de Fluencia de

Coulomb-Tresca o Criterio de Fluencia de Tresca. De acuerdo con la evidencia experimental sobre

laminas de titanio y otros metales, según las cuales los mismos se deformaban según planos de corte perfectamente definidos. Estas observaciones condujeron a definir el criterio de

fluencia como sigue: Una pieza sujeta a cualquier combinación de cargas sufrirá falla cuando la tensión cortante máxima exceda un valor crítico. El valor crítico se puede obtener a partir de los ensayos de tracción y compresión convencionales. La forma analítica

de representar este comportamiento es la siguiente

s y s sy j i n S n S 2 /  

 donde

         2 / 2 / 2 / 3 1 3 2 2 1 /      

i j Máx (3.157)

si se supone que 1 2 3, entonces (3.157) se puede escribir de la siguiente manera

s y 3 1 n S    (3.158)

En (3.157) y (3.158), ns Ssy y Sy son el coeficiente de seguridad, la tensión de fluencia bajo

(12)

verifican el criterio definido por la ecuación (3.157) o la (3.158) se pueden representar

gráficamente y el lugar geométrico de todos los puntos que verifican fluencia. En la Figura

3.71.a se puede apreciar la zona correspondiente a un caso en el plano.

(a) (b)

Figura 3.71. Gráficas de (a) teoría de tensión de corte máximo (b) Teoría de la energía de distorsión

Teoría de la Energía de Distorsión

Esta teoría postula que la falla es causada por la energía elástica asociada con la energía de

deformación por corte. La hipótesis de la energía de distorsión surge de la observación que los

materiales dúctiles sometidos a tensiones hidrostáticas tienen resistencias a la fluencia que

exceden los valores de los experimentos de tracción simples (Ver Figura 3.71.b). Esto da la

idea que la fluencia no es un proceso de tracción o compresión simples sino que hay

involucrada cierta distorsión angular en el volumen unitario más solicitado. Esta teoría

predice la fluencia bajo cargas combinadas con mayor exactitud que cualquier otra teoría

conocida. La teoría de la energía de distorsión se puede deducir matemáticamente de varias

maneras. Se analizarán algunas formas de obtener la expresión que rige el comportamiento de fluencia, para poder cotejarlas y mostrar la utilidad en cada contexto. En la Figura 3.72 se

muestra un volumen elemental con las tensiones principales y como el estado tensional puede

disgregarse en dos, uno de tensiones hidrostáticas y otro de tensiones de distorsión. Las

tensiones hidrostáticas se pueden hallar de la siguiente manera:

3 3 2 1 h

  

    (3.159)

La energía de deformación total del cuerpo de la Figura 3.72 viene dada por la expresión:

1 2 3 2 1 3

2 3 2 2 2 1

T 2

E 2

1

U             (3.160)

Para hallar la energía de deformación para producir solo un cambio de volumen (como en el

caso de la Figura 3.72.b), se tiene que sustituir en (3.160) h por cada 1, 2 y 3, así se

(13)

2 1 E 2 3 U 2 h

h   (3.161)

Ahora reemplazando (3.159) en (3.161) y operando se tiene:

1 2 3 2 1 3

2 3 2 2 2 1

h 2 2 2

E 6

2 1

U                (3.162)

Ahora la energía para distorsionar el cuerpo (Figura 3.72.c) se obtiene de la diferencia entre

(3.160) y (3.162), en consecuencia se obtiene:

 

 

                 2 E 3 1 U U U 2 3 2 2 2 1 2 3 1 h T d        (3.163)

Nótese que la energía de distorsión es nula si las tensiones principales son todas iguales es

decir si 1 =2=3.

Figura 3.72. Volumen elemental bajo tensiones principales. Tensiones hidrostáticas y de distorsión.

Ahora bien, la hipótesis de la energía de distorsión postula que la fluencia ocurrirá cuando

la energía de distorsión de un volumen unitario sea igual a la energía de distorsión del

mismo volumen cuando se lo someta a un esfuerzo uniaxial hasta la resistencia a la

fluencia. Para un ensayo de tracción se cumple que 1 =e, 2 =3 =0, luego la energía de

distorsión se obtiene como:

2 e d E 3 1

U   (3.164)

siendo e la denominada tensión efectiva o tensión de Von Mises.

 

 

2 2 3 2 2 2 1 2 3 1 e      

       (3.165)

En consecuencia la expresión de la teoría de la energía de distorsión se puede escribir como:

s y e n S   (3.166)

Donde ns y Sy son el coeficiente de seguridad y la tensión de fluencia del material.

Una de las formas más simples e inmediatas para obtener la mencionada expresión es

(14)

definen las tensiones octaédricas tangenciales y normales. Entonces, comparando (3.165) y

(3.35) se puede obtener

e to

3 2

  (3.167)

Lo que significa que la falla se obtendrá cuando la tensión tangencial octaédrica alcance o

supere la tensión tangencial octaédrica de fluencia.

En consecuencia es fundamental calcular tener varios esquemas con los cuales calcular e, es

decir la tensión equivalente. En el caso que el cuerpo se halle en un sistema cartesiano

tridimensional la tensión equivalente se puede obtener como:

2

6 xz2

2 yz 2 xy 2 yy zz 2 zz xx 2 yy xx e         

          (3.168)

En el caso de tensiones en el plano:

2

3 xy2

yy xx 2 yy 2 xx e     

     (3.169)

La teoría de la energía de distorsión también puede denominarse de las siguientes formas: - Criterio de Von Mises – Hencky

- Hipótesis de la tensión cortante octaédrica

- Hipótesis de la energía cortante

En la Figura 3.73 se puede apreciar una comparación entre las dos teorías: de la energía de

deformación y de la máxima tensión de corte:

Figura 3.73. Comparación de las teorías de energía de distorsión y de máxima tensión cortante.

NOTA: Es importante tener en cuenta que los contornos de las regiones de definición de

los criterios de falla (Figuras 3.72 y 2.73), corresponden a un factor de seguridad

(15)

Figura 3.74. Zona de tensiones límite y perfil de tensiones permitidas

Teoría o hipótesis de la Fricción Interna (para materiales dúctiles)

Esta teoría se basa en una serie de hipótesis y observaciones efectuadas por Mohr a principios

del siglo XX, mediante los únicos métodos prácticos con que se contaba, es decir con los

círculos Mohr e ideas afines al mismo. Aunque la idea es antigua, sigue siendo útil

conceptualmente. La intención central de esta hipótesis involucra hallar una forma de cálculo

para la tensión de fluencia representativa, conociendo los resultados experimentales de los tres

ensayos de fluencia, a tracción, compresión y corte puro, luego describir sus estados en

respectivos círculos de Mohr y finalmente trazar la envolvente de los tres círculos (Figura 3.75.a) la cual podría ser una recta, parábola o curva cualquiera. Sin embargo es más fácil

obtener una fórmula de resistencia a la fluencia por corte puro en función de los otros dos

experimentos, en vez de efectuar el ensayo de caracterización de fluencia por corte puro

(entiéndase torsión).

(a) (b)

Figura 3.75. (a) círculos tangentes de compresión, tracción y corte (b) Teoría de la fricción interna (dúctiles) La hipótesis de la fricción interna establece en un estado de tensiones multiaxiales que la

falla se produce cuando el mayor círculo de Mohr asociado al estado de tensiones en el

(16)

Lo útil de esta teoría radica en que conociendo solamente las tensiones de falla por tracción y

por compresión, la tensión de falla por corte se obtiene según la siguiente expresión derivada

del gráfico 2.75.a, como:

yc yt yc yt ys S S S S S

 (3.170)

Ahora bien, en la hipótesis de fricción interna se puede proponer además la idea de que la

envolvente es una línea recta, denominada hipótesis de Coulomb-Mohr, de tal forma que para

cualquier circulo tangente a la línea envolvente BCD con tensiones principales 1 y 3, siendo 1 positiva y 3 negativa, se cumplirá que:

s yc 3 yt 1 n 1 S

S  

 

siendo 10 y 30 (3.171)

En la Figura 3.75.b se puede apreciar el dominio de esta teoría. Por otro lado viendo las

Figura 3.75 se puede inferir claramente que si la tensión de falla a compresión posee el mismo

valor absoluto que para tracción, esta teoría se reduce a la teoría de máxima tensión de corte.

TEORIAS DE FALLA PARA MATERIALES FRAGILES

Los materiales frágiles a diferencia de los materiales dúctiles, se fracturan prácticamente sin

presentar fluencia. Una consideración importante y necesaria de involucrar en un criterio de

falla para estos materiales, es la evidencia de que muchos de ellos poseen una resistencia a la

compresión mayor que su contraparte a la tracción.

Teoría de la tensión normal máxima

También denominada Teoría de Rankine. Esta hipótesis establece que la falla ocurre cuando

una de las tres tensiones principales alcanza o supera la tensión de resistencia (rotura).

Así pues esto se puede escribir matemáticamente como:

s ut 1 n S

 o

s uc 3 n S  

 siempre que 1 2 3 (3.172)

En (3.170) Sut y Suc son las resistencias a fractura de tracción y compresión respectivamente,

mientras que ns es el coeficiente de seguridad. En la Figura 3.76.a se puede observar la zona

de definición de este criterio (recordando la nota del apartado anterior, con ns = 1).

Teoría o hipótesis de la Fricción Interna (para materiales frágiles)

A semejanza de la homónima teoría para materiales dúctiles esta teoría utiliza los mismos

conceptos a diferencia que los valores límite de resistencias corresponden a las resistencias a

la rotura de los materiales frágiles en vez de las correspondientes resistencias a fluencia. De

(17)

s uc 3 ut 1 n 1 S S  

 

siendo 10 y 30 (3.173)

En (3.173) Sut y Suc son las resistencias a fractura de tracción y compresión respectivamente,

mientras que nses el coeficiente de seguridad. En la Figura 3.76.b se muestra el dominio de

esta hipótesis.

(a) (b)

Figura 3.76. Teorías de (a) máxima tensión normal (b) fricción interna (frágiles) y Mohr-Coulomb modificada

Teoría o hipótesis de la Fricción Interna de Mohr modificada

La teoría de Mohr modificada se funda en la necesidad de ajustar los resultados

experimentales para materiales frágiles a un modelo matemático que los reproduzca. En estas

circunstancias ya no vale la idea que la envolvente de los círculos Mohr para los tres

experimentos básicos sea una línea recta. De tal forma que se puede demostrar que la ley de

comportamiento viene dada por:

ut uc s uc ut ut uc 3 ut 1 S S n S S S S S     

 si 10 y 3 Sut (3.174)

de la cual surgen otros dos casos particulares

s ut 1 n S

 si 3 Sut (3.175)

s uc 3 n S

 si 10 (3.176)

(18)

Comparación de Criterios y selección

En la Figura 3.77 se muestra la comparación de las teorías o criterios para materiales frágiles

y dúctiles. Nótese como la teoría de la energía de distorsión máxima es la más representativa

para los dúctiles y la teoría modificada de Mohr la más representativa para los materiales

fragiles como las fundiciones de hierro. También se puede apreciar que para el hierro fundido la teoría de máxima tensión normal ofrece buenos resultados

Figura 3.77. Comparación de las teorías y criterios de fallas con resultados experimentales (Tomado de [2])

Cuando se tiene que elegir un criterio de falla, además de ser experimentalmente

representativo para el estereotipo de material (Frágil o dúctil o híbrido entre ambos), se debe pensar en los siguientes aspectos:

- Facilidad de cálculo para dimensionar y/o verificar

- La selección de una situación segura es decir el coeficiente de seguridad o diseño.

Figura 3.78. Concepción de los Márgenes de seguridad para diferentes criterios de falla

En lo que atañe al primer ítem, el asunto compete a la dificultad del modelo matemático para

encarar ciertos problemas de dimensionamiento. En cuanto al ítem segundo, tiene que ver con

la interpretación que se le da a la tensión admisible para dimensionado y para mantener la

(19)

Figura 3.74; así la selección de un coeficiente para fijar un margen de seguridad debe

interpretarse como en los casos de la Figura 3.78 para las teorías correspondientes.

4. Bibliografía

[1] J.E. Shigley y C.R. Mischke, “Diseño en Ingeniería Mecánica”, McGraw Hill 2004. [2] B.J. Hamrock, B. Jacobson y S.R. Schmid, “Elementos de Máquinas”, McGraw Hill 2000 [3] M.F. Spotts y T.E. Shoup, “Elementos de Máquinas”, Prentice Hall 1998.

[4] Measurements Group Product Binder. http://www.measurementgroup.com.

5. Problemas resueltos y para completar

Problema tipo 3.6.

En la Figura se muestra un esquema sintetizado de dispositivo de accionamiento por efecto

torsional. Para su entendimiento, el esquema se ha hecho similar al montaje de una llave de tubo. Así pues una fuerza F es aplicada en el punto D, y esta fuerza genera esfuerzos

torsionales y también flexionales en la barra OABC. La pieza está hecha de hierro fundido

ASTM Grado 30, y se ha maquinado hasta obtener las dimensiones finales. Se desea conocer

la fuerza F que fracture la parte del componente. Supóngase que la palanca DC es

sumamente rígida y no forma parte del problema. Empléese la teoría de Mohr-Coulomb. Se

sabe que la resistencia del material es de 31000 Psi a la tracción y de 109000 Psi a la

compresión.

(20)

Solución del problema tipo 3.6.

En las condiciones que fija el problema, para hallar la carga de fractura en la sección O

(supuesta más conflictiva, ¿por qué?) se emplearán coeficientes de concentración tensional

unitarios (¿qué otra razón justificaría que tales coeficientes sean unitarios?)

F 4 76 1 F 15 16 1 J r T K F 6 142 1 F 14 32 1 I Mc K 3 ts xy 3 t x . ) . . . . ( . . ) . . . . (          

Las tensiones principales se obtienen de

764F

 

1756F 332F

2 0 F 6 142 2 0 F 6 142 2 2 3

1 . . , .

. . ,               

Si se desea emplear la Teoría de Mohr-Coulomb, recuérdese que

s yc 3 yt 1 n 1 S

S  

 

siendo 10 y 30

Ahora bien para poder establecer el valor de la fuerza que rompe la barra, es necesario

establecer una línea de carga asociada al patrón de rotura de la teoría, obsérvese para ello la

siguiente Figura para el criterio de falla considerado. El Punto P, indica el estado asociado a un cálculo determinado, mientras que el punto Q indica la línea de falla o rotura en este caso.

Línea de carga de la Teoría Mohr-Coulomb

En consecuencia de la Figura anterior y de la expresión de la ley de Mohr-Coulomb se tiene:

r Pendiente deTensiones

S S A B A B 1

3    

    B A ut uc ut uc 1 s

A S rS

rS S S S n S   

  , siendo Sut10 y Suc30

(21)

r 0189 F 6 175 F 2 33 1 3 . . .    

con los datos del material se obtiene:



 



0189



29400

5560Psi rS S Psi 29400 31000 189 0 109000 31000 109000 rS S S S n S A B ut uc ut uc 1 s A             . . 

Ahora bien asignando el valor unitario al coeficiente de seguridad (¿por qué?), se puede

calcular:

F167.4_lb

Que ocurrirá si en vez de utilizar la teoría empleada en este ejemplo se utiliza la teoría de Máxima tensión cortante y la teoría de Von Mises-Hencky, empleando en ambos casos

Syt=Syc= 31000 Psi. Para compendiar ello se deja la siguiente tabla para completar

Tipo de Teoría Valor de la fuerza

Mohr-Coulomb F167.4_lb

Von Mises Hencky (Máxima Energía de Deformación) Coulomb-Tresca (Máxima Tensión cortante)

6. Problemas propuestos

Problema 1.

Se tienen que diseñar un eslabón con la forma que se ve en la figura para evitar la interferencia con otra parte de máquina. Se supone que la carga se mantiene constante en un valor de 2500 lb. Se piensa emplear un factor de diseño de 2. El valor de a=3 pulg. Se piensa emplear una relación h=3b y un material AISI 1040. Determine el valor de h tal que no se verifiquen tensiones de riesgo en la pieza.

Problema 2.

(22)

Problema 3.

Un eje hueco de acero SAE 1045, tiene un diámetro interno de ½ del diámetro externo. El eje está transmitiendo 1600 HP a 600 RPM. El máximo momento flector es de 40000 lb-pulg. Determine el diámetro del eje, dado un coeficiente de seguridad de 3. Use para sus cálculos la teoría de Von Mises-Hencky y luego la teoría de máxima tensión cortante.

Problema 4.

El eje que se muestra en la figura está sometido a esfuerzos tensionales, torsionales y flexionales. Determine los valores de las tensiones principales y las tensiones máximas para cada efecto y luego superpóngalas.

Problema 5.

El eje de la figura se halla sometido al estado de solicitaciones indicado. Calcule si puede resistir y que coeficiente de seguridad que corresponda, siendo el eje construido con Acero AISI 1020. Emplee la teoría de máxima tensión cortante

Problema 6.

Resuelva el Problema 5 y determine el coeficiente de seguridad si se emplea la teoría de Mohr-Coulomb con Syt=0.85 Syc= 295 MPa (que es el límite de fluencia del AISI 1020 a

tracción).

Problema 7.

Para la varilla acodada de la figura adjunta, determine el diámetro que pueda resistir las solicitaciones indicadas con un coeficiente de seguridad 2 para las siguientes situaciones: a) material acero AISI 1020, con la teoría von Mises-Hencky.

b) material acero AISI 1040, con la teoría von Mises-Hencky. c) material bronce, con la teoría de Coulomb-Tresca.

(23)

Problema 8.

Referencias

Documento similar

Período de realización (indicar meses ou períodos posibles de realización e xornada laboral: tempo completo ou parcial).. Do 01 de abril ao 30 de setembro en horario de

Volviendo a la jurisprudencia del Tribunal de Justicia, conviene recor- dar que, con el tiempo, este órgano se vio en la necesidad de determinar si los actos de los Estados

La Normativa de evaluación del rendimiento académico de los estudiantes y de revisión de calificaciones de la Universidad de Santiago de Compostela, aprobada por el Pleno or-

El curso académico 2020/2021 se ha valorado en subsanación por el apartado 4.3 y se ha retirado del apartado 6.6 por ser lo más beneficioso para el concursante.. Apartado 6.2:

Debido a la calidad y el legado de nuestra compañía, los cuales se reflejan en nuestros pianos, elegir un instrumento hecho por Steinway & Sons tiende a ser una decisión

Pero cuando vio a Mar sacar el fuego de bajo su ala, voló de vuelta a su tribu a contarles lo que había visto.... Justo antes de que el sol saliera, Tatkanna se despertó y comenzó

Gastos derivados de la recaudación de los derechos económicos de la entidad local o de sus organis- mos autónomos cuando aquélla se efectúe por otras enti- dades locales o

1. LAS GARANTÍAS CONSTITUCIONALES.—2. C) La reforma constitucional de 1994. D) Las tres etapas del amparo argentino. F) Las vías previas al amparo. H) La acción es judicial en