Concepto de Flujo de Fluidos

Texto completo

(1)

1

1 C

Co

on

nc

ce

ep

ptto

os

s d

de

e

flfl

ujos de

ujos de

flfl

uidos

uidos

Como se vio anteriormente, la estática de

Como se vio anteriormente, la estática de flfluidos se reuidos se refifiereere al comportamiento y condiciones en las que los líquidos al comportamiento y condiciones en las que los líquidos no se mueven.

no se mueven.

El movimiento de

El movimiento de flfluidos involucra una nueva cantidaduidos involucra una nueva cantidad de conceptos y de

de conceptos y defifiniciones que se presentan solamenteniciones que se presentan solamente si el

si el flflujo existe (ujo existe (flflujo =ujo = flfluido en movimiento).uido en movimiento).

1

1..1

1 E

Ell

flfl

ujo se puede clasi

ujo se puede clasi

fifi

car en:

car en:

1.

1.1.1.1 1 TTururbubulelentntoo

Estas situaciones son las más usuales y se presentan en la Estas situaciones son las más usuales y se presentan en la vida diaria prácticamente en todos los

vida diaria prácticamente en todos los flflujos (elujos (el flflujo lam-ujo lam-ina

(2)

este flujo, las partículas del fluido se mueven en trayecto-rias muy irregulares que causan un intercambio constante de cantidades de movimiento de una proción de fluido a otra sean éstas grandes o pequeñas, grandes como un torbellino en el océano o pequeñas como el vaciado del fregadero. En una condición de flujo turbulento, los es-fuerzos cortantes desordenados y muy presentes, causan irreversibilidades o pérdidas de energía en el fluido y és-tas varían en proporción directa a la velocidad del mismo. En el caso laminar varían con la primera potencia de la velocidad

1.1.2 Laminar

En este flujo, las partículas se mueven a lo largo de trayec-torias suaves en láminas o capas deslizándose unas so-bre otras con esfuerzos cortantes limitados y predecibles. Este flujo es descrito por la ley de viscosidad de Newton que relaciona el esfuerzo cortante a la velocidad angular

(3)

de deformación. En el flujo laminar, la acción de la vis-cosidad amortigua las tendencias a la turbulencia y no es estable en situaciones en las condiciones que combinan baja viscosidad con alta velocidad y gran volumen.

1.1.3 Real

La capa de fluido en el área inmediata a la frontera de un

flujo real que ha visto afectada su velocidad relativa a la frontera por un corte viscoso se llama capa límite y éstas pueden ser laminares o turbulentas, dependiendo general-mente de su longitud, viscosidad y la velocidad de flujo cerca de ellas así como de la aspereza de la superficie.

1.1.4 Ideal

Un fluido ideal, no tiene fricción en niguna parte, ni en la capa límite ni entre sus partículas, es incompresible y

(4)

no debe confundirse con el concepto de gas ideal. La su-posición del fluido ideal es útil en el análisis de situaciones de flujo de grandes extensiones como en el movimiento de un avión o un vehículo submarino ya que un fluido sin fricción no es viscoso y sus procesos por lo tanto son reversibles.

1.1.5 El flujo Adiabático

es aquel en el que no hay transferencia de calor desde el fluido o hacia este. El flujo adiabático reversible se denomina  isentrópico  (entropía constante).

1.1.6 Flujo a régimen permanente

ocurre cuando las condiciones del fluido en cualquier punto no cambian con el tiempo, es decir, si las condiciones de

(5)

un flujo son velocidad y dirección determinadas en rég-imen permanente, éstas no cambian y se mantienen in-definidamente (¿?), esto puede expresarse por ∂v∂t = 0 en el espacio de coordenadas correspondiente, asimismo, en flujo a régimen permanente no hay cambio en otros parámetros como la presión p , temperatura T  en cualquier punto, así:

∂p ∂t =

∂ρ

∂t = ∂T ∂t = 0

Ahora flujo a régimen permanente no necsariamente in-dica flujo laminar, en el caso de flujo turbulento las condi-ciones de régimen permanente se establecen a través del valor promedio, de tal forma generalizada tenemos. υt =

1 t

τ 

0

υdt   es decir el valor promedio de la velocidad en tiempo. Por otro lado, en el flujo se desarrollan condi-ciones a régimen no permanente cuando las condicondi-ciones en cualquier dirección del espacio vectorial cambian en función del tiempo, es decir ∂f ∂t(.) 6= 0

(6)

1.1.7 Flujo uniforme

Ocurre cuando en todo punto, el vector de velocidad es constante en magnitud y dirección (idénticamente el mismo), es decir que no hay variación del flujo en fun-ción a la direcfun-ción, no menciona sin embargo en funfun-ción al tiempo, esto también aplica por supuesto en el caso de velocidades relativas de frontera en un flujo como el que se tiene en las capas límite de un conducto cerrado (o abierto).

El flujo en el que el vector de velocidad varía de lugar a lugar para una misma cantidad de fluido se denomina flujo no uniforme, es decir un fluido que se bombea a través de un tubo rectilíneo tiene flujo uniforme, una cambio sin embargo, en du dirección como un ensanchamiento o una curva produce un flujo no uniforme

(7)

1.1.8 Ejemplos:

Flujo de líquido a través de un conducto largo a tasa constante (gasto o caudal) es uniforme y régimen perma-nente, Un flujo que viaja en un conducto cerrado largo a razón o tasa decreciente en uniforme y no permanente, el flujo a una tasa constante pero en un tubo que se en-sancha es régimen permanente no uniforme y finalmente, el flujo en un tubo que se expande a una tasa que varía o cambia, es flujo no uniforme y régimen no permanente.

1.1.9 Flujo rotacional

La rotación de una aprtícula alrededor de un eje dado se define como velocidad angular promedio de dos elementos de lineas infinitesimales, si las partículas rotan en torno a un eje dado cualquiera se tiene un fluido rotacional o de vórtice, si el fluido no tiene rotación se llama irrotacional y ésta se debe a que no exista fricción en las capas límite y los esfuerzos cortantes en el flujo sean mínimos o nulos.

(8)

1.1.10 Flujo unidimensional, bidimensional y tridi-mensional

El flujo unidimensional no considera variaciones o cam-bios en la velocidad, presión etc, transversales a la direc-ción del flujo principal. Las condiciones en una sección transversal se expresan en valores rpomedio.

El flujo bidimensional, supone que el flujo se mueve en capas o planos que no presentan variaciones entre ellos y si pueden tenerlas en cada uno de ellos dentro de los mismos planos.

El flujo tridimensional, es el caso general y presenta varia-ciones o admite variavaria-ciones en todas las direcvaria-ciones.

1.1.11 Línea de corriente

Es una línea de corriente trazada de forma continua a través de un fluidono existe flujo en una línea de corriente

(9)

ya que se determina sin dimensión y es solo un indicativo de la dirección que sigue el flujo y es la trayectoria seguida por una partícula de fluido en su historia de tiempo.

Figure

Actualización...

Referencias

Actualización...