LECCIONES 1 Y 2. EL RECONOCIMIENTO DE ARGUMENTOS y LOS TIPOS DE ENUNCIADOS

Texto completo

(1)

IPC

(2)

LECCIONES 1 Y 2

(3)

RECONOCIMIENTO DE ARGUMENTOS

• Las oraciones que expresan proposiciones suelen ser llamadas declarativas. Afirman o niegan que algo sea el caso, son aserciones, y son tales que tiene sentido preguntarse por su verdad o

falsedad.

Un ARGUMENTO es un conjunto de proposiciones en donde alguna o algunas de ellas se

esgrimen como razón a favor de otra que pretende ser así establecida. A las primeras se las

denomina premisas; a la última, conclusión.

(4)

ORA

CIONE

S

SIMPLES COMPLEJAS DISYUNCIONES INCLUSIVAS EXCLUSIVAS CONJUNCIONES ORACIONES CONDICIONALES CONDICIONES SUFICIENTES CONDICIONES NECESARIAS

CONDICIONES NECESARIAS Y SUFICIENTES NEGACIONES

OTRAS ORACIONES

ENUNCIADOS SINGULARES Y UNIVERSALES

ENUNCIADOS EXISTENCIALES Y ESTADISTICOS

(5)

CONJUNCIONES

• En ellas se afirman dos o más proposiciones. Llamaremos conyuntos a cada una de las proposiciones combinadas por la conjunción.

(6)

DISYUNCIONES

• Combinan dos o más proposiciones, pero a diferencia de lo que ocurre con las

conjunciones, no se afirma que las proposiciones involucradas sean el caso, sino que al menos una de ellas lo es.

Los argumentos a favor de la legalización del aborto se basan en negar el carácter de persona al feto o en destacar la importancia del derecho de la madre sobre su propio cuerpo.

(7)

DISYUNCIONES INCLUSIVAS

• Al menos uno de los coyuntos es cierto, sin excluir la posibilidad de que ambos lo sean.

(8)

DISYUNCIONES EXCLUSIVAS

• Se afirma que uno de los disyuntos es el caso, pero se excluye la posibilidad de que ambos lo sean.

(9)

CONDICIONES SUFICIENTES

• Combina dos proposiciones pero de un modo particular: no afirma ninguna de las proposiciones combinadas; solo afirma que existe una relación entre ambas: que en el caso de darse una, se da la otra; que la verdad de una implica la verdad de la otra.

(10)

CONDICIONES NECESARIAS

Solo si un tsunami azota Buenos Aires la ciudad se inunda. En este caso “SOLO SI” introduce el consecuente.

“Solo si un tsunami azota Buenos Aires”: B “La ciudad se inunda”:A

(11)

CONDICIONES SUFICIENTES Y NECESARIAS

Si comes toda la comida, podrás comer postre

(12)

NEGACIONES

• Simplemente se dice que no es el caso que ocurra algo.

(13)

ENUNCIADOS SINGULARES Y UNIVERSALES

Un enunciado es singular cuando habla sobre un individuo especifico. El obelisco mide más de 60 metros.

• Para determinar la verdad o falsedad de la oración es necesario analizar el caso en cuestión.

Los enunciados universales hablan sobre todos los miembros de un conjunto. Todos los médicos cardiólogos hicieron la residencia.

• Para probar que esta oración es verdadera debemos analizar caso por caso y demostrar que la

propiedad siempre se cumple, en cambio para comprobar la falsedad alcanza con encontrar un solo caso donde la propiedad no se cumpla.

(14)

ENUNCIADOS EXISTENCIALES Y ESTADISTICOS

Algunos médicos se dedican a curar niños

Llamamos a estos enunciados existenciales, porque nos dicen que algunos miembros de determinado conjunto cumplen una determinada propiedad.

La probabilidad de que un fumador desarrolle cáncer de pulmón es 0,2

Llamamos a estas oraciones enunciados estadísticos o probabilísticos porque asignan una cierta probabilidad a determinado fenómeno o conjunto de fenómenos.

(15)

CONTINGENCIAS, TAUTOLOGIAS Y CONTRADICCIONES

Oraciones contingentes pueden ser verdaderas o falsas. Su verdad o falsedad no está determinada por su forma, sino que depende del contenido de la oración.

A diana le gusta el dulce de leche o el chocolate

Las tautologías son verdaderas en cualquier circunstancia Diana vendrá o no vendrá.

Las contradicciones son falsas en toda situación posible. Llueve y no llueve

(16)

LECCIÓN 3

(17)

TIPOS DE ARGUMENTOS

(18)

ARGUMENTOS DEDUCTIVOS

Ofrecen premisas de las cuales se sigue concluyentemente la conclusión.

La conclusión queda establecida concluyentemente a partir de las premisas, de modo que

si estas son el caso, la conclusión también debe serlo.

Si las premisas son verdaderas, la conclusión también lo es.

Un argumento deductivo es válido.

Un argumento válido que a su vez tiene todas sus premisas verdaderas suele llamarse

sólido.

(19)

ARGUMENTOS INVALIDOS

• Las premisas no ofrecen elementos de juicio suficientes a favor de la conclusión, de modo tal que aun en el caso en que ellas fuesen verdaderas, la conclusión podría no serlo.

Si A entonces B

B

A

Esta estructura de argumento recibe el nombre de Falacia de afirmación del consecuente. Esta forma de argumento es inválida y, por tanto, es posible construir para ella contraejemplos.

(20)

ARGUMENTOS DEDUCTIVOS

MODUS PONENS Si A entonces B A B MODUS TOLLENS Si A entonces B No B No A SILOGISMO HIPOTÉTICO Si A entonces B Si B entonces C Si A entonces C SIMPLIFICACION A y B A ADJUNCION A B A y B SILOGISMO DISYUNTIVO A o B No A B INSTANCIACION DEL UNIVERSAL

Todos los R son P

X es R X es P

(21)

LECCIÓN 4

(22)

ARGUMENTOS INDUCTIVOS

POR ANALOGÍA

X1 tiene las características F, G, …, Z x2 tiene las características F, G, …, Z xn tiene las características F, G, …

Por lo tanto, xn tiene la característica Z

Que las propiedades sean relevantes. Mientras mas aspectos compartan los casos analizados mas fuerte será

Mientras mas casos mas fuerte

POR ENUMERACION

INCOMPLETA

x1 es Z x2 es Z x3 es Z ……. xn es Z

Por lo tanto, todos los x son Z

Cuanto mayor sea la cantidad mejor Cuanto mas representativa mejor.

SILOGISMO

INDUCTIVO

El n por ciento (o la mayoría, o muchos) de los F son G

x es F

Por lo tanto, x es G

(23)

ARGUMENTOS INDUCTIVOS

No hablaremos de “validez”, sino de argumentos buenos o malos, fuertes

o débiles.

Todo argumento inductivo es invalido.

(24)

ARGUMENTOS INDUCTIVOS POR ANALOGÍA

Que las propiedades a partir de las cuales planteamos la analogía sean relevantes para la

propiedad que inferimos.

Que mientras mas aspectos compartan los casos analizados, mas fuerte será el argumento.

(25)

ARGUMENTOS INDUCTIVOS POR

ENUMERACIÓN INCOMPLETA

Cuanto mayor sea la cantidad más fuerte será el argumento.

La muestra debe ser lo más representativa posible para contribuir a la

(26)

SILOGISMO INDUCTIVO

Cuanto mayor sea la frecuencia relativa, mas fuerte será el

razonamiento.

Se debe considerar el total de la evidencia disponible.

(27)

LECCIÓN 5

(28)

ORIGEN DE LOS PRIMEROS

CONOCIMIENTOS GEOMETRICOS

Primeros conocimientos matemáticos: pueblos

mesopotámicos y egipcios.

Contienen conocimientos aislados, no articulados entre si.

En Grecia, Tales de Mileto fue uno de los primeros en

utilizar métodos deductivos en la geometría.

(29)

EUCLIDES Y LA GEOMETRÍA

Autor de “Elementos”.

Distingue distintos tipos de principios y los llama

postulados, nociones comunes y definiciones.

Los postulados hoy en día se denominan axiomas.

Son aquellos que se refieren a una ciencia en

particular.

A partir de los postulados, Euclides obtiene

deductivamente una serie de enunciados llamados

por él proposiciones, o en terminología

(30)

SACCHERI

 Intentó una demostración indirecta o por absurdo del postulado 5.

 Quiso demostrar que el postulado 5 no era independiente.

 No llegó a ninguna contradicción.

(31)

GEOMETRÍAS NO EUCLIDIANAS

Gauss vio la independencia del quinto postulado y la posibilidad

de construir una geometría distinta. Demostró propiedades y

teoremas que no llevaban a ninguna contradicción. La suma de

los ángulos interiores de un triangulo es menor a 180. Se conoce

como geometría hiperbólica.

Riemman negó el quinto postulado suponiendo la no existencia

de rectas paralelas. Se conoce como geometría elíptica. La suma

de los ángulos interiores de un triangulo es mayor a 180.

Se desarrollaron entonces distintos sistemas incuestionables

desde un punto de vista lógico.

Estos sistemas axiomáticos fueron concebidos como estructuras

formales.

(32)

SISTEMAS AXIOMÁTICOS

DESDE UNA PERSPECTIVA CONTEMPORÁNEA

AXIOMAS

Se aceptan sin

demostración y

constituyen los puntos

de partida de las

demostraciones.

No se exige que sean

verdades evidentes.

Solo cabe preguntarse

por la verdad de los

axiomas cuando el

sistema ha sido

interpretado.

TEOREMAS

Se demuestran a partir

de otros enunciados

mediante reglas de

inferencia

(33)

SISTEMAS AXIOMÁTICOS DESDE UNA

PERSPECTIVA CONTEMPORÁNEA

Deben incluir de modo explícito las reglas de inferencia que se utilizan para

demostrar los teoremas.

Una demostración es una secuencia finita de pasos en donde cada uno se deriva

de un enunciado anterior que es o bien un axioma, o bien otro teorema que ya ha sido demostrado.

 Todos los enunciados están compuestos por términos y podemos distinguir dos

tipos:

 Términos lógicos  Términos no lógicos.

 Términos primitivos: se aceptan y emplean sin definición  Términos definidos: se definen a partir de los primitivos.

Suelen incluir reglas de formación que indican cómo combinar los diferentes

(34)

SELECCIÓN DE AXIOMAS

 Los axiomas se toman como puntos de partida, se los acepta como

enunciados verdaderos sin que sea necesario demostrarlos.

 Si no tomáramos un punto de partida, seguiríamos con este proceso

indefinidamente y caeríamos en lo que se conoce como regresión al infinito.

 Se podría evitar esta regresión al infinito si C se dedujera de A. En

(35)

PROPIEDADES DE LOS SISTEMAS

AXIOMÁTICOS

INDEPENDENCIA

Cuando no puede

demostrarse a partir de

los demás enunciados del

sistema

CONSISTENCIA

Un enunciado y su

negación no pueden ser

probados

simultáneamente dentro

del sistema.

COMPLETITUD

Cuando permite

demostrar todo lo que se

pretende demostrar a la

hora de construir el

sistema

(36)

LECCIÓN 6

(37)

COSMOLOGÍA ARISTOTÉLICA

• CUATRO ELEMENTOS: TIERRA – AIRE – AGUA – FUEGO

• CUERPOS PESADOS O LIGEROS. EL MOVIMIENTO DE LOS CUERPOS QUEDABA DETERMINADO EN FUNCIÓN DE SI ERAN DE UNO U OTRO TIPO.

• MOVIMIENTO NATURAL O FORZADO

• FÍSICA ARISTOTÉLICA: EL TIEMPO QUE LOS CUERPOS EMPLEAN EN CAER ES INVERSAMENTE PROPORCIONAL A SU PESO.

• TIERRA INMÓVIL.

• UNIVERSO: REGIÓN SUBLUNAR Y REGIÓN CELESTE. • UNIVERSO ÚNICO, FINITO Y PLENO.

• EN LA REGIÓN CELESTE LOS CUERPOS SON DE ÉTER Y SON ESFÉRICOS PERFECTOS. • LOS MOVIMIENTOS DE LOS CUERPOS CELESTES SON CIRCULARES Y UNIFORMES.

(38)

LAS ESTRELLAS

• SE MUEVEN AL UNÍSONO, SE PUEDEN FORMAR CONSTELACIONES.

• MISMA DISTANCIA LAS UNAS DE LAS OTRAS.

• PERPETUO MOVIMIENTO, PERO MANTENIENDO DISTANCIA RELATIVA.

• TODAS LAS ESTRELLAS SE MUEVEN DIARIAMENTE EN DIRECCIÓN OESTE.

• LA ESTRELLA POLAR PARECE INMÓVIL.

(39)

LOS PLANETAS

• EL SOL PARECE SALIR POR EL ESTE Y PONERSE POR EL OESTE, PERO NO SIEMPRE POR EL MISMO LUGAR.

• SI MARCAMOS SOBRE EL PLANO CELESTE LAS POSICIONES DEL SOL DÍA TRAS DÍA EN EL MOMENTO DE PONERSE Y UNIMOS ESOS PUNTOS, OBTENEMOS UNA CURVA QUE SE CIERRA SOBRE SÍ AL CABO DE UN AÑO; ESA CURVA SE DENOMINA ECLÍPTICA.

• NO OBSERVAMOS EL DISCO DE LA LUNA TODAS LAS NOCHES.

• MERCURIO Y VENUS NUNCA SE ALEJAN DEMASIADO DEL SOL, MIENTRAS QUE MARTE, JÚPITER Y SATURNO SI LO HACEN.

• LOS PLANETAS NO SE MUEVEN SIEMPRE EN DIRECCIÓN ESTE NI CON LA MISMA VELOCIDAD.

• TRAS AVANZAR HACIA EL ESTE PARECEN DETENERSE, RETROCEDER LENTAMENTE HACIA EL OESTE, PARA NUEVAMENTE DETENERSE HASTA QUE FINALMENTE RETOMAN SU RUMBO. AL MOVIMIENTO HACIA EL ESTE SE LO DENOMINA MOVIMIENTO DIRECTO, Y AQUEL DE RETROCESO CON DIRECCIÓN OESTE ES LLAMADO MOVIMIENTO RETROGRADO. CUANDO LOS PLANETAS RETROGRADAN, AUMENTAN SU BRILLO Y EL TAMAÑO DE SU DISCO.

(40)

ASTRONOMÍAS PRECOPERNICANAS:

EL SISTEMA ARISTOTÉLICO

• UNIVERSO DE LAS DOS ESFERAS:

1. ESFERA CENTRAL FIJA: TIERRA INMÓVIL.

2. ESFERA PERIFÉRICA EN ROTACIÓN: LLEVA TODAS LAS ESTRELLA.

• EL SOL, LA LUNA Y LOS PLANETAS SE DESPLAZAN ENTRE LAS DOS ESFERAS.

TEORÍA DE LAS ESFERAS HOMOCÉNTRICAS (EUDOXO):

• ESFERAS CONCÉNTRICAS U HOMOCÉNTRICAS QUE GIRABAN CADA UNA SOBRE UN EJE DIFERENTE EMPLEANDO UN DETERMINADO TIEMPO EN COMPLETAR UNA REVOLUCIÓN.

• CADA PLANETA SE UBICABA EN UNA ESFERA INTERCONECTADA CON OTRAS. • PARA CADA PLANETA EXISTÍAN DISTINTAS ESFERAS. TOTAL DE MAS DE 20. • ARISTÓTELES AUMENTÓ EL NUMERO DE ESFERAS A MAS DE 50.

• PROBLEMAS QUE NO PODÍA RESOLVER:

1. PROXIMIDAD DE CIERTOS PLANETAS EN RELACIÓN CON EL SOL.

2. NO DETERMINA CUÁL ERA LA ORIENTACIÓN PRECISA DE LOS PLANETAS.

(41)

ASTRONOMÍAS PRECOPERNICANAS:

EL SISTEMA PTOLEMAICO

• PRESENTA A LOS ASTROS GIRANDO EN CÍRCULOS, PERO NO CONCÉNTRICOS. • EN LUGAR DE QUE EL PLANETA GIRE DIRECTAMENTE ALREDEDOR DE LA TIERRA,

UBIQUÉMOSLO AHORA EN UN CÍRCULO MENOR CENTRADO EN UN PUNTO Q, LLAMADO

EPICICLO; Y SITUEMOS ESTE CÍRCULO MENOR SOBRE AQUEL CÍRCULO MAS GRANDE

CENTRADO EN LA TIERRA, LLAMADO DEFERENTE.

• SURGEN BUCLES EN LA TRAYECTORIA DEL PLANETA Y ES POSIBLE EXPLICAR LA APARENTE VELOCIDAD VARIABLE CON LA QUE SE MUEVEN, ASÍ COMO LOS CAMBIOS EN LA

INTENSIDAD DEL BRILLO. • PROBLEMAS:

1. ORDEN DE LOS PLANETAS.

2. EL PLANETA NO SIEMPRE OCUPA SOBRE LA ECLÍPTICA LAS POSICIONES TEÓRICAS PREVISTAS.

3. PROBLEMA DE MERCURIO Y LOS DÍAS DE RETROGRADACIÓN. 4. PROBLEMA DE VELOCIDAD VARIABLE DEL SOL.

• PARA SOLUCIONAR LOS PROBLEMAS INTRODUJO EPICICLOS MENORES, EXCÉNTRICA Y EL ECUANTE.

(42)

LA EXPLICACION DE LOS MOVIMIENTOS CELESTES

• LA TIERRA TIENE TRES TIPOS DE MOVIMIENTOS CIRCULARES EN SIMULTÁNEO:

1. UNO DIARIO SOBRE SU EJE.

2. UNO ANUAL ALREDEDOR DEL SOL.

3. UNO CÓNICO DE SU EJE DE ROTACIÓN.

ROTACIÓN DIARIA:

• GIRA AL ESTE SOBRE SU EJE. TARDA 23 HS 56 MIN.

MOVIMIENTO ORBITAL ANUAL

• LA TIERRA DE DESPLAZA JUNTO CON LOS DEMÁS PLANETAS.

• CADA PLANETA TARDA MÁS DE ACUERDO A SU CERCANÍA AL SOL. • ESTE MOVIMIENTO PERMITE DAR CUENTA DE LAS ESTACIONES.

• ESTE MOVIMIENTO PERMITE EXPLICAR EL MOVIMIENTO RETRÓGRADO DE LOS PLANETAS.

• EL MODELO COPERNICANO NO PERMITÍA PREDECIR LOS MOVIMIENTOS PLANETARIOS DE FORMA EXACTA. PARA SOLUCIONAR ESTOS PROBLEMAS APELÓ A EPICICLOS MENORES Y EXCÉNTRICAS, AL PUNTO DE OBTENER UN SISTEMA TAN COMPLEJO COMO LOS QUE INTENTABA REEMPLAZAR.

(43)

LA CONSOLIDACIÓN DEL HELIOCENTRISMO

• COPÉRNICO FUE VICTIMA DE LA “MALDICIÓN DEL CIRCULO”.

• KEPLER EN 1609 ESTABLECIÓ QUE LAS ÓRBITAS PLANETARIAS SON ELÍPTICAS Y QUE EL SOL SE UBICA EN UNO DE SUS FOCOS.

• GALILEO GALILEI EN 1609 UTILIZÓ UN TELESCOPIO PARA REALIZAR OBSERVACIONES:

• LA LUNA NO PRESENTA UN PAISAJE PERFECTO. • EL SOL PRESENTA MANCHAS.

• NUMERO MAYOR DE ESTRELLAS • JÚPITER TIENE LUNAS.

• GALILEO GALILEI LOGRÓ SENTAR LAS BASES DE UNA NUEVA FÍSICA ACORDE A UNA TIERRA EN MOVIMIENTO.

(44)

LECCIÓN 7

(45)

TELEOLOGÍA

• Explicaciones que dan cuenta de eventos, estados o procesos

actuales en virtud de un propósito, finalidad o meta futura.

• Aristóteles consideraba que las explicaciones teleológicas se

aplicaban tanto al ámbito de las entidades artificiales como al

dominio de los procesos naturales.

• La meta de las entidades o creaciones artificiales es extrínseca y se

identifica con el propósito de su creador o diseñador.

• Para Aristóteles el universo no fue creado sino que es eterno, de

modo que la finalidad que explica los procesos naturales no puede

mas que ser una finalidad intrínseca a las propias entidades.

(46)

CREACIONISMO

• Desplazó a la idea de Aristóteles.

(47)

ANTECEDENTES

CUVIER

POSICIÓN CATASTROFISTA

LYELL

SE OPUSO A LAS TEORÍAS GEOLÓGICAS CATASTRÓFICAS POSICIÓN GRADUALISTA Y ACTUALISTA

MALTHUS

LA POBLACIÓN CRECE EXPONENCIALMENTE MIENTRAS QUE LA PRODUCCIÓN DE ALIMENTOS CRECE LINEALMENTE LUCHA POR LA SUPERVIVENCIA

LAMARCK

LOS ANIMALES EVOLUCIONAN DE ACUERDO A UNA JERARQUÍA PRECONCEBIDA QUE VA DE LO MAS SIMPLE A LO MAS COMPLEJO, DE ACUERDO A UN PLAN DE DIOS LOS RASGOS ADQUIRIDOS SE HEREDAN Y ESTE MECANISMO ES EL MOTOR DE LA EVOLUCIÓN

(48)

TE

ORÍA

DE

LA SEL

ECCIÓN

NA

TURA

L

EN LA LUCHA POR LA SUPERVIVENCIA Y LA REPRODUCCIÓN, LAS VARIANTES MÁS EFICACES TENDRÁN MÁS PROBABILIDAD DE SOBREVIVIR Y REPRODUCIRSE, DEJANDO DESCENDENCIA QUE

HEREDARÁ LOS RASGOS EFICACES. ASI, LOS ORGANISMOS EVOLUCIONAN GRADUALMENTE

VARIACIÓN

RASGOS NOVEDOSOS

INAGOTABLE Y ALEATORIA

HERENCIA SE HEREDAN LA MAYORÍA DE LOS RASGOS

(49)

EVIDENCIAS

SELECCIÓN ARTIFICIAL

SELECCIÓN

(50)

SUSCRIBETE

DEJÁ UN COMENTARIO CON TU

DIRECCIÓN DE e-Mail PARA

RECIBIR EL RESUMEN COMPLETO

EN PDF

Figure

Actualización...

Referencias

Actualización...

Related subjects :