• No se han encontrado resultados

Metales pesados en aves rapaces residentes y migratorias en Veracruz, México

N/A
N/A
Protected

Academic year: 2020

Share "Metales pesados en aves rapaces residentes y migratorias en Veracruz, México"

Copied!
139
0
0

Texto completo

(1)

Universidad Veracruzana

Instituto de Biotecnología y Ecología Aplicada

MAESTRÍA EN CIENCIAS EN ECOLOGÍA Y BIOTECNOLOGÍA

METALES PESADOS EN AVES RAPACES RESIDENTES Y MIGRATORIAS EN VERACRUZ, MÉXICO

TESIS

PARA OBTENER EL GRADO DE MAESTRA EN CIENCIAS EN ECOLOGÍA Y BIOTECNOLOGÍA

PRESENTA

MEAGAN LINDSEY CAMPBELL

DIRECTOR

DR. ERNESTO RUELAS INZUNZA

ASESORES

(2)
(3)

Dirección General de Investigaciones Instituto de Biotecnología y Ecología Aplicada

Coordinación del Posgrado

MAESTRÍA EN CIENCIAS EN ECOLOGÍA Y BIOTECNOLOGÍA

ECOBIOT-18DAR

DECLARATORIA DE AUTORIA

Quien suscribe Meagan Lindsey Campbell (S16017543) estudiante de la Maestría en Ciencias en Ecología y Biotecnología, hace constar que es autor del Trabajo para la obtención del Grado de Maestría intitulado: Heavy metals in resident and migratory raptors in Veracruz, Mexico el cual constituye la elaboración personal realizada

únicamente con la Dirección del Comité Tutoral siguiente: Dr. Ernesto Ruelas Inzunza,

Dr. Jaime Rendón Von Osten, Dr. Enrique Alarcón Gutierrez.

En tal sentido, manifiesto la originalidad de los conceptos, base de datos registrados (Bitácora), interpretación de los datos, conclusiones y recomendaciones. Por último, dejo establecido que los aportes intelectuales de otros autores se han referido debidamente en el texto y en la sección de literatura citada de dicho trabajo.

___________________________ Meagan Lindsey Campbell

(4)

Dirección General de Investigaciones Instituto de Biotecnología y Ecología Aplicada

Coordinación de Posgrado

MAESTRÍA EN CIENCIAS EN ECOLOGÍA Y

BIOTECNOLOGÍA

ECOBIOT-17A

AGRADECIMIENTOS Y CREDITOS INSTITUCIONALES

El presente trabajo se realizó bajo la dirección del Dr. Ernesto Ruelas Inzunza dentro de la Línea de Generación y Aplicación del Conocimiento: Organismos, ambiente y sus interacciones, pertenecientes a el Cuerpo Académico: Clave “CA-UVER-324” Nombre

Estructura y Funcionamiento de Ecosistemas registrados en el Instituto de Biotecnología y Ecología Aplicada de la Universidad Veracruzana en Xalapa, Veracruz.

El trabajo de Maestría se desarrolló dentro del proyecto: Heavy metals in resident and migratory raptors in Veracruz, Mexico, Aprobado por el fondo CONACYT, APIVER API-GS-CS-62601-046-17 mismo al que se le agradece su apoyo.

Se agradece al Consejo Nacional de Ciencia y Tecnología (CONACYT) por su apoyo al estudiante con una beca académica bajo el No de becario 607620.

Se agradece al programa de posgrado de Maestría en Ciencias en Ecología y Biotecnología, siendo el Coordinador el Dr. Antonio Andrade Torres y al Instituto de Biotecnología y

(5)

Xalapa de Enríquez, Veracruz, junio de 2018.

Agradecimientos:

Al Instituto de Biotecnología y Ecología Aplicada por su apoyo a mi tiempo y aprendizaje en su institución, a mi formación profesional y académico. El espacio fue único para mi durante mi tiempo en México, y agradezco el ambiente entre estudiantes y profesores de respeto y apoyo.

A Pronatura Veracruz, A.C. Proyecto Río de Rapaces por la oportunidad de colaboración, y capacitación.

Al Dr. Ernesto Ruelas Inzunza por su dirección de mi tesis. Su consejo, y conocimiento del mundo académico han sido claves en el proceso de mi proyecto.

Al Dr. Jaime Rendón Von Osten. Su asesoría de ecotoxicología y la química de metales pesados apoyó a mi entendimiento de mi trabajo. También el acceso a su laboratorio permitió el análisis de mis muestras. Su ánimo es contagioso que fortalece a los miembros de su laboratorio en ser motivados.

Al Dr. Enrique Alarcón-Gutiérrez por su asesoría en la ordenación de mi proyecto y el análisis estadístico. Su perspectiva en como ordenar, y analizar mi trabajo me ayudó mucho en la clarificación.

Al Mtro. Mauricio González-Jáuregui por su ayuda con el análisis de mis datos después de mi primer ronda, pero también su apoyo a mi investigación y tiempo en Campeche.

Al Mtro. Jimmy Vidal Maldonado por su paciencia durante mi análisis de voltamperometría, y enseñanza.

A mi jurado Dra. Yareni Perroni, Dr. Jorge Galindo Gonzalez, Mtro. Mauricio

González-Jáuregui, y Dr. Angel I. Ortiz Ceballos por sus revisiones y retroalimentación valioso a mi proyecto.

A los profesores de INBIOTECA. Dado que tuvieron mucha paciencia en mi formación

acá entre las diferencias culturales, mi falta de tiempo entre clase y campo, y el idioma.

A mis compañeros de la generación de 2016-2018. Somos una familia, y quedamos muy

unidos después de la graduación.

(6)

Xalapa, Veracruz, Junio 2018

Dedicatoria:

Yo dedico este trabajo a varios compañeros que me han inspirado en mi camino profesional. Antes de ellos, me formaba mi familia:

A mi abuela Wilma Jean Blair, por siempre enseñarme que valgo el mismo tiempo que

todos, y que siempre hay espacio para expresar mi opinión. Sobre todo, me da fuerza y optimismo.

A mi abuelo Carl David Campbell, que siempre decía que las cosas más importantes en la

vida son la familia y la educación. Durante su vida hizo todo lo posible para apoyar estos valores en nuestra familia y enseñarlos.

A mi abuela Monte Middlebusher Campbell quien siempre escuchaba mis dudas, y me

enseñó la importancia de viajar y aprender de otras perspectivas.

A mi madre, Julie Kristen Campbell, por su dedicación a mi educación, y apoyo a mis sueños.

A mi padre, Brian Lee Campbell, por enseñarme mi primer rapaz, y plantar la semilla que empezó mi fascinación con la vida silvestre.

A mi esposo, Schuyler Chaim Walling, por darme el espacio de crecer, y escuchar mis sueños como posibilidades en vez de locuras. Sin tu apoyo y paciencia durante estos tres años, sería imposible este trabajo.

A mi hermana, Hannah Jane Campbell Keen, por sus críticas constructivas, y solidaridad. Nadie me conoce como tú.

A mi hermano, Michael Dylan Blair Campbell, por enseñarme tolerancia, y aconsejarme.

A mis compañeros(as): Stephanie Loredo por abrir el mundo de conservación desde la perspectiva de una latinoamericana en un ambiente donde no había mucha conectividad de culturas entre el mundo académico y latinomericano en Oregón. Hemos crecido como pajareras juntas, migrando con ellos siguiendo el aprendizaje.

Al proyecto de Pronatura Veracruz A.C. Río de Rapaces. Me inspiró en querer entender

mejor la maravilla de la migración de las aves rapaces, y entender nuestro impacto como humanos a su viaje. Mi involucración en el proyecto me ha capacitado para dar un gran paso adelante en entender la conservación Mexicana. Estoy encantada con el conteo del otoño y espero seguir observándolo por el resto de mi vida.

(7)

Irving Chavez Dominguez por su enseñanza de conocimiento de una vida observando aves, y apoyando mi llegada a Veracruz y seguimiento a la maestría.

A Gustavo Ramón Lara por asesoría en identificaciones, y atrapar la mayoría de mis muestras.

Alfredo Beltrán-Santos, por ser un familiar y apoyo a mi proyecto afuera de mi país natal. A Diana Vasquez-Balbuena por ser mi gemela en un lugar donde puedo ser completamente vulnerable sin juzgarme.

A, Kashmir Wolf Rock, por ver mi potencial, y apoyarme en colaborar con este proyecto (Chichicoatefam!).

A la familia de Jesus Eduardo Martínez-Leyva, Leticia Cruz Paredes, y Selene Anaís

Martinez por su apoyo e interés en tener un proyecto de maestría adentro de la estación de anillado. Me han cuidado como familiares, y aprecio su apoyo.

Mi proyecto ha sido un esfuerzo colectivo, y estoy completamente agradecida a todos (as) los personas involucradas en tomar muestras, revisar mis escritos, alimentarme, y amarme.

Finalmente a las rapaces. Son mis musas que me hicieron llegar a una maestría de ciencias, y que van a inspirarme siempre. Por ser mis musas, tuve la oportunidad de migrar con ellos y aprender.

Gracias,

(8)

RESUMEN GENERAL

El estado de Veracruz es uno de los principales corredores para aves rapaces migratorias y

provee una amplia oportunidad de realizar estudios científicos sobre este tipo de aves. Las

aves migratorias pueden adquirir contaminantes en los sitios de anidación o las zonas

invernales. Hay poco conocimiento sobre el efecto de contaminantes durante las estadías

invernales en las aves migratorias y mucho menos en las aves rapaces. El presente proyecto

tuvo como objetivo determinar los niveles de contaminación por los metales pesados (como

zinc (Zn), cobre (Cu), cadmio (Cd), plomo (Pb), mercurio (Hg) y aluminio (Al) ). Las

concentraciones de estos metales en sangre, indican la ingesta dietética reciente, mientras

que las concentraciones en plumas indican la incorporación del contaminante durante la

muda. A partir de muestras de sangre y plumas, busque probar si las aves migratorias tienen

niveles de contaminantes más altos que las residentes, o viceversa. La solución a esta

pregunta de investigación nos puede dar indicaciones el estado del hábitat en Veracruz, así

como el manejo de paisaje y su efecto en las aves rapaces. En este estudio se colectaron

muestras de sangre y plumas de cinco especies de aves rapaces: dos especies migratorias

(Accipiter cooperii, Accipiter striatus) y tres especies residentes (Buteo brachyurus, Falco

femoralies, Rupornis magnirostris) con objetivo de comparar las concentraciones entre los

metales pesados arriba mencionados. Las muestras fueron colectadas durante la migración

de otoño en 2016 y 2017. Ocupando muestras de sangre y plumas se generó conocimiento

de la temporalidad de la exposición a metales pesados por medio de métodos no

destructivos. Por medio de voltamperometría, hice el análsis de Zn, Cu, Cd, Pb, Hg y Al de

194 muestras de sangre y 194 muestras de plumas. Las concentraciones de metales pesados

fueron de 1-2 órdenes de magnitud mayor en plumas que en sangre. Encontré diferencias

(9)

entre especies residentes y migratorias. La concentración de metales en la sangre de

residentes (t = -2.527, GL = 73.8, P = 0.013) fue mayor que en las migratorias. Sin

embargo la concentración de metales pesados en plumas fue mayor en migratorias (t =

2.6157, GL=153.31, P = 0.0097). Encontré una correlación negativa entre sangre y plumas

en Zn (Spearman’s rho=-0.363, P<0.0001), también Cu (Spearman’s rho=-0.159, P=0.025),

y Hg (Spearman’s rho=-0.666, P<0.0001). Encontré correlaciones positivas entre sangre y

plumas en Pb (Spearman’s rho=0.547, P<0.0001). No encontré correlaciones entre sangre y

plumas en Cd o Al. Este trabajo nos da información importante sobre la exposición de

(10)

ABSTRACT—Veracruz, Mexico, is one of the states with the highest diurnal raptor species richness. It is also a globally significant migratory corridor for raptors, as well as

for other birds. Agriculture, mining, industry, and oil production are possible contamination

sources for birds in this state as well as in the rest of Mexico. The majority of raptor metal

contamination studies occur north of Mexico. Many researchers hence posit that exposure

to metal contaminants is higher in their non-breeding season range. I analyzed blood and

feather samples of raptors to look for traces of six heavy metals (Al, Zn, Cu, Cd, Pb, and

Hg). I took blood and feather samples of 194 Sharp-shinned Hawk (Accipiter striatus),

Cooper’s Hawk (Accipiter cooperii), Aplomado Falcon (Falco femoralis), Short-tailed

Hawk (Buteo brachyurus), and Roadside Hawk (Rupornis magnirostris). I captured most of

the birds during the autumn seasons of 2016 and 2017, at a raptor banding station located

on the coastal plain of Veracruz. From those samples, I analyzed subset of 194 feathers and

194 blood samples using voltammetry. I found statistically significant differences between

resident and migratory species in Hg in blood (residents higher), and Zn in feathers

(migrants with higher concentrations). Metal means between tissues were usually 1-2

orders of magnitude higher in feathers than in blood, with positive correlations in Pb, and

negative correlations in Zn, Cu, and Hg. The high concentrations in Cu, Zn, and Al levels,

as well as the concentration of Pb, are higher than lethal thresholds reported in the

literature. This study is the first to provide information of heavy metal concentrations of

resident and migratory raptors during the autumn migration in Veracruz. These data helps

us further understand the timing and geographic location of heavy metal exposure in

raptors.

(11)

Tabla de Contenido

Declaratoria de autoria ... iii

Agradecimientos y creditos institucionales ... iv

Agradecimientos ... v

Dedicatoria ... vi

RESUMEN GENERAL ... viii

Capítulo I Introducción General ... 1

INTRODUCCIÓN ... 2

MARCO TEÓRICO ... 4

ALCANCE DE ESTE TRABAJO ... 6

LITERATURA CITADA ... 7

Capítulo II Contaminant exposure to birds during migration and non-breeding season: A review. ... 10

ABSTRACT ... 12

INTRODUCTION ... 13

Contamination during migration hypothesis ... 14

The mixed-support hypothesis ... 15

Contaminant studies in Latin America ... 15

Organochlorines ... 16

Heavy metals ... 17

Persistent organic pollutants ... 15

Tissues frequently examined ... 17

Exposure Pathways ... 18

Contaminant exposure to migratory birds and future research foci ... 20

ACKNOWLEDGEMENTS ... 21

LITERATURE CITED ... 22

Capítulo III Heavy metals in raptors during their autumn migration ... 28

ABSTRACT ... 29

INTRODUCTION ... 31

METHODS ... 33

Study area ... 33

Collection of samples ... 34

Laboratory analyses ... 35

Statistical analyses ... 36

RESULTS ... 37

Differences between resident and migratory species ... 37

Differences between tissues ... 37

Differences among species ... 38

DISCUSSION ... 40

Differences in resident and migratory and inferred metal exposure ... 40

Tissue differences and timing of exposure... 40

Ecological relevance in species comparisons ... 40

Metal ingestion pathways and toxicity in the literature ... 43

Future research questions developed from the analyses ... 46

ACKNOWLEDGEMENTS ... 47

LITERATURE CITED ... 48

Capítulo IV Conclusión General ... 123

(12)

Lista de Tablas y Figuras

Capítulo II

Table 1. Previous avian contamination studies in Latin America………15

Capítulo III

Table 1. Minimum and maximum detection limits (DL) of metals using the Metrohm 747

Computrace voltameter used in this study………49

Table 2. Blood and feather samples of five species raptors collected in……….49 Veracruz, Mexico

Table 3. Means ± standard deviations of metal concentrations by species……….50

Figure 1. The location of the banding station, and trapping area for Roadside hawks. 1) Cansaburro banding station. 2) El Cerro banding stations. 3) The municipality of

Mozomboa. 4) The municipality of Tlalixcoyan…………..………51

Figure 2. Blood means between resident and migratory species with std. dev…..…….52

Figure 3. Feather means between resident and migratory species with std. dev…...…..52

Appendix 1. Frequency of metals by tissue, and species………...….53

(13)

Capítulo I

(14)

1. INTRODUCCIÓN

En investigaciones previas sobre la adquisición de los contaminantes por aves migratorias

(Lacher et al., 1997, Sodhi et al., 2011), se ha hipotetizado que los contaminantes son

adquiridos en las zonas de anidación (Elliott et al., 2007). Sin embargo, otros estudios en

contraste señalan a las zonas invernales como los lugares donde se presenta la mayor

adquisición de contaminantes (Fyfe et al., 1990). El tema se complica por el hecho de que

varios contaminantes, como los metales pesados, tienen mecanismos de ingestión,

exposición, así como adquisición que son difieren entre sí y de otros químicos.

Hay poco conocimiento sobre el afecto de las estadías anuales en zonas invernales

en las aves migratorias en lo general, y a las aves rapaces en lo particular. Por ejemplo, en

las pampas de Argentina, durante los años de 1995 y 1996, se registraron 5095 muertes de

Buteo swainsonii (Goldstein et al., 1999) como consecuencia del uso del herbicida

organofosfato, monocrótofos, utilizado en los cultivos de soya, algodón, y arroz. Estos

eventos aumentaron la curiosidad de investigar y saber más sobre la contaminación de las

aves rapaces migratorias durante la migración y temporada invernal durante su ciclo anual.

Este caso es uno de los más sobresalientes de mortandad de aves rapaces durante la

temporada invernal. Sin embargo, poco conocemos de otros casos para otras zonas

geográficas en el mundo. Las aves rapaces indican la contaminación por su sensibilidad a

concentraciones de polutantes orgánicos persistentes, y metales pesados por ser

depredadores (Furness, 1993).

Veracruz, , una zona geográfica en la parte central de la costa del Golfo de México

es un embudo geográfico para las aves migratorias, en particular, aves rapaces (Bildstein,

2004). Por ser un corredor migratorio principal entre Norte y Sudamérica, hay grandes

(15)

migración de las aves rapaces en Veracruz, generando mucha información sobre su

ecología, así como estimaciones de la variación interanual en las poblaciones de aves que

pasan por los sitios donde se monitorean estas aves (Ruelas et al., 2000).

El hábitat de las aves migratorias ha cambiando rápidamente por el cambio de uso

del suelo: crecimiento de las zonas urbanas, la industria, y la agricultura y ganadería

extensivas (Benítez et al., 2014). Con este paisaje fragmentado se puede contaminar el

ambiente con metales pesados y bioacumularse en la red alimenticia, se podría contaminar

y/o intensificar a las aves rapaces (Tchounwou et al., 2012).

Sabemos sobre el efecto de algunos metales pesados más que de otros. Por ejemplo,

en los Estados Unidos de América y Canadá, se han hecho estudios con mercurio (Hg) y

plomo (Pb) en las aves rapaces (Rattner et al., 2011). El mercurio es un indicador de la

contaminación de varias industrias antropogénicas como la fissión nuclear, refinación de

metales, pesticidas, pilas, y la producción de papel, el cual se acumula en el aire, agua y

suelo (Singh et al., 2011). El plomo es un metal persistente que se puede encontrar en el

ambiente como consecuencia de la industria minera, desechos de municipios, combustibles,

artesanías y pintura (World Health Organization, 2010). En cuanto a sus impactos en la

conservación de las aves rapaces, el plomo también se puede adquirir por medio de balas de

cacería (Pain et al., 2009). El plomo está en los balines de la munición de escopetas, y

varias especies de organismos que cazan los humanos a su vez son presas de las aves

rapaces. Si hay desechos de organismos con postas de plomo, o si sobrevive un organismo

después de que le dispare un cazador, las aves rapaces como depredadores puede adquirir el

(16)

problemas neurológicos, cambiando el comportamiento y éxito reproductivo, y en altas

concentraciones, matando al organismo.

Además, existen dos trabajos muy importantes sobre la exposición de aves rapaces

migratorias, fuera sus áreas de reproducción, a contaminantes lejos de sus áreas de

reproducción por organoclorados en Pandion haliatus (Elliott et al., 2007) y Falco

femoralis (Mora et al., 2011). Sin embargo, hay poco o conocimiento en México y

Latinoamérica del nivel de contaminación en las aves rapaces durante la migración.

2. MARCO TEÓRICO

El uso del suelo, el paisaje y el agua son determinantes importantes en la ruta de ingesta de

metales pesados en los organismos. En el estado de Veracruz se presentan cambios

continuos de uso de suelo, que comúnmente involucran un gran impacto humano (Mora et

al., 2011). Los cañaverales y pastizales para la ganadería, así como la industria minera y la

extracción del petróleo, son comunes dentro del estado (INEGI, 2018). Estas actividades

traen consigo una cantidad considerable de productos químicos persistentes que afectan a

los ecosistema y agreocosistemas. Por el lugar que ocupan en las cadenas alimenticias, las

aves rapaces son particularmente sensibles a los contaminantes por efecto de la

bioacumulación (Dauwe et al., 2003). Estudiar los niveles de contaminación en aves

rapaces nos permite obtener información a diferentes niveles tróficos y, por lo tanto, inferir

el grado de contaminación dentro del ecosistema (Castro et al., 2010).

En las aves rapaces, se han estudiado metales pesados como el plomo y el mercurio,

además de organoclorados y compuestos orgánicos persistentes que tienen la ventaja de

(17)

ambiente (Bank et al., 2012). Por su persistencia, los metales pesados se pueden muestrear

y detectar fácilmente. El mercurio es un metal que puede presentarse en el ambiente

dependiendo de varios procesos, incluyendo la fábrica de cobre o plomo, desechos de la

producción de electricidad nuclear, bases militares, incineración de desechos de municipios

y fabricas mineras (Henny & Elliott, 2015). En su ciclo, el mercurio sale a la atmósfera

para entrar a sistemas acuáticos y vegetación por el ciclo de agua, y así poder ser

consumido por invertebrados, y consumidores en sistemas acuáticos (Evers et al., 1998).

Por su escala trófica en redes de alimentación, las aves rapaces son indicadoras de

exposición indirecta a metales pesados, y a la vez, muy sensibles cuando están expuestos

(Rattner et al., 2011). Dependiendo de la cantidad de mercurio, es como se puede afectar al

comportamiento y reproducción de las aves, llegando a producir mortalidad (Scheuhammer

et al., 2007)

El plomo es un metal no-esencial que también se encuentra como producto de los

desechos de las fábricas y de las industrias mencionadas en el caso del mercurio (Fisher et

al., 2006). Además, de encontrarlo en los suelos y agua por el mismo proceso que el

mercurio, también se puede encontrar en el barniz de cerámicas mexicanas, tuberías de

agua (Romieu & Lacasana, 1997) y en municiones de cacería (Pain et al., 2009). Los

cartuchos de escopeta son un gran riesgo para las rapaces que son oportunistas y comen

presas que a su vez también son cazadas por humanos. Incluso los Galliformes podrían

comer balines de plomo con la intención de digerir su comida (Fisher et al., 2006). El

plomo afecta al comportamiento, el sistema nervioso, los riñones, el sistema circulatorio y,

(18)

metal esencial para los procesos sanguíneos, tal como el cobre, pero en altas

concentraciones puede ser mortales (Eisler, 1993).

El cobre también se puede encontrar en el ambiente por fabricar utensilios de este

metal y en fungicidas (Pohl et al., 2011). Varias cosechas en Veracruz, como el café, tienen

plagas de diferentes hongos, que se combaten mediante la aplicación de fungicidas

metanólicos.

El cadmio es un metal que se encuentra en la producción y uso de fertilizantes, y en

la fabricación de pilas. Normalmente el cadmio es procesado en suelos por plantas, el

cadmio es el séptimo metal más tóxico que tiene una interacción antagonista con el Zn en

los procesos sanguíneos (Jaishankar et al. 2014). El cadmio puede reemplazar a enzimas

conteniendo Zn, duplicándose cuando se une con metanólicos (Castagnetto et al., 2002).

3. ALCANCE DE ESTE TRABAJO

En este trabajo presento mi investigación de las concentraciones de seis metales en dos

tipos de tejidos (plumas y sangre) en aves rapaces (Falconiformes, Accipitriformes)

residentes y migratorias. Las concentraciones de metales en sangre indican una reciente

ingesta, mientras que las concentraciones en las plumas señalan la incorporación del metal

durante la muda (Tsipoura et al., 2017). En el primer capítulo, esta tesis hace una revisión

de los estudios de contaminación de aves hechos en México. En el capítulo 2 comparo los

niveles de metales pesados de rapaces residentes y migratorias. Mi estudio fue llevado a

cabo mediante métodos no letales, tomando muestras de sangre y plumas. Una meta

importante de esta investigación es generar información sobre la temporalidad de la

(19)

LITERATURA CITADA

Bank, M., Scheuhammer, A. M., Basu, N., Evers, D. C., Heinz, G. H., Sandheinrich, M. B. 2012. Ecotoxicology of Mercury in Fish and Wildlife: Recent Advances. Toxicology, Risk Analysis, Humans, and Policy, 11: 221-239.

Benitez, J. A., Cerón-Bretón, R. M., Cerón-Bretón, J. G., Rendón-von-Osten, J. 2014. The environmental impact on human activities on the Mexican coast of the Gulf of Mexico: review of status and trends. WIT Trans. Ecology and the Environment, 181: 37-503.

Bildstein, K. 2004. Raptor migration in the neotropics: patterns, processes, and consequences. Ornitología Neotropical. 15: 83-99.

Castagnetto, J.M., Hennessy, S.W., Roberts, V.A., Getzo, E.D., Tainer, J.A., Pique, M.E. 2002. MDB: the metalloprotein database and browser at the Scripps Research Institute. Nucleic Acids Res 30(1): 379–382.

Castro, I., Aboal, J. R., Fernández, J. A., Carballeira, A. 2010. Use of Raptors for Biomonitoring Heavy Metals: Gender, Age, and Tissue Selection. Bull Environ Contam Toxicol. 86: 347-351.

Dauwe, T., Bervoets, L., Pinxten, R., Blust, R., Eens, M., 2003. Variation of heavy metals within and among feathers of birds of prey: effects of molt and external contamination. Environmental Pollution. 124: 429-436.

Eisler, R. 1993. Zinc hazards to fish, wildlife, and invertebrates: A synoptic review. U.S. Department of the Interior Fish and Wildlife Service Patuxent Wildlife Research Center Laurel Maryland 20708.

Elliott, J.E., Morrissey, C.A., Henny, C.J., Inzunza, E.R., Shaw, P. 2007. Satellite Telemetry and prey sampling reveal contaminant sources to pacific northwest ospreys. Ecological Applications. 17(4): 1223-1233.

Fisher, I. J., Pain, D. J., Thomas, V. G., A review of lead poisoning in terrestrial birds. 2006. Biological Conservation. 131: 421-432.

Furness, R.W., Greenwood, J.J.D., Jarvis, P.J. Chapman and Hall. Under Title: Birds as Monitors of Environmental Change. United Kingdom.1993. Print.

(20)

Monocrotophos-induced mass mortality of Swainson’s Hawks in Argentina, 1995-1996. Ecotoxicology. 8: 201-214.

Henny, C. J., Elliott, J. E., 2015. Raptor Research Management and Techniques. Chapter 18: 333-350.

Instituto Nacional de Estadística, Geografía e Informática (INEGI). 2018. México en cifras.

http://www.beta.inegi.org.mx/app/areasgeograficas/?ag=30.

Jaishankar, M., Tseten, T., Anbalagan, N., Mathew, B.B., Beeregowda, K.N. 2014. Toxicity, mechanism and health effects of some heavy metals. Interdiscip. Toxicol. 7(2): 60-72. DOI: 10.2478/intox-2014-0009

Lacher Jr., T.E., Golstein, M. I., 1997. Tropical ecotoxicology: Status and needs. Environmental Toxicology and Chemistry. 16: 100-111.

Mora, M. A., Baxter, C., Sericano, J. L., Montoya, A. B., Gallardo, J. C., Rodríguez-Salazar, J. R. 2011. PBDEs, PCBs, and DDE in eggs and their impacts on Aplomado falcons (Falco femoralis) From Chihuahua and Veracruz, Mexico. Environmental Pollution, 159: 3433-3438.

Pain, D. J., Fisher, I. J., Thomas, V. G. 2009. A global update of lead poisoning in terrestrial birds from ammunition sources. In R. T. Watson, M. Fuller, M. Pokras, and W. G. Hunt (Eds.). Ingestion of Lead from Spent Ammunition: Implications for Wildlife and Humans. The Peregrine Fund, Boise, Idaho, USA. DOI 10.4080/ilsa.2009.0108

Pohl HR, Roney N, Abadin HG. Metal ions affecting the neurological system. Metal Ions. Life Sci. 2011; 8:247–262.

Rattner, B. A., Scheuhammer, A. M., Elliott, J. E. 2011. Environmental Contaminants in Biota Interpreting Tissue Concentrations. Second Edition.

Romieu, I., Lacasana, M. Prevalence of exposure and data quality of lead contamination in latin America and the Caribbean. LEAD IN THE AMERICAS a call for action. Ed Christopher P. Howson, Ed Mauricio Hernández-Ávila, Ed David P. Rall. Washington, USA. Board on International Health Institute of Medicine. Cuernavaca, Mex. The National Institute of Public Health. 1997. 77-83. Print.

Ruelas, E. I., Hoffman, S. W., Goodrich, L. J., Tingay, R. 2000. Conservation strategies for the world’s largest known raptor migration flyway: Veracruz the river of raptors. Raptors at Risk: 591-595.

Scheuhammer, A. M., Meyer, M. W., Sandheinrich, M. B., Murray, M. W. 2007. Effects of Environmental Methylmercury on the health of Wild Birds, Mammals, and Fish. Ambio. 36: 12-18.

(21)

diversity. Conservation of Tropical Birds.

Singh, R., Gautam, N., Mishra, A., Gupta, R. 2011. Heavy metals and living systems: An overview. Indian Journal of Pharmacology 43: 246-253.

Tchounwou, P.B., Yedjou, C.G., Patlolla, A.K., Sutton, D.J. 2012. Heavy metals toxicity and the environment. EXS. 2012 ; 101: 133–164. doi:10.1007/978-3-7643-8340-4_6.

Tsipoura, N., Burger, J., Niles, L., Dey, A., Gochfeld, M., Peck, M., Mizrahi, D. 2017. Metal levels in shorebird feathers and blood during migration through Delaware Bay. Arch Environ Contam Toxicol 72: 562-574. doi: 10.1007/s00244-017-0400-2

(22)

Capítulo II.

(23)

Chapter II

CONTAMINANT EXPOSURE TO BIRDS DURING MIGRATION AND NON-BREEDING SEASON: A REVIEW

Meagan L. Campbell1 & Ernesto Ruelas Inzunza1,2

1Universidad Veracruzana, Instituto de Biotecnología y Ecología Aplicada (INBIOTECA),

Av. de las Culturas Veracruzanas 101, Col. Emiliano Zapata, 910910, Xalapa, Veracruz, México.

E- mail: mcampbell.uv@gmail.com

(24)

ABSTRACT.—Avian contamination during migration is a long debated topic. After the

ban of DDT in the United States of America and Canada, researchers worried that

migratory birds may be affected by these pesticides, their persistent secondary metabolites,

and other contaminants during the part of their annual cycle away from North America.

After decades of migration research and ecotoxicology research, two hypotheses exist. (1)

Literature continues to publish the idea that migratory birds are probably exposed to more

contaminants than non-migratory birds throughout their annual cycle, given the fact that

migrants spend a significant amount of time away from their breeding areas. (2) A second

possibility, based on a good number of ecotoxicology studies, actually found a decline in

DDT secondary metabolites in Mexico after 1979, and are less conclusive as to where

migratory birds are exposed to more contaminants. After more than 30 years of research,

evidence in support of the former hypothesis is scant, and studies from localities throughout

Latin America support a mosaic of effects with an unclear definitive answer. The outcome

of this literature review is still inconclusive—but a slowly building body of evidence for

this region foresees conclusions that will be easier to draw once the type of contaminant,

tissue, and species of bird are synthesized in order to discover clear patterns of contaminant

exposure.

(25)

INTRODUCTION

Neotropical migratory bird populations encounter a wide range of limitations throughout

their annual cycle between North and South America. The majority of migratory research

occurs in the breeding regions, where the patterns of contaminant use are relatively

well-known and regulations more strict, creating assumptions that the greatest risks for

migratory birds occur while migrating south and during the over-wintering period (La Sorte

et al., 2017). Given the broad range of regulations for the use of contaminants throughout

countries in the Americas, many ornithologists assume that migratory birds are exposed to

more contaminants while in Latin America. With less avian ecotoxicology studies

occurring south of the United States and Canada, it is important to review the existing

literature regarding migratory contamination, understand any broad-scale patterns in its

presence in birds, and identify gaps in research (Henny & Elliott, 2015).

Many survey datasets, including migration counts, are helpful at identifying effects

at a population level, whereas information about the health of individuals gives researchers

a more precise insight on the impact of contaminant exposure during winter habitats and its

overall effect on the annual cycle of migratory birds (Lacher et al., 1997). Challenges faced

by birds during migration possibly carry over and affect their fitness beyond the season in

which they were exposed (such as exposure to contaminants or habitat loss, Harrison et al.,

2010).

This paper summarizes known avian ecotoxicology research during southward

migration and the overwintering periods throughout the Americas. We review 27 papers

(26)

covering 165 species, 37 localities, and 13 types of contaminants. We, identify regional and

thematic gaps, and project promising avenues for future research.

Contamination during migration hypothesis

South of the United States and Canada, many contaminant regulations are unclear, vague,

or non-existent. It is well known that intensive agriculture, high pesticide application, and

aggressive mining are prevalent landscape uses in Latin America (Servicio Geológico de

México, 2015, Food and Agriculture Organization of the United Nations 2017).

The federal government’s Secretaría de Economía de México boasts that 70% of the

country is under exploration by mining operations, the majority of them done by foreign

companies (SE, 2018). The intensity of these mining operations, augmented by

decades-long use of pesticides, herbicides, and a suite of contaminants from agricultural sources,

plus the management of industrial waste throughout the country under unclear regulations

is an intuitive scenario to hypothesize that migratory birds are exposed to stressful

conditions—and possibly more contaminated ecosystems—while outside of their nesting

grounds (Klaassen et al. 2012).

Although this is a hypothesis accepted as conventional wisdom in the migration

literature, ecotoxicology literature is much less conclusive. The use of

Dichlorodiphenyltrichloroethane, commonly known as DDT and its consequences in

wildlife throughout the western hemisphere, prompted ornithologists and ecotoxicologists

to sample birds during migration and non-breeding season in order to solve this question

(27)

The mixed-support hypothesis

An alternative idea, not quite an antonym of the previous one, is that contaminant exposure

patterns do not conclusively support the idea that birds acquire contaminants during their

non-breeding season. Existing evidence shows that these contamination patterns are an

actual mosaic of trends that vary widely among species, contaminant type, and geographic

location of the study (Mora et al., 2016).

Contaminant studies in Latin America

Contamination studies on migratory birds exist throughout North America (Ackerman et

al., 2016; Norstrom et al., 2000; Snyder et al., 1973). However, these studies show a

fragmented scenario with numerous gaps. Ecologically, the species under study belong to

different trophic levels, live in different ecosystems, and the contaminants analyzed are

different chemical compounds and elements (Table 1). The tissues analyzed are many,

species and ecosystems are difficult to correlate, and the processes inferred from patterns

incomplete (Furley et al., 2018). Choosing which contaminant and which species is key to

understanding bioaccumulation and biomagnification in migratory birds. For example,

contamination concentrations in passerines, indicate a different exposure from diet, than

raptors, given that their concentrations usually accumulate from their prey species. A study

on pesticides in warblers would indicate direct exposure, whereas in raptors, it would

indicate accumulation and magnification from their directly exposed prey species.

(28)

Convention (1998) were Aldrin, Chlordane, DDT, Dieldrin, Endrin, Heptachlor,

Hexachlorobenzene (HCB), Mirex, Toxaphene, Polychlorinated biphenyls (PCB),

Polychlorinated dibenzo-p-dioxins (PCDD), and Polychlorinated dibenzofurans (PCDF).

After the first 12 POPs were defined, over the years more were added (2017): Apha

hexachlorocyclohexane, Beta hexachlorocyclohexane, Chlordecone, Decabromodiphenyl

ether (commercially known as c-decaBDE), Hexabromobiphenyl,

Hexabromocyclododecane, Hexabromodiphenyl ether and heptabromodiphenyl ether

(commercially known as octabromodiphenyl ether), Hexachlorobutadiene, Lindane,

Pentachlorobenzene, Pentachlorophenol and its salts and esters, Perfluorooctane sulfonic

acid, its salts and perfluorooctane sulfonyl fluoride, Polychlorinated naphthalenes,

Short-chain chlorinated paraffins (SCCPs), Technical endosulfan and its related isomers,

Tetrabromodiphenyl ether and pentabromodiphenyl ether (commercially known as

pentabromodiphenyl ether). These pollutants are declared POPs by their toxic persistence in

the environment. The majority of the POPs studied in avian ecotoxicology studies are

organochlorines, DDT, and DDE, seeing how the use of pesticides over time impact

wildlife (Elliott et al., 2007; Mora et al., 2016).

Organochlorines.—Existing studies from Mexico involve organochlorines and DDT (1,1,1-trichloro-2,2-bis( p-chlorophenyl)ethane) metabolites in raptors, passerines, and

wading birds, as well as heavy metals and stable isotopes in raptors, passerines, and aquatic

birds (Elliott et al., 2007, Torres et al., 2014, Maldonado et al., 2016). Organochlorines are

POPs, however, these particular POPs are more frequently examined in the literature. In the

case of raptors in Mexico, the contamination focus has been organochlorines (Elliott et al.,

(29)

DDT in juvenile Sharp-shinned Hawks (Accipiter striatus) returning from their

overwintering grounds after sampling hatch year birds in the fall during their southward

migration (Elliott and Shutt 1993).

Another study comparing DDT and DDE in migrating birds in Mexico and the

southwestern United States did not report significant differences in concentrations of DDT

or DDE in passerines (Mora 1997). A more recent study (Maldonado et al., 2016) that

sampled migratory passerines in Texas, Yucatán, and Costa Rica, found lower mean

concentrations of DDE in the birds sampled in Yucatán and Costa Rica, than the birds

sampled in Texas—further complicating the hypothesis that migratory birds encounter

more contamination in their overwintering grounds with evidence against it. These studies

generate information about DDT compounds in Latin America, given that the regulations

are less clear than in the United States (Table 1).

>> Insert Table 1 here

Heavy metals.—Oil, agriculture, and mining are the other primary industries in Mexico and Latin America, causing heavy metal contamination (Servicio Geológico de México,

2015; Food and Agriculture Organization of the United Nations, 2017). Given that

agriculture and resource extraction are prevalent industries south of the United States and

Canada, further exploring their contamination to migratory birds will help support or falsify

the hypothesis that migratory birds encounter more contamination while migrating south, or

in their overwintering territories.

(30)

concentrations indicate body burden during molt (Tsipoura et al., 2017). More importantly,

it will add help answer the hypothesis that birds are exposed to higher levels of

contaminants during the migration than the non breeding season, and illustrate which

exposure pathways affect different organs and tissues (Burger et al., 2014).

Exposure Pathways.—The aforementioned industries in Mexico and Latin America could expose raptors to heavy metals, causing a detrimental carry over effect (COE) (Harrison et

al., 2010). Heavy metals are released into the atmosphere and enter the water cycle through

aquatic ecosystems and soils (Singh et al., 2011). Once low trophic-level organisms

consume heavy metals, they can advance up the food web, and reach top predators. Heavy

metal toxicity affects the function of different parts of organisms in different ways. Lead

binds to hard tissues during the ossification process, and can be inhaled in the air, or

ingested causing neurological and reproductive failures (Rattner et al., 2011). Lead is a

major concern in raptors because leadshot bullets in prey are an additional source of

contamination (Fisher et al., 2006).

Mercury is another popular heavy metal studied in birds. Usually emerging from

aquatic ecosystems, methylmercury levels indicate ingested mercury, from an

anthropogenic source (Nichols et al., 2009). As top predators, ecotoxicologists use raptors

as a sentinel species to try to predict ecosystem health parallel to humans. Raptors indicate

biomagnification of heavy metals because of their trophic level, meaning that they usually

have higher concentrations than their prey because their exposure occurs directly from their

prey, rather than where the heavy metal was initially applied or deposited (Peakal &

Burger, 2003). Along with heavy metals, pesticides especially persistent organic pollutants

(31)

and its primary metabolite, 1,1-dichloro-2,2-bis ( p-chlorophenyl)ethylene (DDE) led to

reproductive failures in birds of prey, and researchers still find residues in bird tissues after

(32)

Although DDT was banned in Canada and the United States in the early 1970’s,

detections in Mexico continue occurring (Pozo et al., 2009). Along with heavy metals and

POPs, different contaminants such as Thiacloprid

([3-[(6-chloro-3-pyridinyl)methyl]-2-thiazolidinylidene]cyanamide), and other neonicitinoides used to treat agricultural seed for

pests, are newer, and their effects on wildlife are still being determined. In an experiment

by Eng et al. in Canada, white crowned sparrows (Zonotrichia leucophrys) were dosed with

imidacloprid (neonicotinoid) and chlorpyrifos (organophosphate), and the white-crowned

sparrows lost their migratory orientation and fitness, exposing a carry-over effect from

these contaminants (Eng et al., 2017). The duplicity of contaminants in the environment

enter food webs in different ways, adding complexity to how they may affect bird

migration between countries.

Contaminant exposure to migratory birds and future research foci

The wide range of ecotoxicology studies throughout the Americas over the past 30 years

has helped researchers better understand contamination pathways, and how they affect

migratory birds. Further studies that link the migratory pathways, and use similar tissues

paralleled with laboratory experiments will help fine-tune this effort.

Currently, there are multiple studies with multiple contaminants at different trophic

levels, analyzed with different tissues. After decades of research, it is time to tie these

studies together to make a matrix understanding what the results indicate exactly. Field

samples, along with laboratory tests to understand the metabolic patterns of each

contaminant, will help translate concentrations from samples collected in the field.

Tracking technology is now financially available and feasible for researchers to watch

(33)

matrix and following individuals throughout their annual cycles will create a

non-destructive methodology, which is more accessible in the field. If researchers could

elucidate what egg, feather, and blood samples indicate with precision for the body burden

of the individuals studied given their trophic levels, individuals could be analyzed with a

non-lethal method, protecting the species. Tracking technology could precisely indicate

where the individual visits, allowing researchers to make contacts, and collect samples in

that environment, quantifying the input exposure. Just as countries have migratory studies

that collaborate, this collaboration could cross institutions, and generate global data,

allowing stakeholders to understand just how interconnected they are. A synthesis in

migration and ecotoxicology studies will make these efforts simple and more complete.

ACKNOWLEDGEMENTS

The authors thank past researchers who have published their work, helping scientists

understand what research has occurred, and which focuses will help with future work.

Mexico’s Consejo Nacional de Ciencia y Tecnología (CONACYT) provided a graduate

fellowship 607620 to MLC during the time it took for this literature review. ERI received

support from CONACYT’s Sistema Nacional de Investigadores (fellowship 47135), the

Secretaría de Educación Publica’s PRODEP Program (UV-PTC-868), and the

(34)

LITERATURE CITED

Ackerman, J.T., Eagles-Smith, C.A., Herzong, M.P., Hartman, C.A., Peterson, S.H., Evers, D.C, Jackson, A.K., Elliott, J.E., Vander Pol, S.S., Bryan, C.E. 2016. Avian mercury exposure and toxicological risk across Western North America: A synthesis. Science of the Total Environment 568: 749-769.

Benitez, J. A., Cerón-Bretón, R. M., Cerón-Bretón, J. G., Rendón-von-Osten, J. 2014. The environmental impact on human activities on the Mexican coast of the Gulf of Mexico: review of status and trends. WIT Trans. Ecology and the Environment, 181: 37-503.

Burger, J., Gochfeld, M., Niles, L., Dey, A., Jeitner, C., Pittfield, T., Tsipoura, N. 2014. Metals in tissues of migrant semipalmated sandpipers (Calidris pusilla) from Delaware Bay, New Jersey. Environmental Research, 133:362-370

Chapa-Vargas, L., Mejía-Saavedra, J.J., Monzalvo-Santos, K., Puebla-Olivares, F. 2010. Blood lead concentrations in wild birds from a polluted mining region at Villa de La Paz, San Luis Potosí, Mexico. Journal of Environmental Science and Health Part A, 45: 90-98.

Elliott, J.E., Miller, M.J., Wilson, L.K. 2005. Assessing breeding potential of peregrine falcons based on chlorinated hydrocarbon concentrations in prey. Environmental Pollution, 134:353-361.

Elliott, J.E., Morrissey, C.A., Henny, C.J., Inzunza, E.R., Shaw, P. 2007. Satellite Telemetry and prey sampling reveal contaminant sources to Pacific Northwest ospreys. Ecological Applications 17(4): 1223-1233.

Elliott, J.E., D.A. Kirk, K.H. Elliott, J. Dorzinsky, S. Lee, E. Ruelas I., K.M.T. Cheng, T. Scheuhammer y P. Shaw. 2015. Mercury in Forage Fish from Mexico and Central America: Implications for Fish-Eating Birds. Archives of Environmental Contamination and Toxicology 69(4): 375–389.

Elliott, J.E., Shutt, L. 1993. Monitoring Organochlorines in blood of sharp-shinned hawks (Accipiter striatus) migrating through the great lakes. Environmental Toxicology and Chemistry, 12: 241-250.

Fisher, I. J., Pain, D. J., Thomas, V. G., A review of lead poisoning in terrestrial birds. 2006. Biological Conservation. 131: 421-432.

(35)

Eng, M.L., Stutchbury, B.J.M., Morrissey, C.M. 2017. Imidacloprid and chlopyrifos insecticides impair migratory ability in a seed-eating songbird. Nature Scientific Reports, 7:15176 DOI:10.1038/s41598-017-15446-x.

Furley, T.H., Brodeur, J., Silva de Assis, H.C., Carriquiriborde, P., Chagas, K.R., Corrales, J., Denadai, M., Fuchs, J., Mascarenhas, R., Miglioranza, K.S.B., Miguez, D.M.C., Navas, J.M., Nugegoda, D., Planes, E., Rodriguez-Jorquera, I.A., Orozco-Medina, M., Boxall, A.B.A., Rudd, M.A., Brooks, B.W. 2017. Toward sustainable environmental quality: Identifying priority research questions for Latin America. Integrated Environmental Assessment and Management, 9999: 1-14.

Harrison, X.A., Blount, J.D., Inger, R., Norris, D.R., Bearhop, S. 2010. Carry-over effects as drivers of fitness differences in animals. Journal of Animal Ecology

Henny, C. J., Elliott, J. E., 2015. Raptor Research Management and Techniques. Chapter 18: 333-350.

Klaassen, M., Hoye, B.J., Nolet, B.A., Buttemer, W.A. 2012. Ecophysiology of avian migration in the face of current global hazards. Philosophical Transactions of The Royal Society, 367: 1719-1732.

La Sorte, F.A., Fink, D., Blancher, P.J., Rodewald, A.D, Ruiz-Gutierrez, V., Rosenberg, K.V., Hochachka, W.M., Verberg, P.H., Kelling, S. 2017. Global change and the distributional dynamics of migratory bird populations over wintering in Central America. Global Change Biology: 1-13.

Lacher Jr., T.E., Golstein, M. I., 1997. Tropical ecotoxicology: Status and needs. Environmental Toxicology and Chemistry. 16: 100-111.

Maldonado, A.R., Mora, M.A., Sericano, J.L. 2016. Seasonal differences in contaminant accumulation in neotropical migrant and resident songbirds. Arch Environ Contam Toxicol. DOI 10.1007/s00244-016-0323-3

Mora, M. A. 1997. Transboundary pollution: Persistent Organochlorine pesticides in migrant birds of the southwestern United States and Mexico. Environmental Toxicology and Chemistry. 16, 1: 3-11.

Mora, M. A., Baxter, C., Sericano, J. L., Montoya, A. B., Gallardo, J. C., Rodríguez-Salazar, J. R. 2011. PBDEs, PCBs, and DDE in eggs and their impacts on Aplomado falcons (Falco femoralis) From Chihuahua and Veracruz, Mexico

(36)

Mora, M.A., Durgin, B., Hudson, L.B., Jones, E. 2016. Temporal and Latitudinal Trends of p.p’-DDE in eggs and carcasses of North American Birds from 1980-2005. Environmental Toxicology and Chemistry, 35: 1340-1348.

Morrissey, C.A., Bendell-Young, L.I., Elliott, J.E. 2004. Linking contaminant profiles to the diet and breeding location of American dippers using stable isotopes. Journal of Applied Ecology, 41:502-512.

Nichols, J.W., Bennet, R.S., Rossmann, R., French, J.B., Sappington, K.G., 2009. A physiologically based toxicokinetic model for methylmercury in female American kestrels. Environmental Toxicology and Chemistry. 29: 1854-1867.

Norstrom, R.J., Simon, J.M., Wakeford, B., Weseloh, D.V.C. 2002. Geographical distribution (2000) and temporal trends (1981-200) of brominated diphenyl ethers in Great Lakes Herring Gull eggs. Environ. Sci. Technol., 36: 4783-4789.

Páez-Osuna, F., Álvarez-Borrego, S., Ruiz-Fernandez, A.C., García-Hernández, J., Jara-Marini, M. E., Bergés-Tiznado, M. E., Piñon-Gimatem A., Alonso-Rodríguez, R., Soto-Jiménez, M. F., Frías-Espericueta, M. G., Ruelas-Inzunza, J. R., Green-Ruiz, C. R., Osuna-Martínez, C. C., Sanchez-Cabeza, J.A. 2017. Environmental Status of the Gulf of California: A pollution review. Earth Science Reviews, 166: 181-205.

Pozo, K., Harner, T., Lee, S.C., Wania, F., Muir, D.C.G., Jones, K.C 2009. Seasonally resolved concentrations of persistent organic pollutants in the global atmosphere from the first year of the GAPS study. Environ. Sci. Technol., 43: 796-803.

Peakall, D., Burger, J., 2003. Methodologies for assessing exposure to metals: speciation, bioavailability of metals, and ecological host factors. Ecotoxicology and Environmental Safety. 56: 110-121.

Rattner, B. A., Scheuhammer, A. M., Elliott, J. E. 2011. Environmental Contaminants in Biota Interpreting Tissue Concentrations. Second Edition.

Rendón-von Osten, J., Galán, F.E., Tejeda, C. 2001. Survey of lead in feathers of Anatidaes from the Pabellon Inlet, Sinaloa, Mexico. Bull. Environ. Contam. Toxicol. 67: 276-281. DOI: 10.1007/s00128-0121-z

Scheuhammer, A.M. 1987. The chronic toxicity of aluminum, cadmium, mercury, and lead in birds: a review. Environmental Pollution, 46: 263-295.

Secretaría de Economía. (2018, 01, 08). https://www.gob.mx/se/acciones-y-programas/mineria.

Singh, R., Gautam, N., Mishra, A., Gupta, R. 2011. Heavy metals and living systems: An overview. Indian Journal of Pharmacology 43: 246-253.

(37)

organochlorines, heavy metals, and the biology of North American accipiters. Biological Science, 23:5.

Stockholm Convention on Persistent Organic Pollutants (POPs), Interim Secretariat for the Stockholm Convention, United Nations Environmental Programme (UNEP) Chemicals, Geneva, Switzerland, Oct. 2001, 50 pp: (www.pops.int)

Torres, Z., Mora, M.A., Taylor, R.J., Alvarez-Bernal, D., Buelna, H.R., Hyodo, A. 2014. Accumulation and hazard assessment of mercury to waterbirds at lake Chapala, Mexico. Environmental Science and Technology, 48: 6359-6365.

Tsipoura, N., Burger, J., Niles, L., Dey, A., Gochfeld, M., Peck, M., Mizrahi, D. 2017. Metal levels in shorebird feathers and blood furing migration through Delaware Bay. Arch Environ Contam Toxicol, 72:562-574. DOI 10.1007/s00244-017-0400-2

United Nations Environmental Programme (UNEP). 1998. Preparation of an Interantional Legally Binding Instrument Implementing International Action on Certain

(38)

Table 1. Previous avian contamination studies in Latin America

Contaminant Study site Results Author (year)

Tropical

Ecotoxicology Latin America Need to generate more research Lacher and Goldstein, (1997)

Pollutants Gulf California, of

Mexico

Review of pollution in the Gulf of California-most metal pollution

occurs from mining Páez-Osuna et al., (2017)

POPs and

Heavy Metals

Baja California, Mexico

Common Ground-dove and

House Sparrow did not reach

toxic thresholds Jiménez et al. (2005)

POPs Western Hemisphere More DDE in Mexico, but did not significantly effect Ospreys Elliott et al. (2007)

POPs Baja California Sur, Mexico

High levels-not yet toxic of POPs in Osprey in a conserved lagoon

Rivera-Rodríguez and Rodríguez-Estrella (2010)

POPs North America

Did not find more DDE in Mexico in eggs than North along a review of studies along a latitudinal gradient

Mora et al. (2016)

POPs

Texas, USA;

Yucatan,

Mexico; Costa Rica

Least amount of contaminants in CR, next Mexico, and largest

amount in Texas Maldonado et al. (2016)

POPs and

Heavy Metals

Colorado River Delta, Mexico

Did not find concentrations of POPs and metals in eggs above

LOAELs in an intensive

agriculture area

García-Hernández et al. (2006)

(39)

Pb San Luis Potosí, Mexico

Found low sub-lethal effects in birds. Saw health effects, but not significant enough frequency in migratory species

Chapa-Vargas et al. (2010)

Hg Jalisco, México No significant differences in waterbirds, trend in length of

trout, and amount of Hg

Torres et al. (2014)

POPs (DDE,

DDT)

SW US, and throughout MX

POPs significantly declined in MX after the 70’s, and many birds in Mex have less DDT and DDE exposure than in the US

Mora (1997)

POPs (PBDEs, PCBs, DDE)

Chihuahua and Veracruz, Mexico

Aplomado Falcon not exposed to

(40)

Capítulo III.

(41)

Chapter III

HEAVY METALS IN RAPTORS DURING THEIR AUTUMN MIGRATION

ABSTRACT—Veracruz, Mexico, is one of the states with the highest diurnal raptor species richness in North America. It is also a globally significant migratory corridor for

raptors, as well as for other birds. Agriculture, mining, industry, and oil production are

possible contamination sources for birds in this state as well as in the rest of Mexico. The

majority of raptor metal contamination studies occur north of Mexico. Many researchers

hence posit that exposure to metal contaminants is higher in their non-breeding season

range. I analyzed blood and feather samples of raptors to look for traces of six heavy metals

(Al, Zn, Cu, Cd, Pb, and Hg), since the blood concentrations indicated dietary intake, and

feather concentrations indicated body burden during molt. I took blood and feather samples

of 194 hatch year Sharp-shinned Hawk (Accipiter striatus), Cooper’s Hawk (Accipiter

cooperii), Aplomado Falcon (Falco femoralis), Short-tailed (Buteo brachyurus), and

Roadside Hawk (Rupornis magnirostris). I captured most of the birds during the autumn

seasons of 2016 and 2017, at a raptor banding station located on the coastal plain of

Veracruz. From those samples, I analyzed subset of 194 feathers and 194 blood samples

(42)

higher in feathers than in blood, with positive correlations in Pb, and negative correlations

in Zn, Cu, and Hg. The high concentrations in Cu, Zn, and Al levels, as well as the

concentration of Pb, are higher than lethal thresholds reported in the literature. This study is

the first to provide information of heavy metal concentrations of resident and migratory

raptors during the autumn migration in Veracruz. These data helps us further understand the

timing and geographic location of heavy metal exposure in raptors.

(43)

INTRODUCTION

The coastal plain of Veracruz Mexico is a primary migratory corridor for raptors

during their southbound migration in the autumn (Bildstein, 2006). The continental

geography creates conditions conducive for raptor and soaring bird migration from boreal

habitats in Canada, through the Rocky and Appalachian mountain ranges in the United

States, to a geographic bottleneck from the Neovolcanic Belt where the Sierra Madre

Occidental converges with the Sierra Manuel Díaz between the mountains and the Gulf of

Mexico. Over 3 million raptors of about 23 species (depending on the year, some species

are not observed) pass this point during a 3-month period from August through November,

a phenomenon of a magnitude that does not occur anywhere else in the world (Bildstein et

al., 2004; Ruelas et al., 2009).

Extensive agriculture, cattle ranching, numerous industries, oil extraction, and

mining, are economic activities that influence landscape management in this part of Mexico

(INEGI, 2018). Many of these activities require abundant use of chemical products in order

to be undertaken as well deforest the landscape. The application of pesticides, herbicides,

fertilizers, and byproducts of urban activity has ecological consequences, as these

contaminants enter the food chain through different mechanisms.

The place where migratory raptors accumulate contaminants during their annual

cycle has been the subject of long debates. Some authors assume that stricter controls over

the use of chemicals in the United States and Canada results in a higher likelihood that

contaminants are acquired during the non-breeding season, in Latin America (Lacher &

(44)

from the United States of America and Canada (Ackerman et al., 2016). Raptors are

indicators of contaminant accumulation because of their trophic position at a predator level,

which helps researchers understand the severity of toxic elements within the environment.

Heavy metals are among the trace elements that occur in the environment and

bioaccumulate through different metabolic pathways. Once they reach top predators on the

food chain, such as raptors, they reach higher concentrations (Peakall & Burger, 2003).

Sampling different trace elements in Veracruz helps allude to what kind of

landscape management and human activities could be contributing to toxic levels of heavy

metal contamination, and how migrants and resident species reflect these contamination

patterns.

Pronatura Veracruz, A.C. operates the only raptor banding station in Mexico as part

of the Veracruz River of Raptors project. Hundreds of hawks and falcons of around 16

species are banded there every fall (Pronatura Veracruz, A.C. unpublished data). The

majority of the raptors captured at the banding station are juvenile (hatch year) birds,

indicating a relatively recent exposure (e.g., a few months) to trace elements (Pronatura

Veracruz, A.C., unpublished data). This makes non-destructive sampling methods for

heavy metals possible. By collecting feather and blood samples, two types of tissue that

accumulate contaminants at different rates, researchers can avoid euthanizing sample

individuals while obtaining samples adequate to understand short-term and annual exposure

to contaminants. Blood, for example, indicates exposure to a particular metal within the

most recent 3–5 day period, whereas feathers quantify exposure from the place and time

when they were formed (e.g., in the nest, for first-year birds, or in the location where they

(45)

the nesting site outside of Mexico, and blood indicates exposure during migration.

Sampling the blood and feathers of resident and migratory raptors compares exposure rates

at different places along the migratory corridor.

My research question was whether raptors acquire higher concentrations of metals

during the breeding or the non-breeding season/geographic range. By comparing metal

concentrations of resident species in Veracruz, with migratory species during their passage

through Veracruz, I expected to find differences in the concentrations between tissues

(blood and feathers) and species, which would indicate when migratory raptors experience

greater metal exposure.

My study objective was to compare metal levels from their nesting areas (in

feathers) to what was acquired in the more recent days in Veracruz (in blood), generating

information about when, where, and how each of the different metals could be entering this

system. I expected to find differences between tissues and species, indicating where

migratory raptors encountered higher exposure to different metals.

METHODS

Study area

The study area was located at banding stations inside of trapping blinds operated by

Pronatura Veracruz A.C. The station’s main trapping blind is located at the coastal plain of

Veracruz, where the Sierra Manuel Díaz mountain range reaches La Mancha, a town in the

municipality of Actopan, Veracruz (Fig. 1). Pronatura Veracruz A.C. operates the

(46)

system. In 2017, Pronatura Veracruz, A.C. operated an additional trapping blind on a butte,

2.47 kilometers due west of the Cansaburro main trapping blind (19°32’48.96”N,

96°23’42.68”W). These banding stations are directly south of the geographic bottleneck

that funnels migrants at La Mancha, and the CICOLMA research facility of the Instituto de

Ecología A.C. is visible from both blinds.

Collection of samples

I, along with the Pronatura banding station crew captured raptors with bow nets,

mist nets, and dho gaza nets using living lures, with SEMARNAT permit 08-049

RUEIE680506HNLLNR00. We captured Roadside Hawks with road trapping methods

using bal chatri traps with live mice as lures (Bloom et al., 2007). No raptors died during

the sampling process. I collected most blood and feather samples of raptors in the field at

the primary blind of the CRBS during the autumns of 2016 and 2017. I selected focal

species (Coopers Hawk, Sharp-shinned Hawk, Aplomado Falcon, Short-tailed Hawk, and

Roadside Hawk) for samples and analysis based on their capture frequencies in the banding

stations. We also sampled various migratory and resident species at the secondary blind. I

obtained a sample number relative to the availability of samples from the raptures captured.

For additional resident birds, I obtained Roadside Hawk (Rupornis magnirostris)

samples at various sites in the southeastern region of Veracruz near the wetlands of

Alvarado (Fig. 1).

I took blood samples with standard insulin needles and syringes purchased at local

drug stores (UPC 38290324914) and stored the blood in capillary tubes and Eppendorf

tubes with a 1.5-mL capacity immediately after taking a sample of 80–100 μL. Blood

(47)

day was finished. I froze the blood samples until we processed them in the laboratory

(Evers et al., 1998).

I obtained feather samples from the same individuals that we collected blood

samples from. I plucked two chest feathers from the individual, and stored them in paper

envelopes until analysis (Furness et al., 1986).

Laboratory analyses

I performed trace metal analysis using a Metrohm 747 Computrace apparatus.

Before running analyses, I pretreated samples by digesting the blood with 400 μL of 35%

HNO3 and deionized water. After the digesting each blood sample with HNO3, I diluted

them with 1 ml of deionized water. Once the blood samples were ready for analysis, they

were read by the voltameter for zinc (Zn), copper (Cu), lead (Pb), mercury (Hg), cadmium

(Cd), and aluminum (Al) (Metrohm Application Bulletin 186/2 e; 231/2 e). Feathers were

digested in 1 mL of 35% HNO3 and deionized water. After the solids were digested, they

were diluted with 2 mL of deionized water. Feather tests were run for the same metals

using the same buffers, electrolytes, and standard solutions as the blood samples on the

same machine. Results were reported in wet weight.

Zinc, copper, lead, and cadmium were analyzed with the same test, using a buffer

with 5 mL of H2O, 5 mL of acetate, an electrolyte with 10% HNO3 with ammonium acetate,

0.0095 mL of the sample, and Zn, Cu, Pb, Cd standard for comparison. Mercury samples

were analyzed with a buffer of 5 mL of H2O, 0.1 mL of sample, 5 mL of a disodium

Referencias

Documento similar

En estos últimos años, he tenido el privilegio, durante varias prolongadas visitas al extranjero, de hacer investigaciones sobre el teatro, y muchas veces he tenido la ocasión

que hasta que llegue el tiempo en que su regia planta ; | pise el hispano suelo... que hasta que el

Como asunto menor, puede recomendarse que los órganos de participación social autonómicos se utilicen como un excelente cam- po de experiencias para innovar en materia de cauces

irrelevancia constitucional del conflicto entre ley nacional y norma comunitaria; la cuestión de los derechos fundamentales y el artículo 10.2 de la CE; marco constitucional

1) to describe the food webs using carbon and ni- trogen stable isotopes, with emphasis on tempo- ral and habitat variations in the diet of P. clarkii occupies the same trophic

En cuarto lugar, se establecen unos medios para la actuación de re- fuerzo de la Cohesión (conducción y coordinación de las políticas eco- nómicas nacionales, políticas y acciones

D) El equipamiento constitucional para la recepción de las Comisiones Reguladoras: a) La estructura de la administración nacional, b) La su- prema autoridad administrativa

3. El régimen de concesiones. La posición de la concesionaria pública a) Como ya hemos adelantado, el artículo 2 de la Ley 223/1990 esta- blece que la actividad de difusión de