• No se han encontrado resultados

Todos los derechos reservados para XM S.A. ESP. Estudios Seguridad fuentes de Energía Renovables no Convencionales

N/A
N/A
Protected

Academic year: 2021

Share "Todos los derechos reservados para XM S.A. ESP. Estudios Seguridad fuentes de Energía Renovables no Convencionales"

Copied!
31
0
0

Texto completo

(1)

To

dos

los

der

ec

hos re

se

rvados

par

a XM S.A

.

ES

P

Estudios Seguridad fuentes de

Energía Renovables no

Convencionales

Gerencia Centro Nacional de Despacho

Dirección Planeación de la Operación

Septiembre 2017

(2)

To

dos

los

der

ec

hos re

se

rvados

par

a XM S.A

.

ES

P

Contenido

1. ANÁLISIS DE LA CONEXIÓN DE GENERACIÓN SOLAR FOTOVOLTÁICA EN EL SIN ENTRE LOS AÑOS 2017

Y 2018 ... 5

1.1. INTRODUCCIÓN ... 6

1.2. MODELOS UTILIZADOS ... 7

1.3. CONTROL DE VOLTAJE ... 7

1.4. SOPORTABILIDAD ANTE HUECOS DE TENSIÓN ... 9

1.5. CONTROL RÁPIDO DE CORRIENTE REACTIVA ... 13

2. IMPACTO DE LA GENERACIÓN DISTRIBUIDA EN EL SIN ... 19

2.1. INTRODUCCIÓN ... 20 2.2. DEFINICIONES ... 20 2.3. OBJETIVO... 20 2.4. METODOLOGÍA Y SUPUESTOS ... 20 2.4.1. Metodología: ... 20 2.4.2. Supuestos: ... 21

2.5. RECOMENDACIONES OPERATIVAS ANTE LA CONEXIÓN MASIVA DE LA GD. ... 22

2.5.1. Flexibilidad operativa: ... 23

2.5.2. Análisis de perfiles de tensión: ... 24

2.5.3. Seguridad operativa: ... 25

2.6. CONCLUSIONES Y RECOMENDACIONES ... 27

3. ANEXO:CONSIDERACIONES PARA LOS ANÁLISIS ELÉCTRICOS ... 28

3.1. CRITERIOS ELÉCTRICOS ... 29

3.2. OTROS CRITERIOS ... 29

3.3. PARÁMETROS TÉCNICOS DE LOS EQUIPOS ... 30

3.4. PRONÓSTICO DE DEMANDA ... 30

3.5. CONSIDERACIONES TOPOLÓGICAS ... 31

3.6. ECUADOR ... 32

(3)

To

dos

los

der

ec

hos re

se

rvados

par

a XM S.A

.

ES

P

1.

Análisis de la conexión de

generación solar fotovoltáica en el

SIN entre los años 2017 y 2018

(4)

To

dos

los

der

ec

hos re

se

rvados

par

a XM S.A

.

ES

P

1.1.

Introducción

El 3 de septiembre de 2017 entró en operación comercial la primera planta solar fotovoltaica en el SIN de 9.8 MW en la subárea Valle. Para el año 2018 se espera la entrada de 289 MW más de generación solar fotovoltaica, la cual se conectará en las subáreas Atlántico y GCM, como se muestra a continuación:

Proyecto Subárea SE Reflejada MW

CELSIA Solar Yumbo (en operación) Valle Termoyumbo 115 kV 9.8

Atlántico solar 2 Polo Nuevo Atlántico Nueva Baranoa 110 kV 10

Atlántico solar 1 Polo Nuevo Atlántico Nueva Baranoa 110 kV 19.3

Generación fotovoltaica Ponedera Atlántico Sabana 220 kV 9.9

PV Latam Solar 2 GCM San Juan 110 kV 9.9

Solar El Paso (reflejada en El Paso 110 kV)

GCM El Paso 110 kV 70

PV Latam Solar La Loma GCM La Loma 110 kV 150

PV Latam Solar 1 (San Juan) GCM San Juan 110 kV 19.9

TOTAL 298.8

Tabla 1-1. Plantas solares fotovoltaicas a conectarse al SIN entre los años 2017 y 2018 Estas plantas de generación, por su característica asíncrona, variabilidad, tecnología basada en inversores y dependencia del clima, requiere de la revisión de temas particulares que contemplan los requisitos mínimos técnicos y operativos, para su adecuada integración al Sistema Interconectado Nacional - SIN, de modo que se pueda operar el sistema de forma flexible, manteniendo las condiciones de confiabilidad, seguridad y economía del sistema. Estos estudios están enmarcados dentro de las funciones del CND, en particular las definidas en la Resolución CREG 080 de 1999, donde se establece que el CND debe dar soporte en lo relacionado con la información operativa y demás análisis que se requiera para una operación confiable, segura y económica del SIN.

2017

2018

CELSIA Solar

Yumbo

Incorporación de la primera planta solar fotovoltaica al SIN de 9.8 MW

Incorporación de plantas solares en

Atlántico, GCM y Córdoba-Sucre

Atlántico: Solares fotovoltaicas Polo Nuevo 1 y 2 (19.3 MW y 10 MW), Ponedera (9.9 MW)

GCM: Latam Solar 1 y 2 (19.9 MW y 9.9 MW), Solar El Paso (70 MW) y Solar La Loma (150 MW)

(5)

To

dos

los

der

ec

hos re

se

rvados

par

a XM S.A

.

ES

P

Los análisis realizados en este numeral buscan examinar el comportamiento de esta nueva generación que entrará al sistema e identificar la necesidad de definir funcionalidades requeridas en las FRNC para operar el SIN de forma segura y confiable.

1.2.

Modelos utilizados

Se utiliza el modelo WECC tipo 4 para modelar las plantas solares fotovoltaicas, el cual fue validado con la herramienta de EPRI Renewable Energy Model Validation (REMV)1, la cual representa las

especificaciones WECC y se valida contra mediciones reales.

1.3.

Control de voltaje

El código de red actual establece que los generadores deben proveer control de tensión y de potencia reactiva de acuerdo a sus curvas de capacidad. De este modo, se busca que todos los recursos de generación que se conecten al SIN puedan proporcionar potencia reactiva y ayuden a controlar efectivamente la tensión, para una operación segura y confiable del sistema.

Acorde a lo anterior, las plantas solares fotovoltaicas expuestas en la Tabla 1-1 deben poder controlar la tensión, por medio de la generación o absorción de potencia reactiva de acuerdo con su curva de carga declarada y de acuerdo a las consignas de operación impartidas por el CND. Además, deben contar con los siguientes modos de control: tensión, potencia reactiva y factor de potencia. A continuación, se presenta el comportamiento del sistema con y sin control de tensión de las plantas solares fotovoltaicas, evidenciando la importancia de esta funcionalidad para la operación del sistema:

1 EPRI, “Renewable Energy Model Validation (REMV).” [Online]. Available:

(6)

To

dos

los

der

ec

hos re

se

rvados

par

a XM S.A

.

ES

P

N-1 Resultados simulaciones Ocaña – La Loma 500 kV Ocaña – La Loma 500 kV (sin La Loma 500/110 kV) 4.998 3.979 2.959 1.939 0.920 -0.100 [s] 1.05 1.02 0.99 0.96 0.93 0.90 [p.u.]

El Paso 110\Barra1: Sin Control El Paso 110\Barra1: Con Control

Y = 0.900 p.u. 4.998 3.979 2.959 1.939 0.920 -0.100 [s] 1.04 1.01 0.98 0.95 0.92 0.89 [p.u.]

La Loma 110: Sin Control La Loma 110: Con Control

Y = 0.900 p.u. 0.420 s 0.487 s 4.998 3.979 2.959 1.939 0.920 -0.100 [s] 1.015 0.990 0.965 0.940 0.915 0.890 [p.u.]

San Juan 110: Sin Control San Juan 110: Con Control

Y = 0.900 p.u. 0.356 s 0.608 s

ControlTension_Oc-Loma500 Date: 9/26/2017 Annex: /1

4.999 3.979 2.959 1.940 0.920 -0.100 [s] 1.01 0.98 0.95 0.92 0.89 0.86 [p.u.]

El Paso 110\Barra1: Sin Control El Paso 110\Barra1: Con Control

Y = 0.900 p.u. 0.077 s 4.999 3.979 2.959 1.940 0.920 -0.100 [s] 1.01 0.98 0.95 0.92 0.89 0.86 [p.u.]

La Loma 110: Sin Control La Loma 110: Con Control

Y = 0.900 p.u. 0.075 s 4.999 3.979 2.959 1.940 0.920 -0.100 [s] 0.98 0.95 0.92 0.89 0.86 0.83 [p.u.]

San Juan 110: Sin Control San Juan 110: Con Control

Y = 0.900 p.u. 0.065 s 0.995 s

(7)

To

dos

los

der

ec

hos re

se

rvados

par

a XM S.A

.

ES

P

N-1 Resultados simulaciones El Paso – La Loma 110 kV

Figura 1-1. Comportamiento de la subárea GCM con y sin control de tensión de plantas solares fotovoltaicas (eje y: tensión en p.u., eje x: tiempo en segundos)

1.4.

Soportabilidad ante huecos de tensión

La capacidad de los sistemas de generación de mantener una operación continua durante y después de eventos que perturben el estado estacionario del sistema de potencia es fundamental para una operación segura y confiable. Por esta razón, las tecnologías actuales de los equipos de generación solar fotovoltaica cuentan con la opción de habilitar la función Fault Ride Through (FRT), cuya característica evita que las unidades de generación se desconecten ante eventos que ocasionen huecos de tensión como corto circuitos cercanos a los puntos de conexión. Esta función se ha estado exigiendo debido a la integración de generación basada en inversores, y en las consecuencias que podría originar en la tensión y en la frecuencia la desconexión simultánea de grandes bloques de generación localizados en una misma zona geográfica, poniendo en riesgo la operación del sistema. De acuerdo a la revisión de varios códigos de operación internacionales y mediante el análisis de simulaciones dinámicas, en este numeral se realizan análisis de uno de los aspectos claves para la incorporación de FRNC, su respuesta ante la ocurrencia de un hueco de tensión, cómo esta repercute en la operación del sistema eléctrico y las necesidades de soportabilidad que deberían tener los recursos de generación con FRNC. Para ello se evaluó tanto el comportamiento del sistema en su conjunto como el comportamiento individual de cada una de las barras en las que se conecta la generación solar fotovoltaica ante la ocurrencia de cortocircuitos en la red de transmisión.

Los estudios dinámicos consistieron en la simulación de corto circuitos trifásicos a tierra al 0% y al 100% de la longitud de los circuitos de transmisión del STN y STR en el modelo eléctrico del SIN en 4.999 3.979 2.959 1.940 0.920 -0.100 [s] 1.11 1.09 1.07 1.05 1.03 1.01 [p.u.]

El Paso 110\Barra1: Sin Control El Paso 110\Barra1: Con Control

Y = 1.100 p.u.

(8)

To

dos

los

der

ec

hos re

se

rvados

par

a XM S.A

.

ES

P

los escenarios más críticos para cada subárea (baja generación sincrónica en línea). Se consideraron tiempos típicos de despeje de la falla mediante actuación de la protección principal (150 ms) y de la protección de respaldo (500 ms). La variable a monitorear en las subestaciones del SIN durante las simulaciones dinámicas es la tensión fase – fase. Una vez realizadas las simulaciones dinámicas se revisa que las tensiones en las barras del SIN ante los diferentes eventos simulados no sobrepasen la característica de HVRT y LVRT.

A continuación, se presentan los resultados de las simulaciones realizadas:

Barra

supervisada Resultados simulaciones

Termoyumbo 115 kV 2.000 1.580 1.160 0.740 0.320 -0.100 [s] 1.25 1.00 0.75 0.50 0.25 0.00

(9)

To

dos

los

der

ec

hos re

se

rvados

par

a XM S.A

.

ES

P

Barra

supervisada Resultados simulaciones

Nueva Baranoa 110 kV Sabana 220 kV 2.000 1.580 1.160 0.740 0.320 -0.100 [s] 1.25 1.00 0.75 0.50 0.25 0.00

FVRT_ModCargaActual_NBaranoa Date: 9/26/2017 Annex: /1

2.000 1.580 1.160 0.740 0.320 -0.100 [s] 1.25 1.00 0.75 0.50 0.25 0.00

(10)

To

dos

los

der

ec

hos re

se

rvados

par

a XM S.A

.

ES

P

Barra

supervisada Resultados simulaciones

San Juan 110 kV El Paso 110 kV 2.000 1.580 1.160 0.740 0.320 -0.100 [s] 1.25 1.00 0.75 0.50 0.25 0.00

Subplot(2) Date: 9/25/2017 Annex: /11

2.000 1.580 1.160 0.740 0.320 -0.100 [s] 1.25 1.00 0.75 0.50 0.25 0.00

(11)

To

dos

los

der

ec

hos re

se

rvados

par

a XM S.A

.

ES

P

Barra

supervisada Resultados simulaciones

La Loma 110 kV

Figura 1-2. Simulaciones validación FVRT plantas solares fotovoltaicas (eje y: tensión en p.u., eje x: tiempo en segundos)

En la Figura 1-2, se muestra en rojo las curvas de Low Voltage Ride Through (LVRT) y High Voltage Ride Through (HVRT) propuestas por XM a la CREG2. Adicionalmente se observa que el

comportamiento de la tensión de todos los eventos simulados está contenido en esta envolvente, validando que eventos de fallas críticas y contingencias en el sistema no generen la desconexión de las plantas solares fotovoltaicas expuestas en la Tabla 1-1.

1.5.

Control rápido de corriente reactiva

Un soporte de potencia reactiva inadecuado reduce la probabilidad de una recuperación exitosa de las tensiones después de eventos. Un soporte de potencia reactiva adecuado, previene la

2 Documento presentado a la CREG con propuesta regulatoria que defina las exigencias necesarias

para la integración de FRNC. Las curvas de FVRT y HVRT recomendadas surgen de diferentes simulaciones realizadas en el SIN con la topología y generación esperada de acuerdo a la definición de obras de expansión de la UPME, asegurando que el voltaje actual del sistema permanezca dentro de los límites propuestos ante fallas críticas y contingencias.

2.000 1.580 1.160 0.740 0.320 -0.100 [s] 1.25 1.00 0.75 0.50 0.25 0.00

(12)

To

dos

los

der

ec

hos re

se

rvados

par

a XM S.A

.

ES

P

propagación de los huecos de tensión a lo largo del sistema de potencia y reduce el riesgo de tener inestabilidad de tensión o desconexión de grandes boques de generación de forma simultánea. La manera más efectiva de proporcionar un soporte dinámico de la tensión en el sistema, y del mismo modo evitar la desconexión no deseada de unidades de generación, es que las unidades de generación provean corriente reactiva suficiente para ayudar a la recuperación de la tensión. Esta capacidad de los recursos de generación es solicitada actualmente en varios códigos de conexión de países con alta integración de FRNC3.

Aplicando las mejores prácticas adoptadas a nivel internacional, se realizaron estudios dinámicos en los cuales se simularon corto circuitos en diferentes puntos de la red y se comparó el resultado habilitando la opción de aporte adicional de corriente reactiva de las plantas solares fotovoltaicas. Para los análisis realizados se utilizó un modelo de carga dinámico con motores de inducción, para evidenciar la restauración de la energía consumida por las cargas, la cual aumenta el consumo de energía reactiva provocando una reducción adicional del voltaje. Además, se consideró una característica de aporte adicional de corriente reactiva durante fallas como la mostrada en la Figura 1-3 y los siguientes criterios supuestos:

 Las plantas solares fotovoltaicas priorizan la inyección de corriente reactiva de forma que alcance un 90% del valor final esperado en menos de 30 ms.

 Se realizan sensibilidades a la pendiente k.

 El aporte de corriente reactiva adicional se limitó al 100% de la corriente nominal de la planta.

 La banda muerta corresponde al rango de operación dentro de la tensión nominal del punto de conexión (0.9 - 1.1 p.u.).

 El aporte de corriente reactiva adicional se mantiene siempre que la tensión esté fuera del rango normal de operación.

 Se mantiene un aporte de corriente reactiva por 500 ms después de que la tensión entre a la banda muerta manteniendo un aporte adicional proporcional a la desviación de la tensión con respecto al valor de referencia (1 p.u).

(13)

To

dos

los

der

ec

hos re

se

rvados

par

a XM S.A

.

ES

P

Figura 1-3. Característica de aporte adicional de potencia reactiva

Los resultados de las simulaciones se muestran a continuación:

n

Un

K=(

n)/(

Un)

(14)

To

dos

los

der

ec

hos re

se

rvados

par

a XM S.A

.

ES

P

Barra/Falla Resultados simulaciones

San Juan 110 kV/ Falla Ocaña – La Loma 500 kV El Paso 110 kV/ Falla Ocaña – La Loma 500 kV 2.000 1.580 1.160 0.740 0.320 -0.100 [s] 1.25 1.00 0.75 0.50 0.25 0.00

HVRT_Colombia: Measurement value 1 LVRT_Colombia: Measurement value 1 San Juan 110: Con Solares K=0 San Juan 110: Con Solares K=2 San Juan 110: Con Solares K=4

K_SJuan110 Date: 9/25/2017 Annex: /13

2.000 1.580 1.160 0.740 0.320 -0.100 [s] 1.25 1.00 0.75 0.50 0.25 0.00

HVRT_Colombia: Measurement value 1 LVRT_Colombia: Measurement value 1 El Paso 110\Barra1: Con Solares K=0 El Paso 110\Barra1: Con Solares K=2 El Paso 110\Barra1: Con Solares K=4

(15)

To

dos

los

der

ec

hos re

se

rvados

par

a XM S.A

.

ES

P

Barra/Falla Resultados simulaciones

La Loma 110 kV/ Falla Ocaña – La

Loma 500 kV

Figura 1-4. Simulaciones validación e importancia del aporte adicional de corriente reactiva durante fallas de las plantas solares fotovoltaicas (eje y: tensión en p.u., eje x: tiempo en segundos) De las simulaciones dinámicas se observa que, al contar con un aporte adicional de corriente reactiva por parte de las plantas solares fotovoltaicas, el tiempo de recuperación de la tensión a los valores normales es menor. Sin la opción de aporte adicional de corriente reactiva, aumenta el riesgo de que las plantas solares fotovoltaicas se desconecten al no estar dentro de las curvas LVRT y HVRT. La capacidad de entrega de reactivos durante la falla es esencial para soportar la red durante las perturbaciones y para ayudar a la recuperación después de que se haya eliminado una falla. La característica de corriente reactiva rápida de las FRNC busca simular una respuesta similar a las máquinas sincrónicas, aportando corriente reactiva al sistema en un instante crítico como un hueco tensión, para ayudar a la recuperación del voltaje, tal y como se evidencia a continuación en la Figura 1-5, donde se muestra la respuesta de las plantas solares fotovoltaicas que se conectarán en GCM comparada con la respuesta de una máquina sincrónica como Termoguajira:

2.000 1.580 1.160 0.740 0.320 -0.100 [s] 1.25 1.00 0.75 0.50 0.25 0.00

HVRT_Colombia: Measurement value 1 LVRT_Colombia: Measurement value 1 La Loma 110: Con Solares K=0 La Loma 110: Con Solares K=2 La Loma 110: Con Solares K=4

(16)

To

dos

los

der

ec

hos re

se

rvados

par

a XM S.A

.

ES

P

Falla Respuesta de reactiva de generación solar fotovoltaica y sincrónica en GCM

Falla Ocaña – La Loma 500 kV

Figura 1-5. Respuesta en aporte de reactiva de generación solar fotovoltaica y sincrónica de GCM ante falla de Ocaña – La Loma 500 kV

2.000 1.580 1.160 0.740 0.320 -0.100 [s] 200.00 160.00 120.00 80.00 40.00 0.00 [Mvar]

Gen LATAMSOLAR 150MW: Reactive Power Gen Solar El Paso 70MW: Reactive Power Gen Solar LATAMS1 19.9MVA: Reactive Power Gen Solar LATAMS2 9.9MVA: Reactive Power Guajira 1: Positive-Sequence, Reactive Power

(17)

To

dos

los

der

ec

hos re

se

rvados

par

a XM S.A

.

ES

P

2.

Impacto de la Generación

Distribuida en el SIN

(18)

To

dos

los

der

ec

hos re

se

rvados

par

a XM S.A

.

ES

P

2.1.

Introducción

El impacto de los arreglos o agrupaciones de GD en el STR está asociado a la reducción de pérdidas, al mejoramiento de los perfiles de tensión, reducción de los picos de demanda (gestión eficiente en el SDL), soporte ante contingencias, entre otros. Sin embargo, es necesario que se tengan en cuenta los requerimientos de optimización en la ubicación de la instalación de la GD, de tecnología, de control y comunicaciones.

2.2.

Definiciones

Generación Distribuida (GD): según la Ley 1715 de 2014, es la producción de energía eléctrica, cerca de los centros de consumo, conectadas al Sistema de Distribución Local (SDL). La GD se conoce también como Recursos Energéticos Distribuidos (DER, por sus siglas en inglés) y comprende una gran variedad de conversión de energía como generación fotovoltaica, celdas de combustible, microturbinas, generación convencional a pequeña escala, sistemas de almacenamiento, entre otros.

Sistema de Distribución Local (SDL): Sistema de transporte de energía eléctrica compuesto por el conjunto de líneas y subestaciones, con sus equipos asociados, que operan a los Niveles de Tensión 3, 2 y 1 dedicados a la prestación del servicio en un Mercado de Comercialización.

2.3.

Objetivo

Analizar el impacto de la conexión masiva de la GD sobre las redes del STR y STN sobre las recomendaciones operativas.

2.4.

Metodología y supuestos

La GD tiene un impacto directo sobre las redes del SDL. Sin embargo, este impacto trasciende hacia el STR y STN, tanto en beneficios como en problemas operativos, dependiendo del punto de conexión.

2.4.1.

Metodología:

La conexión de generación cerca de los centros de consumo, permite manejar las congestiones, el manejo del flujo de reactivos por la red, la confiabilidad ante la actuación de protecciones por falla y un sistema de distribución y transmisión más flexible.

(19)

To

dos

los

der

ec

hos re

se

rvados

par

a XM S.A

.

ES

P

Figura 2-1. Metodología implementada para analizar el impacto de la GD en el STR

Se observa en la Figura 2-1 que para analizar el impacto es necesario definir las barras del STR a la que se conectará la GD. Este proceso se realiza empíricamente. Sin embargo, es necesario que los OR definan una metodología para reflejar la GD en las barras del STR, puesto que ellos conocen las redes de distribución y eléctricamente se puede determinar la conveniencia de reflejarla en las diferentes barras del STR.

Una vez se cuente con la información de la GD agrupada, se asume que en esa barra se conecta un generador con la totalidad de la GD, a partir de este supuesto, se realizan los análisis de flexibilidad y el comportamiento de las restricciones ante la inyección de potencia en esa barra.

2.4.2.

Supuestos:

Se toma la información reportada por el OR de la GD, que está aprobada y en estudio, para las subáreas del área Caribe y se agrupan según cercanía a la barra del STR que se encuentra más cercana (empíricamente).

Información

A partir de la

información

suministrada por los

OR, se define la barra

del STR más cercana a

la que se conecta la

GD

Agrupación

Se agrupa la GD

conectada a una

misma barra, y, se

asume que en esa

barra se inyecta la

totalidad de la GD

Análisis

Flexibilidad operativa

de la subárea.

Análisis de perfiles de

tensión

Impacto en la

seguridad operativa.

(20)

To

dos

los

der

ec

hos re

se

rvados

par

a XM S.A

.

ES

P

*No se indicó la barra en el STR a la que se conectaría esta generación, por cercanía se asume que puede estar reflejada en una de esas tres subestaciones.

Figura 2-2. Supuestos de GD

Generación distribuida conectada en la subestación El Banco 110 kV se asume en 49.7 MW. Este valor corresponde al total de la GD conectada por el OR a conectarse en esa subestación (aprobados y en estudio).

El escenario de demanda considerado es la demanda máxima esperada para 2017. La topología actual a julio de 2017

2.5.

Recomendaciones operativas ante la conexión masiva de la

GD.

Con la evolución hacia la inclusión de tecnologías de FNCER en las redes de distribución y la reducción en los costos para adquirir esta tecnología, la transición hacia las redes de distribución activa que conectan generación cerca a los centros de consumo, permite mejorar la operación y seguridad del sistema.

La conexión de GD trae beneficios que pueden ser aprovechados para el manejo de restricciones, tanto a nivel de distribución como a nivel del STR. Tradicionalmente, las restricciones han sido manejadas a través de la generación convencional, incrementando los costos operativos e incluso programando desconexión de carga, con el fin de mantener una operación segura y confiable. El enfoque para mejorar la operación y seguridad del sistema, enfocándose en el manejo de las restricciones, debe considerar la ubicación óptima de la GD, con el fin de aprovechar los beneficios que contribuyen a la optimización de los flujos y los perfiles de tensión en el sistema de distribución y en el sistema de transmisión. 0 50 100 150 200 250

Atlántico Córdoba - Sucre

GD

T

o

ta

l

Capacidad de GD por barra reflejada en el STR

Sincé Salamina EC Sabanalarga Nv Baranoa La Mojana Juan Mina Covenas Chinú Centro

(21)

To

dos

los

der

ec

hos re

se

rvados

par

a XM S.A

.

ES

P

2.5.1.

Flexibilidad operativa:

Se realizaron sensibilidades para analizar el impacto de la GD sobre las subáreas Atlántico y Córdoba – Sucre. Actualmente estas subáreas se encuentran en estado de emergencia y con una flexibilidad operativa del 0%.

El cambio en la flexibilidad de las subáreas ante la conexión de la GD, en las barras que se muestran en la Figura 2-3, se muestra a partir de los análisis y la inyección de esa generación en las diferentes barras del STR.

Figura 2-3. Impacto de la conexión de la GD en la flexibilidad

La Figura 2-3 muestra como con la integración de la GD es posible encontrar escenarios en los que se cumpla la seguridad de la subárea. En el caso de Córdoba – Sucre, se hace la sensibilidad de conectar la GD que no tiene definida la barra del STR, para mostrar que la ubicación óptima permite darle flexibilidad a la subárea, pasando de un 9.32% al 13.88%. Para Atlántico, el impacto solamente se observa sobre la restricción asociada a los transformadores Sabanalarga 220/115 kV y es necesario continuar con el balance de generación entre Tebsa, Termobarranquilla, Flores 1 y Flores IV para controlar los cortes.

Al conectar más recursos y cerca de la demanda y aumentar la flexibilidad, es posible manejar las restricciones e incrementar la seguridad en las subáreas. Esto implica que con la instalación de la GD se mitigan riesgos de demanda no atendida (DNA) en subáreas donde existen atrasos en la expansión de la red

.

Sin GD GD Total (Bostón 110 kV) GD Total (Sierraflor 110kV) GD Total (Since 110kV) Flexibi lidad 0% 13.88% 13.74% 9.32% Impacto de la conexión de la GD Sin GD GD Total

Córdoba - Sucre Atlántico 0% 0.029%

(22)

To

dos

los

der

ec

hos re

se

rvados

par

a XM S.A

.

ES

P

2.5.2.

Análisis de perfiles de tensión:

La instalación de GD cerca a los centros de consumo modifica los perfiles de tensión en las barras donde se conecta. En la Tabla 2-1 se explican los escenarios propuestos para analizar el impacto en las tensiones de la barra El Banco 110 kV en la subárea GCM.

Evento Descripción Compensación

[Mvar] Carga [MW] GD [MW] Caso base Se encuentra en línea: compensación y carga, no se conecta GD 12 22.85 0

Caso 1 Se encuentra en línea la carga, no se

conecta GD ni la compensación 0 22.85 0 Caso 2 Se encuentra en línea: compensación y carga, no se conecta GD 6 22.85 0

Caso 3 Se encuentra en línea la GD, no se

conecta la carga ni la compensación 0 0 49.7

Caso 4 Todos los elementos están en línea 12 22.85 49.7

Caso 5

Se encuentra en línea la GD y la carga, no se conecta la

compensación

0 22.85 49.7

Caso 6 Todos los elementos están en línea 6 22.85 49.7

Caso 7 Se encuentra en línea la GD y la compensación, no se conecta la carga 6 0 49.7 Caso 8 Se encuentra en línea la GD y la compensación, no se conecta la carga 12 0 49.7

Tabla 2-1. Escenarios propuestos para evaluar el impacto de la GD en los perfiles de tensión.

(23)

To

dos

los

der

ec

hos re

se

rvados

par

a XM S.A

.

ES

P

Figura 2-4. Comportamiento de la tensión

Ante las variaciones de los recursos primarios (especialmente solar) y las fluctuaciones de la carga que se presentan durante el día, el valor de la tensión puede variar, llegando a escenarios de sobretensiones (mayores a 1.1 p.u.) y de subtensiones (menores a 0.9 p.u.). Esta variación muestra la importancia de contar con elementos de control automático de tensión y reactivos o la implementación de un esquema automático que permita mantener las tensiones dentro de los rangos operativos.

2.5.3.

Seguridad operativa:

La variabilidad que puede presentar la GD, particularmente la que está basada en fuentes de energía intermitentes, implica riesgos en la operación del sistema. A continuación, se muestra un ejemplo en la subárea Atlántico.

Supuestos:

Se considera un escenario fijo en la generación de Flores I, Flores IV y Tebsa. Se considera GD en las barras de 110 kV y 34.5 kV de la red (10 MW en cada barra). No se monitorea la red de 34.5 kV de la subárea.

Resultados:

Los resultados presentados en la Tabla 3-1, se muestran en función de variabilidad del recurso primario de la generación distribuida (función de densidad de probabilidad) respecto al riesgo operativo que se genera en la red de transmisión (expresado como el número de escenarios no seguros dada la variación de la inyección de la GD).

0.7 0.8 0.9 1 1.1 1.2 1.3 Caso base

Caso 1 Caso 2 Caso 3 Caso 4 Caso 5 Caso 6 Caso 7 Caso 8

Te nsi ón [p. u. ] Subestación El Banco 110 kV

(24)

To

dos

los

der

ec

hos re

se

rvados

par

a XM S.A

.

ES

P

Curva de distribución

operativo

Riesgo

[%]

2

16

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0 2 4 6 8 10 12 Potencia [MW]

Distribución de probabilidad GD (baja variabilidad)

0 0.05 0.1 0.15 0.2 0.25 0 2 4 6 8 10 12 Potencia [MW]

(25)

To

dos

los

der

ec

hos re

se

rvados

par

a XM S.A

.

ES

P

32

Tabla 2-2. Resultados de la variabilidad del recurso primario de la GD respecto al riesgo operativo.

Lo anterior muestra la necesidad de definir esquemas adicionales para mantener la confiabilidad operativa de la red de transmisión, tales como:

 Flexibilización de los recursos controlables de generación (los que no clasifican como GD)

 Establecer mecanismos de reserva de generación

 Definición de nuevos límites a la red de transmisión

2.6.

Conclusiones y recomendaciones

La conexión de la GD tiene un impacto sobre la operación del SDL y del STR. El OR que otorgará el punto de conexión, debe enviar al CND, las barras del STR donde se refleje la GD. Lo anterior, con el objetivo de representar un generador equivalente en el modelo eléctrico oficial.

La definición del punto de conexión que los OR otorgan a los promotores de los proyectos debe estar fundamentado en un análisis sistémico que incluya las restricciones que se presentan en el STR, con el fin de aprovechar los beneficios de la conexión de la GD cerca de los centros de consumo. Es decir, el punto de conexión se debe otorgar considerando aspectos de congestiones, ubicación óptima y control de tensión y reactivos, más que por cercanía.

La variabilidad del recurso primario de la GD genera riesgos operativos adicionales que implican la necesidad de definir esquemas adicionales para mantener la confiabilidad de la red de transmisión.

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0 2 4 6 8 10 12 Potencia [MW]

(26)

To

dos

los

der

ec

hos re

se

rvados

par

a XM S.A

.

ES

P

3.

Anexo:Consideraciones para los

(27)

To

dos

los

der

ec

hos re

se

rvados

par

a XM S.A

.

ES

P

3.1.

Criterios Eléctricos

Los análisis eléctricos consideran los criterios establecidos en la Resolución CREG 025 de 1995 y en las resoluciones que han modificado algunos aspectos del Código de Operación. De acuerdo con lo anterior:

 En estado estacionario las tensiones en las barras de 115 kV, 110 kV y 220 kV, 230 kV no deben ser inferiores al 90%, ni superiores al 110% del valor nominal. Para la red de 500 kV el voltaje mínimo permitido es del 90% y el máximo es del 105% del valor nominal.

 En cuanto a la carga de los equipos del SIN, se consideran los límites, tanto en estado normal como de sobrecarga, declarados por los agentes para sus equipos.

 En el análisis de estado estacionario se consideran solo contingencias sencillas en las líneas de transmisión y en los bancos de transformadores 230/115 kV o 220/110 kV.

 De acuerdo con los ajustes de protecciones se considera que las corrientes e impedancias vistas por los relés vecinos, deben ser tales que no ocasionen la salida de elementos adicionales, lo cual originaría una serie de eventos en cascada.

 Se evalúa que después de una contingencia, en las barras principales del sistema de transmisión la tensión transitoria no alcance valores inferiores a 0.8 (p.u.) por más de 500 ms.

 Se considera que las unidades de generación tienen ajustados los relés de baja frecuencia de forma que no se dé disparo instantáneo de las mismas ante frecuencias iguales o superiores a 57.5 Hz, mientras que, entre 57.5 Hz a 58.5 Hz el disparo de la unidad debe tener una temporización mínima de 15 s. Para frecuencias superiores a 58.5 Hz y menores a 62 Hz no se considera disparo de las unidades. Asimismo, para frecuencias superiores a 62 Hz y menores a 63 Hz puede ajustarse el disparo por sobre velocidad con una temporización mínima de 15 s. Con frecuencias superiores a 63 Hz se asume el disparo instantáneo de la unidad por protección de sobre velocidad.

 Se evalúa la estabilidad del sistema de transmisión ante pequeñas perturbaciones y se verifica que los valores propios tengan componente de amortiguación.

 Los análisis que se realizan para definir las recomendaciones operativas descritas en el informe consideran disponibles todos los elementos de la red. Se debe tener en cuenta que ante mantenimientos o indisponibilidades en la red las condiciones pueden llegar a ser más críticas en algunas áreas o subáreas del SIN.

3.2.

Otros criterios

Para todos los análisis, se considera operativo el Esquema de Desconexión de Carga por baja frecuencia (EDAC), el cual está modelado dentro del programa de simulación con el cual se evalúa la estabilidad del sistema. En los análisis de contingencias que se realizan para evaluar la estabilidad se verifica el comportamiento de la frecuencia y la respuesta del EDAC.

La evaluación del ajuste y coordinación de protecciones del SIN se realiza a través de los diferentes estudios de protecciones realizados por los agentes, el CND y revisados por el operador del sistema. Los resultados se toman como información de entrada para los estudios de planeamiento operativo eléctrico, donde se considera que, ante falla en un elemento del

(28)

To

dos

los

der

ec

hos re

se

rvados

par

a XM S.A

.

ES

P

sistema, ésta se despeja con la salida definitiva del elemento fallado dentro del tiempo de actuación de su protección principal.

3.3.

Parámetros técnicos de los equipos

Los parámetros técnicos utilizados en este estudio para cada uno de los equipos son los

reportados por los Agentes, los cuales están debidamente registrados en el documento

Parámetros Técnicos del SIN (PARATEC).

3.4.

Pronóstico de demanda

Para el pronóstico de demanda del área Caribe se utiliza el reportado por el Operador Red

en el primer trimestre de 2017. Para el análisis en Valle se tuvo en cuenta los siguientes

aspectos.

Se considera como demanda base, la demanda oficial para el 15 de junio de 2017.

Demanda P20 = 9808 MW

Se considera la revisión UPME – Proyección demanda regional energía eléctrica Julio

2016

Se considera la revisión UPME – Proyección demanda energía eléctrica febrero 2017

Se consideran dos escenarios de demanda: Actual (diciembre 2017) y 2018 (máxima

2018)

En la demanda mostrada en las figuras, no se tienen en cuenta nuevas demandas

industriales. Estas son consideradas como proyectos de expansión y, por tanto, se

analiza su impacto en la red.

Figura 3-1. Demanda esperada área Caribe 2017 – 2018

Máxima Media Mínima Máxima Media Mínima 2017 2018 GCM 702.62 619.6 482.9 735.81 650.14 507.48 Córdoba - Sucre 484.03 426.34 348.3 491.01 436.11 358.88 Cerromatoso 272.57 253.27 210.72 266.66 250.91 217.81 Bolívar 519.4 486.06 395.02 545.19 516.07 411.47 Atlántico 711.52 710.93 557.04 733.34 794.9 573.76 712 711 557 733 795 574 519 486 395 545 516 411 273 253 211 267 251 218 484 426 348 491 436 359 703 620 483 736 650 507 0 500 1000 1500 2000 2500 3000 D em anda [ M W ]

Demanda área Caribe

2691 2496 1994 2772 2648 2069

(29)

To

dos

los

der

ec

hos re

se

rvados

par

a XM S.A

.

ES

P

Figura 3-2. Demanda esperada área Suroccidental 2017 – 2018

3.5.

Consideraciones topológicas

Área Consideraciones topológicas

Caribe

Se consideran en operación los siguientes proyectos de expansión:

o Ampliación transformación en Cuestecitas 220/110 kV (tercer transformador de 100 MVA y cuarto transformador de 40 MVA).

Segundo transformador en Valledupar 100 MVA 220/110 kV.

Caribe La subestación en anillo Toluviejo 110 kV, se considera operando cerrada y por lo tanto

operando interconectadas las subáreas Bolívar con Córdoba – Sucre.

Caribe Abierta la bahía de seccionamiento de Termoflores 110 kV (abierto interruptor 7110 en

Termoflores 110 kV)

Caribe Abierto el anillo de la subestación Malambo 110 kV (abiertos interruptores 7040 y 7010

en Malambo 110 kV)

Máxima Media Mínima Máxima Media Mínima

2017 2018 Putumayo 33 25 17 33 25 17 Caquetá 111 80 40 113 81 41 Cauca-Nariño 329 247 157 364 250 159 Huila-Tolima 377 320 224 389 323 227 CQR 518 405 250 529 411 254 Valle 1070 962 610 1078 970 614 0 500 1000 1500 2000 2500 3000 Dema n d a [ MW ]

(30)

To

dos

los

der

ec

hos re

se

rvados

par

a XM S.A

.

ES

P

Caribe

Líneas Ternera – Cospique 66 kV y Cospique – Membrillal 66 kV reconfiguradas como Ternera – Membrillal 66 kV. La carga de Cospique se está alimentando desde la subestación Nueva Cospique 66 kV

Caribe Se considera que el tramo de línea de Chinú – Boston 2 110 kV no se encuentra conectado

en paralelo a la línea Chinú – Boston 1 110 kV.

Caribe Se considera abierta la línea Gambote – Tcalamar 66 kV en Gambote 66 kV.

Caribe Se considera abierta la línea Cuatricentenario – Cuestecitas 220 kV.

Caribe Se considera abierto el interruptor 5100 en la subestación Valledupar 34.5 kV.

Caribe Se consideran los datos de tiempo real para estimar los factores de potencia reales de las cargas de Copey 34.5 kV, EL Paso 110 kV y El Banco 110 kV.

Suroccidente En todos los análisis se considera el límite de importación del área Suroccidental para cubrir el corte San Marcos 500/230 kV / Virginia 500/230 kV.

Suroccidente Se considera el enlace Dorada – Guaduero 115 kV fuera de servicio.

Suroccidente Subestación Termoyumbo 115 kV acoplada.

Suroccidente Subestación Chipichape 115 kV desacoplada en todo el horizonte de análisis

Suroccidente Para los análisis del año 2017 se considera reconfiguración en Mocoa (alimentación de demanda de Putumayo desde Altamira)

Suroccidente Para los análisis del año 2017 se considera la subestación Pance 115 kV operando en dos barras separadas debido a la indisponibilidad de la diferencial de barras

Tabla 3-1. Consideraciones topológicas

3.6.

Ecuador

En los análisis de Suroccidental y en los escenarios que se consideran los intercambios con

Ecuador, se utilizan los valores del último estudio realizado en febrero de 2017 y vigente

actualmente, donde se definieron los siguientes ajustes del Esquema de Separación de Áreas

(31)

To

dos

los

der

ec

hos re

se

rvados

par

a XM S.A

.

ES

P

– ESA (límites de 200 MW de exportación a Ecuador y 300 MW de importación desde

Ecuador):

3.7.

Modelos de Fuentes Renovables No Convencionales (FRNC)

Se utiliza el modelo WECC tipo 4 para modelar las FRNC, el cual fue validado con la

herramienta de EPRI Renewable Energy Model Validation (REMV)

1

, la cual representa las

especificaciones WECC y se valida contra mediciones reales.

1 EPRI, “Renewable Energy Model Validation (REMV).” [Online]. Available:

Referencias

Documento similar

Este Inversor es el equipo electrónico que transforma y permite inyectar en la  red  eléctrica  comercial  la  energía  producida  por  el  generador  FV, 

"No porque las dos, que vinieron de Valencia, no merecieran ese favor, pues eran entrambas de tan grande espíritu […] La razón porque no vió Coronas para ellas, sería

Cedulario se inicia a mediados del siglo XVIL, por sus propias cédulas puede advertirse que no estaba totalmente conquistada la Nueva Gali- cia, ya que a fines del siglo xvn y en

Tome el MacRm media libra de Manecca de puerca ,media Je Manmca de Bac media de A- yre Rolado ,media de Azeyre Violado, y re poMc'tn holla vi- driadaafuegommfo,paza que

The part I assessment is coordinated involving all MSCs and led by the RMS who prepares a draft assessment report, sends the request for information (RFI) with considerations,

A partir de los resultados de este análisis en los que la entrevistadora es la protagonista frente a los entrevistados, la información política veraz, que se supone que

En el capítulo de desventajas o posibles inconvenientes que ofrece la forma del Organismo autónomo figura la rigidez de su régimen jurídico, absorbentemente de Derecho público por

b) El Tribunal Constitucional se encuadra dentro de una organiza- ción jurídico constitucional que asume la supremacía de los dere- chos fundamentales y que reconoce la separación