Study of the Non-Gaussianity of the CMB
E. Martínez-González, A. Curto, R.B. Barreiro, P. Vielva, J.L. Sanz Grupo de Cosmología Observacional e Instrumentación
Instituto de Física de Cantabria (CSIC-UC), Santander (Spain)
2
nduser’s coference, RES, Santander, 23 September 2009
Overview
• Introduction
• The statistical analysis based on wavelets
• Constraints on f
nlusing WMAP 5-year data
• Wavelets and the bispectrum
• Results and conclusions
Introduction: local f nl
• A model that introduces the non-Gaussianity in the CMB through the primordial gravitational potential
Φ (x)
• At large scale, the dominant effect is the Sachs-Wolfe effect (see the n-pdf analysis by Vielva and Sanz 09)
• At small angular scales the transfer function should be taken into account
(
Φ −〈Φ 〉)
+ Φ
=
Φ(x) L(x) fnl 2L(x) 2L(x)
3 ) (x T
T −Φ
∆ =
∆
∆ −
∆ −
∆ = 2
2 2
3 T
T T
f T T
T T
T L L
nl L
Data and methods
• DATA:
– Archeops baloom experiment
– Wilkinson Microwave Anisotropy Probe (WMAP)
• METHODS:
– Minkowski Functionals (for Archeops)
– Spherical Mexican Hat wavelet (for WMAP)
– N-point probability density function (Sachs-Wolfe regime)
The wavelet
• The spherical Mexican hat wavelet (SMHW)
• Continuous wavelet transform
) 2 /(
2 2 2
2
2 2
1 2 ) ( 2 ) 1
;
( y R
S e
R y y
R
R N −
−
+
=
Ψ θ π
∫
Ψ= ( ) ( ; , ) )
;
(b R dnf n n b R w
r r r
r r
) ,
; (x b R
S
r r Ψ
position
traslation
scale
) 2 / tan(
2 θ
= y
) , ( )
( )
;
( lm θ ϕ
lm
lm l R a Y b
R b
w r =
∑
{ , , ...}
⊗
Wavelets
Statistics with the wavelet
• Select a characteristic set of angular scales Rj
• Compute the wavelet transform map w(bi,Rj) at these scales Rj
• Compute third order statistics by combining different scales
• Combine in a χ2 test all the estimators
∫
= w b R w b R w b R db
q i j k
k j i ijk
r ) , ( ) , ( ) , 1 (
σ σ σ
∑
−〈 〉 −〈 〉= −
rst ijk
rst rst
rst ijk ijk
ijk q C q q
q
,
1 ,
2 ( ) ( )
χ
=∑
−〈 〉 − −〈 〉rst ijk
f rst rst
rst ijk f
ijk ijk
nl q q nl C q q nl
f
,
1 ,
2( ) ( ) ( )
χ
data Gaussian model data fnl model
The data: WMAP
• Data from the WMAP (NASA) 5-year observations
– Frequencies: 41GHz (Q), 61 GHz (V), 94 GHz (W) – 8 radiometers: Q1, Q2, V1, V2, W1, W2, W3, W4
– Combine the data maps using as weights the inverse of the noise variance (Spergel et al. 2003)
– Considered maps: Q, V, W, V+W
– Resolution 6.9’ (Nside = 512 in HEALPix)
Results with the SMHW
• We consider 12 scales log spaced between 6.9’ and 500’
• 364 possible third order statistics with the wavelet coefficients
• We compare the data value with Gaussian simulations through a χ2 test
• We analyze the maps Q, V, W, V+W
47.9 47.8 48.7 49.2
0.35 376
364 354
W
0.27 377
364 348
V
0.63 378
364 384
Q
0.29 379
364 349
V+W
DOF
MAP χ data2 χ2 σ(χ2) P(χd2 ≤χ2)
arXiv:0902.1523
Constraints on f nl
• We calculate the expected values of the non-Gaussian models with fnl using simulations (Liguori et al. 2003,2007)
• The minimum χ2(fnl) vs fnl provides the best-fitting value
• We obtain the frequentist error bars with Gaussian simulations
Point sources contribution
7 6 ±
=
∆fnl
arXiv:0902.1523
30 65
W
30 23
V
33 11
Q
25 39
V+W
σ σ σ σ(fnl) Best fnl
MAP
Analysis of the W band
• The best-fitting fnl value is not compatible with zero at 95% CL for the W band but is compatible with the Q and V bands
• Considering the raw maps and the differences among different channels this deviation might be explained by systematics in the W band
0.34 -0.01
clean V1-V2
0.35 0.85
clean W1-W2+W3-W4
0.34 -0.52
clean W1+W2-W3-W4
44 59
clean W4
47 23
clean W3
45 91
clean W2
41 39
clean W1
0.29 1.02
clean V-W
0.29 -0.02
raw V-W
30 60
raw W
30 16
raw V
33 -3
raw Q
25 34
raw V+W
σ(fnl) Best fnl
Foreground Map
Constraints on fnl
Rudjord et al. (2009) WMAP-5
Wavelets (needlet bispectrum)
-80 < fnl < 80
Pietrobon et al. (2009) WMAP-5
Wavelets (needlets) -50 < fnl< 110
Curto et al. (2009) WMAP-5
Wavelets (SMHW) -18 < fnl< +80
Smith et al. (2009) WMAP-5
Bispectrum -4 < fnl< +80
Slosar et al. (2008) SDSS and others
LSS -65 < fnl< +70
Gott et al. (2007) WMAP-3
Minkowski -101 < fnl < +107
Yadav & Wandelt (2008) WMAP-3
Bispectrum +27 < fnl< +147
Curto et al. (2008) Archeops
Minkowski -920< fnl < +1075
De Troia et al. (2007) BOOMERANG
Minkowski -800< fnl < +1050
Komatsu et al. (2008) WMAP-5
Minkowski -178 < fnl < +64
Cabella et al. (2005) WMAP-1
Local curvature &
wavelets -180 < fnl < +170
Creminelli et al (2003) WMAP-3
Bispectrum -36 < fnl< +100
Komatsu et al.(2008) WMAP-5
Bispectrum -9 < fnl< +111
Curto et al. (2008) WMAP-5
Wavelets (SMHW) -8 < fnl< +111
Paper Experiment
Method Constraints (95%CL)
North and South f nl
• The localization property of the wavelets allows a local analysis of f
nl• We have constrained f
nlfor the Galactic North and South regions
• f
nl= 46 ± 37 for the North (68% CL)
• f
nl= 35 ± 38 for the South (68% CL)
• North and South values are compatible
The extended masks
•Consider several angular scales between 6.9’ and 500’
•Each angular scale needs a extended mask
arXiv:0807.0231
Conclusions
• Cubic statistics based on wavelets are very useful in constraining f
nl:
– Computationally fast
– Provide an independent check of the results with respect to systematics.
– Allow for localized analysis of sky patches.
• WMAP data compatible with Gaussian simulations according to the SMHW
• f
nlcompatible with zero –18 < f
nl< +80 (95% CL)
• North and South f
nlcompatible
• The SMHW method is optimal (as efficient as the
bispectrum) to constrain f
nlwhen combining large and small scales, as least in the ideal case.
• Work in progress to make the method optimal also in
realistic situations.
Andrés Curto
Why do we need high- performance computing?
• Our statistical analyses of CMB maps require statistical estimators (usually evaluated with simulations)
• We need to average over many simulations in order to reduce the random errors of the estimators
– Mean values: ~100 simulations
– Variances: ~10.000 simulations (~500000 for the N-pdf)
• We usually follow two steps:
– Generate Gaussian and non-Gaussian simulations with the properties of the instrument
– Analyze these simulations with the corresponding estimator
Andrés Curto
How have we used the computational resources?
• SOFTWARE
– IBM XL FORTRAN compilers (available in Altamira)
– HEALPix: Hierarchical Equal Area isoLatitude Pixelization of a sphere (http://healpix.jpl.nasa.gov/)
– Minkowski functionals software (developed by the Observational Cosmology and Instrumentation Group at IFCA)
– Spherical Mexican hat wavelet on the sphere software (developed by the Observational Cosmology and Instrumentation Group at IFCA)
Andrés Curto
How have we used the computational resources?
HARDWARE
– From 100 to 200 CPU’s at Altamira node running simple jobs (1 job per CPU)
– 1.000 GB of permanent disc and 500 GB of scratch disc
– Total time: 104.254 hours
Publications
• “Constraints on the non-linear coupling parameter fnl with Archeops data”, Curto A., Macías-Pérez J. F., Martínez-González E., Barreiro R. B., Santos D., Hansen F. K., Liguori M., Matarrese S., 2008, Astronomy and Astrophysics, 486, 383
• “WMAP 5-year constraints on fnl with wavelets”, Curto A., Martínez-González E., Mukherjee P., Barreiro R. B., Hansen F. K., Liguori, M. & Matarrese S. 2008, Monthly Notices of the Royal Astronomical Society, 393, 615
• “Analysis of non-Gaussian cosmic microwave background maps based on the N- pdf. Application to WMAP data”, P. Vielva, J.L. Sanz, Monthly Notices of The Royal Astronomical Society, 2009, 397, 837
• “Improved constraints on primordial non-Gaussianity for the WMAP 5-year data”
Curto A., Martínez-González E., Barreiro R. B., 2009, Monthly Notices of the Royal Astronomical Society, to be published. arXiv:0902.1523