Simulación de colas de atención en el cine UVK

24  43  Descargar (0)

Texto completo

(1)
(2)

UNIVERSIDAD NACIONAL “SAN LUIS GONZAGA” DE ICA FACULTAD DE INGENIERIA DE SISTEMAS

TELEFONO: (056) 238917 - CIUDAD UNIVERSITARIA ICA - PERÚ

Simulación de Colas de Atención en el cine UVK -Ica

Ingeniería de Sistemas

Simulación de Sistemas Discretos VIII – S2 13 de Noviembre del 2013

Integrantes:

Código: 20094172

Apellidos y Nombres:

Angulo Gasco, Jesús

Mail: 20094172@sistemasunica.edu.pe

Código: 20091201G:\Sesion.asp?IdMenu=25&pag=iac03_2.asp&usu=U31176 2

Apellidos y Nombres:

Neira Lovera, Kathia

Mail: 20091201@sistemasunica.edu.pe

Código: 20092026 Apellidos y

Nombres:

Onoc Fuentes, Américo

Mail: 20092026@sistemasunica.edu.pe

Responsabl e del Equipo

(3)

RESUMEN

El presente informe como parte del curso de Simulación de Sistemas Discretos se basa en la aplicación de conocimientos y metodologías adquiridos en clase con la finalidad de simular los hechos reales que ocurre dentro de un cine UVK, y que permitirá obtener resultados y análisis de estos para presentar a la gerencia.

El título del presente informe es „Simulación de Colas para sacar entradas en el Cine UVK‟ y el ámbito de la investigación se suscribe a la Agencia de Ica.

El contexto y la situación que se presenta corresponden a la atención de clientes en el servicio de boletería.

El funcionamiento básico es el siguiente, los clientes llegan al cine para comprar sus entradas. Aquí se forma una cola.

El problema de esta situación es que se genera en boletería una cola el cual molesta mucho a los clientes, cosa que la gerencia debe evitar.

Se recomienda que funcionen las 3 ventanillas que están en boletería y así evitar las largas colas que mayormente se generan los fines de semana

(4)

MARCO TEORICO

La teoría de colas: es el estudio matemático del comportamiento de líneas de espera. Esta se presenta, cuando los “clientes” llegan a un “lugar” demandando un servicio a un “servidor”, el cual tiene una cierta capacidad de atención. Si el servidor no está disponible inmediatamente y el cliente decide esperar, entonces se forma la línea de espera.

Una cola: es una línea de espera y la teoría de colas es una colección de modelos matemáticos que describen sistemas de línea de espera particulares o sistemas de colas. Los modelos sirven para encontrar un buen compromiso entre costes del sistema y los tiempos promedio de la línea de espera para un sistema dado.

Los sistemas de colas: son modelos de sistemas que proporcionan servicio. Como modelo, pueden representar cualquier sistema en donde los trabajos o clientes llegan buscando un servicio de algún tipo y salen después de que dicho servicio haya sido atendido. Podemos modelar los sistemas de este tipo tanto como colas sencillas o como un sistema de colas interconectadas formando una red de colas. En la siguiente figura podemos ver un ejemplo de modelo de colas sencillo. Este modelo puede usarse para representar una situación típica en la cual los clientes llegan, esperan si los servidores están ocupados, son servidos por un servidor disponible y se marchan cuando se obtiene el servicio requerido.

El problema es determinar qué capacidad o tasa de servicio proporciona el balance correcto. Esto no es sencillo, ya que un cliente no llega a un horario fijo, es decir, no se sabe con exactitud en que momento llegarán los clientes. También el tiempo de servicio no tiene un horario fijo.

Los problemas de “colas” se presentan permanentemente en la vida diaria: un estudio en EEUU concluyó que, por término medio, un ciudadano medio pasa cinco años de su vida esperando en distintas colas, y de ellos casi seis meses parado en los semáforos.

(5)

Elementos existentes en un modelo de colas:

Fuente de entrada o población potencial: Es un conjunto de individuos (no necesariamente seres vivos) que pueden llegar a solicitar el servicio en cuestión. Podemos considerarla finita o infinita. Aunque el caso de infinitud no es realista, sí permite (por extraño que parezca) resolver de forma más sencilla muchas situaciones en las que, en realidad, la población es finita pero muy grande. Dicha suposición de infinitud no resulta restrictiva cuando, aun siendo finita la población potencial, su número de elementos es tan grande que el número de individuos que ya están solicitando el citado servicio prácticamente no afecta a la frecuencia con la que la población potencial genera nuevas peticiones de servicio.

Cliente: Es todo individuo de la población potencial que solicita servicio. Suponiendo que los tiempos de llegada de clientes consecutivos son 0<t1<t2<..., será importante conocer el patrón de probabilidad según el cual la fuente de entrada genera clientes. Lo más habitual es tomar como referencia los tiempos entre las llegadas de dos clientes consecutivos: consecutivos: clientes consecutivos: T{k} = tk - tk-1, fijando su distribución de probabilidad. Normalmente, cuando la población potencial es infinita se supone que la distribución de probabilidad de los Tk (que será la llamada distribución de los tiempos entre llegadas) no depende del número de clientes que estén en espera de completar su servicio, mientras que en el caso de que la fuente de entrada sea finita, la distribución de los Tk variará según el número de clientes en proceso de ser atendidos.

Capacidad de la cola: Es el máximo número de clientes que pueden estar haciendo cola (antes de comenzar a ser servidos). De nuevo, puede suponerse finita o infinita. Lo más sencillo, a efectos de simplicidad en los cálculos, es suponerla infinita.

Aunque es obvio que en la mayor parte de los casos reales la capacidad de la cola es finita, no es una gran restricción el suponerla infinita si es extremadamente improbable que no puedan entrar clientes a la cola por haberse llegado a ese número límite en la misma.

(6)

Disciplina de la cola: Es el modo en el que los clientes son seleccionados para ser servidos. Las disciplinas en nuestro caso son:

La disciplina FIFO (first in first out), también llamada FCFS (first come first served): según la cual se atiende primero al cliente que antes haya llegado. Ya que en el cine la primera persona que llega, compra su entrada y es la primera en salir de la cola.

Mecanismo de servicio: Es el procedimiento por el cual se da servicio a los clientes que lo solicitan. Para determinar totalmente el mecanismo de servicio debemos conocer el número de servidores de dicho mecanismo (si dicho número fuese aleatorio, la distribución de probabilidad del mismo) y la distribución de probabilidad del tiempo que le lleva a cada servidor dar un servicio. En caso de que los servidores tengan distinta destreza para dar el servicio, se debe especificar la distribución del tiempo de servicio para cada uno.

El sistema de la cola: es el conjunto formado por la cola y el mecanismo de servicio, junto con la disciplina de la cola, que es lo que nos indica el criterio de qué cliente de la cola elegir para pasar al mecanismo de servicio. Estos elementos pueden verse más claramente en la siguiente figura:

(7)

PALABRAS CLAVES

Cine: es la técnica de proyectar fotogramas de forma rápida y sucesiva para crear la impresión de movimiento, mostrando algún vídeo (o de película, o film, o filme)

UVK: es una empresa peruana dedicada a brindar el mejor entretenimiento cinematográfico.

Boletería: TAQUILLA donde se venden billetes.

Ventanillas: abertura pequeña que hay en la pared de distintos establecimientos, a través de la cual los empleados se comunican con el público:

Clientes: entidad dinámica. Son las personas que llegan al sistema para ser atendidos en la boletería.

La teoría de colas: es el estudio matemático del comportamiento de líneas de espera. Esta se presenta, cuando los “clientes” llegan a un “lugar” demandando un servicio a un “servidor”, el cual tiene una cierta capacidad de atención. Si el servidor no está disponible inmediatamente y el cliente decide esperar, entonces se forma la línea de espera.

Una cola: es una línea de espera y la teoría de colas es una colección de modelos matemáticos que describen sistemas de línea de espera particulares o sistemas de colas. Los modelos sirven para encontrar un buen compromiso entre costes del sistema y los tiempos promedio de la línea de espera para un sistema dado.

Los sistemas de colas: son modelos de sistemas que proporcionan servicio. Como modelo, pueden representar cualquier sistema en donde los trabajos o clientes llegan buscando un servicio de algún tipo y salen después de que dicho servicio haya sido atendido. Podemos modelar los sistemas de este tipo tanto como colas sencillas o como un sistema de colas interconectadas formando una red de colas. En la siguiente figura podemos ver un ejemplo de modelo de colas sencillo. Este modelo puede usarse para representar una situación típica en la cual los clientes llegan, esperan si los servidores están ocupados, son servidos por un servidor disponible y se marchan cuando se obtiene el servicio requerido.

El problema es determinar qué capacidad o tasa de servicio proporciona el balance correcto. Esto no es sencillo, ya que un cliente no llega a un horario fijo,

(8)

es decir, no se sabe con exactitud en que momento llegarán los clientes. También el tiempo de servicio no tiene un horario fijo.

(9)

1. Introducción

2. Descripción del Sistema

3. Análisis de los Datos de Entrada

4. Descripción del Modelo de Simulación

5. Verificación y Validación del Modelo

6. Análisis de Resultados

7. Resultados de la Simulación

8. Sugerencias de Modificación al Sistema

9. Conclusiones

10. Recomendaciones

11. Agradecimientos

(10)

1. INTRODUCCION

Como punto primordial de la investigación es el hecho de que con el uso de herramientas tales como la simulación de sistemas discretos y el uso de software de este tipo como el Arena se pueden encontrar soluciones técnicas a problemas como la disminución de la calidad del servicio, como es el caso de cine UVK.

1.1 Descripción y antecedentes de la empresa

El cine UVK Multicines es una cadena de cines peruanos surgida en 1998, con la inauguración de su primera multisala en el centro comercial Larcomar. Luego siguieron sus locales en:

El Centro comercial Caminos del Inca, Centro comercial Marina Park, San Martín-Centro y en El Balneario de Asia (durante temporadas de verano).

Con el afán de descentralizar sus Multisalas abrió sus puertas en la ciudad de Ica en el año 2005, el cual cuenta con 4 salas.

Las compras de boleto en las diferentes sucursales tienen un ciclo de vida genéricamente común: Ven la cartelera, compran sus entradas, se dirigen a la sala que le toca. Las operaciones básicas que se realizan en Boletería son las de vender las entradas para el cine.

(11)

Sin embargo, en esta situación se tiene lo siguiente:

Amenazas:

 Que los clientes dejen de asistir al cine por la larga cola.

 En general las agencias y oficinas especiales son pequeñas y una cola muy larga en algún servicio dificulta el tránsito dentro de la misma y afecta a otros servicios.

Riesgos:

 Algunos clientes potenciales pueden dejar de informarse debido a que existe mucha gente en un momento determinado en la cola. Lo que origina que se pierdan posibles clientes.

1.2 Descripción del proyecto

Se escogió el cine UVK para realizar un muestreo que nos permita usarlo como base para hacer la simulación del sistema de colas ya que su representación matemática sería demasiado complicada de analizar. Para ello, hemos utilizado los

conocimientos de estadísticos impartidos a lo largo de la carrera para analizar el comportamiento de los tiempos de los clientes en la compra de sus boletos de cine. Es por esto, asistiendo durante los 7 días de la semana, en el mismo rango de tiempo (el de mayor afluencia del público) hemos obtenido muestras lo suficientemente grandes y confiables para el estudio.

Para esto, hemos hecho pruebas de independencia para verificar la relación de dependencia o independencia existente entre los tiempos y los días.

Luego de realizar la prueba de independencia nos planteamos hipótesis de acuerdo a nuestro sentido común y experiencia, y para ello realizamos las pruebas de

bondad de ajuste, las cuales nos servirán para demostrar el comportamiento de los tiempos; es decir, si se distribuyen de forma normal, exponencial, etc.

(12)

Después de esto, y a través del teorema del límite central concluiremos si las distribuciones poblacionales se ajustan a la distribución normal.

Otro factor necesario será conocer el comportamiento muestral de las medias, pues para realizar los intervalos de confianza de las medias y de las diferencias de medias es necesario que la media muestral se comporte de forma normal.

A partir de los datos analizados estadísticamente se simulara el comportamiento de las colas, la atención en las boleterías y los tiempos que tardan los clientes en ser atendidos entre otras cosas. De esta manera se podrá saber los problemas que existen y a partir de eso plantear soluciones lógicas a dichos inconvenientes.

1.3 Formulación del problema

En la cadena de cines UVK se presenta un fenómeno común que sucede cuando la demanda efectiva del servicio de venta de boletos supera la oferta efectiva. Este fenómeno consiste en la formación de colas en las boleterías.

Es frecuente que las empresas tales como la de salas de cine tomen decisiones respecto al caudal de servicios que debe de estar preparada para ofrecer. Estas decisiones se deben resolver con información pertinente al caso. Es muy importante que ellos deban estar preparados para ofrecer todo servicio que se solicite en cualquier momento, esto puede implicar costos excesivos y recursos ociosos. Sin embargo, carecer de la capacidad de servicios suficiente causa colas excesivamente largas en las horas punta. Cuando los clientes tienen que esperar periodos largos de tiempo para comprar los boletos, a veces deciden abandonar la cola e irse a la competencia. Esto es lo que justamente quiere evitarse ya que se pierde tanto clientes como el prestigio de la empresa. Muchas veces es imposible predecir con exactitud la llegada de clientes y el tiempo de servicio que requieren, es por esta razón que se trabajará con datos estadísticos para que la simulación sea lo más real posible.

La teoría de las colas en sí no resuelve directamente el problema, pero contribuye con la información vital que se requiere para tomar las decisiones concernientes prediciendo algunas características sobre la línea de espera: probabilidad de que se formen, el tiempo de espera promedio, etc.

A continuación, se plantean algunas de las preguntas más importantes que se van a resolver a lo largo de la investigación:

¿Cuál es el tiempo que pasan los clientes en la cola? ¿Cuál es el tiempo de servicio promedio de las boleterías?

(13)

determinado periodo de tiempo, luego se analizarán estos datos en un programa de análisis de datos llamado Input Analyzer. De esta manera se podrán obtener las distribuciones que siguen las variables propuestas y con estos datos se procederá a la simulación en el software Arena. Al correr la simulación en el arena se obtendrán los datos necesarios para poder tomar las decisiones pertinentes al caso y obtener las conclusiones.

2. DESCRIPCION DEL SISTEMA

El presente proyecto busca analizar y determinar el esquema de funcionamiento de colas en el Cine UVK mediante la simulación aplicando la dinámica de sistemas. Para esto, se simuló a través de la dinámica de sistemas el funcionamiento del esquema de colas en el Cine UVK, para determinar las deficiencias respecto a la tasa de servicio en comparación con la tasa de llegada de los clientes, identificando los actores partícipes del proceso describiéndolos en variables para identificar patrones de comportamiento, de esta manera se procede a representar mediante un diagrama de influencia las relaciones entre dichas variables; una vez realizado lo anterior se creó el modelo a través del software Arena, posteriormente se desarrolla la validación orientada a detallar las deficiencias en la formulación del modelo, de esta forma se analizó la sensibilidad de las variables y al interpretar los resultados que arroja la simulación se tomó una decisión.

(14)

2.1 Formulación del problema

(15)

Las variables que se van a muestrear para la Simulación son el tiempo de llegada, el tiempo de espera en cola, y el tiempo de servicio de la boletería o tiempo de ocupación.

2.3 Análisis del sistema

Eventos:

1. Arribo de un cliente al cine (sistema) 2. Alejamiento por cola máxima

3. Ingreso a cola 4. Salida de cola

5. Inicio de servicio de caja i 6. Fin de servicio de caja i 7. Inicio de espera de caja i 8. Fin de espera de caja i 9. Salida del sistema i = 1, 2, 3

Eventos principales

1. Arribo de un cliente al cine (sistema) 2. Fin de servicio de caja i

(16)

3 DIAGRAMA RELACIONAL DE EVENTOS

 Ingresar al sistema para el problema abarca ya sea para entrar a cola, o para revisar la cartelera.

 Ingresar a cola para el problema es colocarse en las zonas destinadas a cola para ser atendido en la boletería.

(17)

3.- Análisis de los Datos de Entrada

Describe los datos recolectados empíricamente desde cada una de las variables. Describe el ajuste estadístico de las variables a alguna distribución de probabilidad. El Arena Input Analyzer provee facilidades para al ajuste de distribuciones estadísticas para datos empíricos y pruebas estadísticas.

Los datos de entrada de nuestro trabajo son:

 Los clientes: Personas que van a ver las películas publicadas como estreno o películas que ay se estrenaron.

 La Boletería: Lugar donde los clientes adquieren sus entradas para así poder entrar al cine a ver las películas.

(18)

Los datos mostrados a continuación, son los que obtuvimos midiendo el tiempo. El tiempo se midió en segundos y la tabla representa el acumulado de los tiempos de

(19)

Breve descripción del software de simulación de Arena

El Software usado en la simulación de nuestra investigación es el Software Arena. Esta es una herramienta de simulación de eventos discretos y continuos líder a nivel mundial. Este software fue creado por Rockwell Software Inc, que es una división de Rockwell Automation Control Systems, empresa norteamericana líder a nivel mundial en el desarrollo e implementación de hardware y software de automatización y simulación. En el siguiente grafico se puede apreciar un sistema de un proceso simple en el arena:

La simulación es la colección de información real, métodos y aplicaciones que simulan los comportamientos de algún sistema real en la computadora. Se conoce como el proceso de diseño y creación de un modelo computarizado de un sistema real para efectuar experimentos numéricos para su mejor comprensión de su comportamiento bajo una determinada condición. Esta herramienta se ha vuelto muy poderosa ya que se tiene la habilidad de comparar modelos complejos con sistemas complejos.

Describe el modelo de simulación desarrollado y detalla su estructura en términos de sus componentes principales, objetos y operación lógica. Descompone la descripción de un modelo complejo en términos de descripciones de sub-modelos de tamaño manejable. Partes críticas del modelo pueden ser descritas con más detalle.

(20)

Aquí se describe el modelo de simulación en el lenguaje de programación usado por los autores.

5. VERIFICACIÓN Y VALIDACIÓN DEL MODELO

Se pudo verificar lo parecido que resulta la simulación de la realidad, siempre van a existir diferencias debido a que no todas las semanas se van a seguir la misma distribución de frecuencias. Esto es debido a que en la realidad nos dimos cuenta que había gente que reclamaba debido a la demora en el sistema y al momento de realizar la simulación se encuentra que existía una gran cantidad de personas que quedan en cola y que se tienen que retirar a otro cine, porque no se sienten cómodos con la atención. Esta información se ve en los cuadros de análisis de resultados

6. ANÁLISIS DE RESULTADOS

Los datos presentados se adjuntan en el archivo de Excel.

En base a estos datos se crearon los archivos .dst para incluir en el input analyzer.

Número de Entradas por Grupo

D i s t r i

(21)

Distribution: Beta Expression: 0.999 + 14 * BETA(0.471, 3.97)

Square Error: 0.007107 Chi Square Test

Number of intervals = 4 Degrees of freedom = 1 Test Statistic = 2.71 Corresponding p-value = 0.0996 Kolmogorov-Smirnov Test Test Statistic = 0.433 Corresponding p-value < 0.01 Data Summary

Number of Data Points = 136 Min Data Value = 1 Max Data Value = 15 Sample Mean = 2.49 Sample Std Dev = 1.85

Histogram Summary Histogram Range = 0.999 to 15

Number of Intervals = 11

Tiempo entre Llegadas

Distribution Summary

Distribution: Exponential Expression: -0.001 + EXPO(169)

Square Error: 0.041160

Chi Square Test Number of intervals = 9 Degrees of freedom = 7 Test Statistic = 249 Corresponding p-value < 0.005 Kolmogorov-Smirnov Test Test Statistic = 0.266 Corresponding p-value < 0.01 Data Summary

Number of Data Points = 862 Min Data Value = 0

(22)

Max Data Value = 2.28e+003 Sample Mean = 169 Sample Std Dev = 221

Histogram Summary

Histogram Range = -0.001 to 2.28e+003 Number of Intervals = 29 Tiempo de Atención Distribution Summary Distribution: Exponential Expression: -0.001 + EXPO(96.4) Square Error: 0.012378

Chi Square Test

Number of intervals = 6 Degrees of freedom = 4 Test Statistic = 98.2 Corresponding p-value < 0.005 Kolmogorov-Smirnov Test Test Statistic = 0.196 Corresponding p-value < 0.01 Data Summary

Number of Data Points = 862 Min Data Value = 0 Max Data Value = 2.18e+003

Sample Mean = 96.4 Sample Std Dev = 162

(23)

Histogram Summary

Histogram Range = -0.001 to 2.18e+003 Number of Intervals = 29

7. RESULTADOS DE LA SIMULACION Ver los anexos.

8. SUGERENCIAS DE MODIFICACIÓN AL SISTEMA

Las modificaciones solo se verían en el caso de la capacidad del servidor, se pueden habilitar las entre dos y tres boleterías(a tiempos parciales), ya que normalmente solo trabaja una y en casos especiales como son estrenos, atienden las dos boleterías como máximo.

9. CONCLUSIONES Y RECOMENDACIONES

Basado en el modelo de simulación que hemos creado, podemos observar que el comportamiento de las colas en un contexto normal se ajusta al uso de una sola de las cajas, modelo que puede observarse en las replicaciones de la simulación, en las que solo se pierden algunos pocos clientes porque se crean largas colas en escasas ocasiones, la recomendación del caso sería que se habiliten ambas boleterías pero que solo exista una boletería a tiempo completo , que la segunda y la tercera boletería se contrate a tiempo parcial para evitar el desperdicio.

(24)

10. AGRADECIMIENTOS

Se agradece el apoyo del personal del cine UVK así como al docente Magno Cuba, el cual sin sus enseñanzas no hubiéramos podido concluir este trabajo.

Figure

Actualización...