• No se han encontrado resultados

INFORME: SELECCIÓN Y MODELADO DE MOTORES DE CORRIENTE CONTINUA

N/A
N/A
Protected

Academic year: 2021

Share "INFORME: SELECCIÓN Y MODELADO DE MOTORES DE CORRIENTE CONTINUA"

Copied!
32
0
0

Texto completo

(1)

G r u p o d e A u t o m á t i c a , R o b ó t i c a y V i s i ó n A r t i f i c i a l

INFORME:

SELECCIÓN Y

MODELADO DE

MOTORES DE

CORRIENTE

CONTINUA

AUTOR:

Francisco Andrés Candelas Herías

Gonzalo Lorenzo Lledó

(2)

S e l e c c i ó n y M o d e l a d o d e M o t o r e s C C

1.- Introducción

El objetivo de este primer apartado es definir que es una máquina eléctrica y

analizar de forma muy breve cuales son las características de los distintos tipos.

Las maquinas eléctricas son el resultado de la aplicación de los principios del electromagnetismo y en particular la ley de inducción de Faraday. Las

máquinas eléctricas se caracterizan por tener circuitos eléctricos y magnéticos entrelazados. Este tipo de máquinas realizan una conversión de energía de una forma en otra, una de las cuales, al menos, es eléctrica. Las máquinas eléctricas de forma genérica están constituidas por los siguientes elementos

• Existe una parte fija que se denomina estátor y que tiene forma cilíndrica, en el caso de máquinas de gran velocidad, dicho cilindro es largo en comparación con su diámetro, mientras que para las de pequeña velocidad

es relativamente corto. Puede llevar acoplado las bobinas del inductor o

del inducido.

• En la cavidad del estator se coloca el rotor, que es la parte giratoria de la máquina. Se monta en un eje que descansa en dos rodamientos o cojinetes; éstos pueden ser montados en sendos pedestales que se apoyan en el banco o formar parte de las culatas o tapas que están sujetas a al carcasa del estator. Al igual que el estator puede llevar incorporadas

las bobinas del inductor o del inducido.

Una de las máquinas eléctricas más importantes que existen es el motor

(3)

AUROVA – Gonzalo Lorenzo Lledó.

Un motor eléctrico es una máquina eléctrica que transforma la energía eléctrica

en mecánica. La acción se desarrolla introduciendo una corriente en la máquina por medio de una fuente externa, que interacciona con el campo produciendo el

movimiento de la máquina; aparece entonces una fem inducida que se opone a

la corriente de ahí su nombre fuerza contra-electromotriz. En resumen el

motor necesita una energía eléctrica de entrada para producir la energía mecánica de salida.

Después de analizar de forma genérica qué es un motor eléctrico a continuación

profundizaremos en los distintos tipos.

Motores síncronos. Se caracterizan por la introducción de una corriente alterna

de frecuencia f2 por el inducido teniendo el inductor f1=0. Este motor tiene el

inconveniente de que gira a una velocidad fija, con el consiguiente problema de arranque y pérdida de sincronismo cuando se producen pares de frenado bruscos. Lo indicado previamente se puede resumir en las siguientes fórmulas que concretan su definición.

f1= frecuencia del inductor

fL= frecuencia de la carga

f2 =frecuencia del inducido

f1=0; f2=+-np/60; fL=f2

Motores de CC. En este tipo de motores se introduce cc por el inductor y por las

(4)

S e l e c c i ó n y M o d e l a d o d e M o t o r e s C C

f1= frecuencia del inductor

fL= frecuencia de la carga

f2 =frecuencia del inducido

f1=0; f2=+-np/60; fL≠f2

Motores asíncronos o de inducción. Este tipo de máquinas se caracterizan por

las siguientes características.

f1= frecuencia del inductor

fL= frecuencia de la carga

f2 =frecuencia del inducido

f1≠0; f2= f1+-np/60; fL=f2

Están constituidos por un devanado inductor situado en el estator por el que se

introduce un c.a de frecuencia f1. En motores de potencia superior a ½ CV, el

devanado anterior es trifásico, al igual que la corriente de alimentación, y aparece como consecuencia un campo magnético de una velocidad n. En este tipo de

motores el campo giratorio del estator induce f.e.m.s en el devanado del rotor y

al estar este en cortocircuito o cerrado por medio de un reóstato de arranque

aparecen corrientes en el rotor que al reaccionar con el campo giratorio del

estator. Esto provoca el movimiento de la máquina a una velocidad n muy

cercana y por debajo de la de sincronismo.

Motores de corriente alterna de colector. Motores universales. Se

(5)

AUROVA – Gonzalo Lorenzo Lledó.

f1= frecuencia del inductor

fL= frecuencia de la carga

f2 =frecuencia del inducido

(6)

S e l e c c i ó n y M o d e l a d o d e M o t o r e s C C

2.- Motor de corriente continua

El objetivo de este apartado es profundizar en cuales son las características básicas de los motores de corriente continua y entender su funcionamiento.

Los motores de corriente continua es una de las aplicaciones industriales más

importes que existen de las máquinas de corriente continua. Este tipo de

máquina tiene una gran importancia histórica debido a su empleo como generadores o dinamos y representaron el primer procedimiento para producir energía eléctrica a gran escala.

El desarrollo de la máquina de CC se centra durante mucho tiempo en la

búsqueda de procedimientos para transformar la ca inducida en una espira, al girar dentro de un campo magnético, en corriente unidireccional o de polaridad

constante. La ventaja fundamental de la máquina de CC como motor frente a

los motores de ca ha sido su mayor grado de flexibilidad para el control de

velocidad y par, lo cual ha hecho muy interesante su aplicación en diversos accionamientos industriales (trenes de laminación, etc). A continuación se

muestra una figura con las partes que componen una máquina de CC

(7)

AUROVA – Gonzalo Lorenzo Lledó.

1.-Culata o carcasa. Pertenece al circuito magnético inductor y ejerce la función

de soporte mecánico del conjunto.

2. - Núcleo polar de un polo inductor 3. - Pieza polar de un polo inductor

4. - Núcleo polar de un polo de conmutación 5. - Pieza polar de un polo de conmutación

6. – Inducido. Se construye con discos de chapas de acero al silicio

convenientemente ranurados para alojar el devanado.

7. Devanado del inducido y 8. - Devanado de excitación. Los devanados de

las máquinas de CC son cerrados, lo cual indica que el bobinado se cierra sobre sí mismo sin principio ni fin. Esto nos conduce a decir que los bobinados que se monten puede ser imbricados u ondulados dependiendo si se cruzan o no las partes de la bobina observadas desde el lado del colector. Se observa en ambos casos que las bobinas que forman los devanados constan de dos lados activos que se sitúan debajo de los polos de diferente nombre con objeto de obtener la mayor f.e.m posible.

9. - Devanado de conmutación

10. – Colector de delgas. Es el órgano característico de estas máquinas y es el

(8)

S e l e c c i ó n y M o d e l a d o d e M o t o r e s C C

11. - Escobilla positiva y 12. - Escobilla negativa son los encargados de la

extracción o suministro de corriente al colector suelen se de grafito aunque los

más modernos son electrografíticos y metalografíticos. Las escobillas

permanecen inmóviles en el espacio dispuestas en los portaescobillas y de est manera, mientras gira el rotor, las escobillas conservan una posición invariable con respecto a los polos de la máquina

Una vez analizados los diversos componentes de una máquina de CC solo

queda por analizar de forma muy sucinta algunos de los principios básicos de su

funcionamiento. Para ello comenzaremos analizando la generación de la f.e.m en

las espiras del rotor. En este devanado al girar el rotor, se induce la f.e.m en los

conductores dispuestos en la cara exterior del núcleo al ser cortados por el flujo

del estator. En los conductores interiores no aparece ninguna f.e.m ya que no les

atraviesa el flujo de polos, al estar sus líneas de fuerza limitadas al circuito de

baja reluctancia del anillo. El sentido de la f.e.m de los conductores situados en

el polo norte son de signo contrario a los situados a los del polo sur aplicando la

regla de e=(VxB)L

Con el objetivo de utilizar la f.e.m del inducido y llevarla a un circuito exterior se han de conectar unas escobillas de salida A y B situadas en el eje transversal de

los polos para que pueda aprovecharse la máxima f.e.m del devanado. Estas

escobillas dividen el arrollamiento en dos ramas en paralelo con una misma f.e.m.

El eje que forma la alineación de las escobillas se denomina línea neutra. Esta

línea tiene una gran importancia, pues indica las posiciones en las que se produce

la inversión de la f.e.m en las bobinas del inducido pasando las espiras

correspondientes de una rama paralela a otra. La posición exacta de la línea neutra se determina moviendo el collar de las escobillas hasta encontrar el punto

(9)

AUROVA – Gonzalo Lorenzo Lledó.

Una vez planteados y analizados cuales son los principios de funcionamiento de

la máquina de CC pasamos a analizar como se pueden extrapolar esas líneas de

investigación a una de sus aplicaciones más conocidas el motor de CC.

En el caso de los motores de CC, la f.e.m aparece como reacción del campo

magnético de acoplamiento sobre el sistema eléctrico y actúa por tanto en sentido opuesto al de la corriente que toma el inducido de la red; de ahí que también

reciba el nombre de fuerza contra-electromotriz. Su expresión y la del par

electromagnético son análogas a la de los generadores.

Fuerza electromotriz 60 • Φ • • • = a N u p E (V) (1) Par electromagnético a N I p M i • • Φ • • • • = π 2 1 (Nm) (2)

En los motores eléctricos a diferencia de los restantes tipos de máquinas el

equilibrio de los pares motor y resistente, requisito fundamental de un régimen

a velocidad constante o estacionario, es automático, sin precisar, por tanto, el

auxilio de un regulador de velocidad, como es norma general en todos los motores citados previamente. El papel de este regulador es desempeñado en

todo momento por la fcem inducida, la cual se ajusta en todo momento al

necesario para alcanzar el equilibrio.

Después de analizar la función que desarrolla la fuerza electromotriz dentro de los motores de CC, nos vamos a centrar en el funcionamiento mas detallado de esta máquina para ello comenzaremos por profundizar en la función realizada por los conductores.

(10)

S e l e c c i ó n y M o d e l a d o d e M o t o r e s C C

- Campo magnético en azul - Corriente continua en rojo - Dirección de la fuerza en violeta

- Imanes: N (norte) y S (sur)

Ver como se tiene que colocar este conductor con respecto al eje de rotación del rotor para que exista movimiento. En este caso la corriente por el conductor fluye introduciéndose en el gráfico.

- Par motor en azul - Fuerza en violeta

- Conductor con corriente entrante en el gráfico azul y rojo

- Imanes: N (norte) y S (sur)

Pero en el rotor de un motor cc no hay solamente un conductor sino muchos. Si se incluye otro conductor exactamente al otro lado del rotor y con la corriente fluyendo en el mismo sentido, el motor no girará pues las dos fuerzas ejercidas para el giro del motor se cancelan.

- Par motor en azul - Fuerza en violeta

- Conductor con corriente entrante en el gráfico azul y rojo

- Imanes: N (norte) y S (sur)

Es por esta razón que las corrientes que circulan por conductores opuestos deben tener sentidos de circulación opuestos. Si se hace lo anterior el motor girará por la suma de la fuerza ejercida en los dos conductores.

Para controlar el sentido del flujo de la corriente en los conductores se usa un conmutador que realiza la inversión del sentido de la corriente cuando el conductor pasa por la línea muerta del campo magnético.

(11)

AUROVA – Gonzalo Lorenzo Lledó.

priori, sino que se establece a tenor del par útil que se le exigirá. La corriente

absorbida de la red viene asimismo fijada por el para que se le exige.

Existen diversos tipos de motores de corriente continua a partir del análisis de las

características de velocidad de giro/inducido, par/corriente de inducido y

par/velocidad y son los siguientes:

Motor de excitación derivación. El circuito inductor esta conectado directamente

a la red, por tanto queda excitado a tensión constante al igual que se tiene un motor de excitación independiente, cuyo inductor esté alimentado por una fuente de tensión constante, distinta en general a la que se aplica al inducido.

Motor de excitación compuesta. El campo magnético de este tipo de motor está

excitado, como ya sabemos, por dos devanados inductores, uno serie recorrido

por la corriente del inducido o por la corriente total absorbida de la red, de hilo, o

pletina conductora de cobre de gruesa sección y pocas espiras y otra derivación

de hilo fino y elevado número de espiras, conectado a la tensión de la red o a los bornes del inducido cuyas excitaciones magnéticas pueden ser del mismo sentido o sentidos opuestos.

La presencia de los amperivueltas (Intensidad en el inducido en por cada vuelta de la bobina) derivación, de valor prácticamente constante, da lugar a que el flujo, aún en el vacío, tenga un cierto valor, eliminándose con ello el peligro de empalamiento que presenta el motor serie al reducir la carga.

Motor de excitación serie. En este motor el devanado inductor está conectado

(12)

S e l e c c i ó n y M o d e l a d o d e M o t o r e s C C

No se debe olvidar que con cargas reducidas en este tipo de motores la velocidad alcanza valores muy altos, lo que podría acarrear la destrucción del inducido por efecto de las elevadas fuerzas centrífugas a que se someterían los elementos de sujeción del devanado. Como resumen se puede decir que este tipo de motores nunca deben funcionar en vacío.

En los posteriores apartados analizaremos algunos tipos especiales de

motores de corriente continua que presenta algunas peculiaridades. 2.1.-Motores de corriente continua especiales: Servomotores

Son un tipo especial de motores de CC que se caracterizan por su capacidad

para posicionarse de forma inmediata en cualquier posición dentro de un intervalo de operación. Por este motivo el servomotor espera un tren de pulsos que se corresponda con el movimiento a realizar. Esta generalmente formado por un

amplificador/driver, un motor, un sistema reductor formado por ruedas dentadas y un circuito de alimentación.

A partir del análisis de estos componentes podemos decir que en su funcionamiento el motor del servo tiene algunos circuitos de control y un potenciómetro conectado al eje central del motor. Permitiendo a la circuitería de control, supervisar el ángulo actual del servomotor. Si el eje está en el ángulo correcto, entonces el motor está apagado. Si el circuito chequea que el ángulo no es correcto, el motor volverá a la dirección correcta, hasta llegar a la posición adecuada. El eje del servo es capaz de llegar alrededor de 180 grados. No debemos olvidar que el voltaje aplicado al motor es proporcional a la distancia que se necesita mover. Como consecuencia si el eje necesita volver a una distancia grande el motor girará a toda velocidad. Es lo que se denomina control proporcional.

Para finalizar con el funcionamiento del servomotor únicamente nos queda por

analizar el funcionamiento de la modulación por anchura de pulso (PWM). Este

(13)

AUROVA – Gonzalo Lorenzo Lledó.

el pulso está a nivel alto, manteniéndose el mismo período, con el objetivo de modificar la posición del servo según se desee. Los valores más generales se

corresponden con pulsos de entre 1 y 2 ms de anchura que dejarían los motores

en ambos extremos 0º y 180º.

El apartado se puede concluir analizando otras características que presentan este tipo de motores entre las cuales destacan las siguientes:

• Para cargas de pequeña y media potencia. • Admite sobre cargas prolongadas

• Elevada inercia térmica

• Amplio campo de variación de giro

• Gran estabilidad de marcha, incluso a bajas velocidades

• Posibilidad de fuertes aceleraciones y deceleraciones.

• Par elevado

• Buena regulación y estabilidad

• Excitación a base de imanes cerámicos permanentes de elevada energía intrínseca y fuerza coercitiva.

2.2.-Motores de corriente continua especiales: Motores paso a paso.

Los motores paso a paso son ideales para la construcción de mecanismos que

requieren movimientos muy precisos. La característica principal de estos motores es el hecho de poder moverlos un paso a la vez que se aplique un pulso. Estos motores poseen la habilidad de poder quedar enclavados en una posición( si las bobinas esta cargadas) o bien totalmente libres ( si no circula corriente por las bobinas).

(14)

S e l e c c i ó n y M o d e l a d o d e M o t o r e s C C

situadas en el estator. La conmutación o excitación de las bobinas debe ser manejada por un controlador. Existen dos tipos de motores paso a paso que son

• Motor Bipolar

• Motor Unipolar

2.3.-Motores de corriente continua especiales: Motores Brushless

Los motores brushless son una concepción moderna del clásico motor de CC sin escobillas donde la electrónica juega una parte importante en su

funcionamiento y regulación. Los motores brushless están constituidos por:

• Imanes de alta energía

• Circuito magnético de hierro con su devanado, no presentan las escobillas • Captor de fase, velocidad y posición.

Este tipo de motores presenta las siguientes prestaciones y

contraprestaciones:

• Elevado par másico

• Prestaciones elevadas

• Fiabilidad

• Menor mantenimiento

• Exactitud en el control de la velocidad y regulación • Alta capacidad de velocidad

• Baja pérdida e inercia en el rotor

• Motor de construcción cerrada, adecuado para ambientes de trabajo sucio • No tienen los inconvenientes destructivos de los motores de CC clásicos. • Variador sofisticado y caro

(15)

AUROVA – Gonzalo Lorenzo Lledó.

• Tanto variadores como motores se están poniendo más competitivos con los motores de CC clásicos.

Las ventajas que presenta el motor Brushless y su equipo de control asociado,

viene dado por las posibilidades que tiene en el control de la velocidad y el posicionamiento exacto de los mecanismos accionados por el motor, respecto a las necesidades de la máquina a que se aplica, además de respuestas muy rápidas a las señales de arranque, paro, variaciones de la marcha etc.

Para finalizar con este apartado solo nos queda por analizar cuáles son los

diferentes tipos de motores Brushless

• Con imanes de tierras raras y f.e.m sinusoidal inducida. Campo de par

entre 0.5-5N/m

• Con imanes de tierras raras y f.e.m trapezoidal inductiva. Campo de

par entre 0.8-30N/m

(16)

S e l e c c i ó n y M o d e l a d o d e M o t o r e s C C

3.- Criterios de selección para un motor de corriente continua.

El objetivo básico de este apartado es realizar una lista de criterios que se han de seguir para la selección de un motor de CC.

A.-Características de la máquina a accionar

• Acoplamiento directo

• Acoplamiento por transmisión • Fuerza axial en el eje del motor • Fuerza radial en el eje del motor.

B.-Ambiente. En función de los siguientes parámetros se elegirá el grado de

protección IP • Limpio • Sucio • Gas • Humedad

C.-Servicio. Se determinará una de las ocho clases de servicio. D.-Características del Motor.

• Par (M) en Nm

• A velocidad base: Potencia en Kw velocidad en rpm • A velocidad mínima: Potencia en Kw y velocidad en rpm • A velocidad máxima: Potencia en Kw y velocidad en rpm.

E.-Ciclo de trabajo. Tanto en minutos como en % del ciclo.

• Servicio continuo

• Servicio intermitente

F.-Carga máxima en % de la nominal

• % de carga durante “x” segundos.

G.- Tensión de inducido y tensión de excitación. H.- Temperatura ambiente en ºC

I. – Sentido de giro del motor

(17)

AUROVA – Gonzalo Lorenzo Lledó.

K.-Normas que debe cumplir el motor

• Normas IEC

• Otras normas

L.-Características de la red de corriente alterna.

(18)

S e l e c c i ó n y M o d e l a d o d e M o t o r e s C C

4.- Definiciones eléctricas para motor de corriente continua.

Este apartado tiene como objetivo principal analizar cuáles son las distintas fórmulas necesarias para poder calcular los requisitos expuestos en el punto 3.

1.- Fuerza contra-electromotriz

E=U-RI (3) E= Fuerza contra-electromotriz en V

U= Tensión

RI= Caída de tensión óhmica en V 2.- Velocidad Angular φ ω • = K E (4) E= fcem

K=constante propia del motor w= velocidad angular Ф= Flujo 3.-Par Motor I K M = •φ• en Kg/m (5)

4.- Intensidad corriente en el Inducido

t co b i R E U U I = −2 − (6)

Ii= Intensidad de inducido en Amperios

Ub=Tensión en bornes en V

Uco=Caída de tensión en el colector en V

E= Fuerza contraelectromotriz generada en V

(19)

AUROVA – Gonzalo Lorenzo Lledó.

5.-Potencia desarrollada por el motor

75 60 2 • • • • = n M P π (7) P=Potencia en CV n=Velocidad en rpm M=Par motor en Kg/m 6.-Velocidad del rotor

φ E K n= (8) p a N K = • • 8 10 60 (9) φ i t co b U R I U K n= • − − • (10) n=Velocidad en rpm K=Constante de proporcionalidad

E=Fuerza contraelectromotriz generada en V Ф=Flujo en maxwelios

N= Número de conductores del inducido a= Pares de ramas paralelas

Uco=Caida de tensión en el colector en V

Rt= Resistencia total del circuito inducido en V

p=Número de pares de polos del motor Ii=Intensidad de Inducido en A

7.-Fuerza contraelectromotriz en el inducido

(20)

S e l e c c i ó n y M o d e l a d o d e M o t o r e s C C 9.-Momento de rotación a p I N M i r • • • • = 10 10 625 . 1 φ en Kg/m o (13) 10 10 8 . 9 2• • • • • = π φ N Ii M en Kg/m (14)

10.-Potencia útil (Pu). Formula General

(21)

AUROVA – Gonzalo Lorenzo Lledó.

5.- Hojas de características de un motor de corriente continua.

A partir de las descripciones previamente y especialmente en el apartado 3, el

objetivo de este apartado es profundizar en los diversos parámetros que

existen en las hojas de características de los motores de CC, para en un futuro realizar su selección. Los criterios que se deberían seguir para escoger

el motor más adecuado a nuestras necesidades se establecieron en otros informes del grupo de trabajo, y de los cuales a continuación añadiremos algunos.

• Las inercias y masas de los eslabones del robot. • Los pares dinámicos del motor

• Las masas que se han de levantar

Como un punto de partida para futuras líneas de trabajo, se consultaron diversas bibliografías que aconsejan que los motores más utilizados dentro del campo de

la robótica son los motores brushless. A continuación y a modo de guía para

familiarizarnos con las hojas de los motores de CC se presentan algunos ejemplos.

(22)

S e l e c c i ó n y M o d e l a d o d e M o t o r e s C C

(23)

AUROVA – Gonzalo Lorenzo Lledó.

Figura 3: Hojas de características de motores II

Tras mostrar algunas hojas de características de motores de CC, se realizará

un comentario de todas las variables que existen y que en un futuro podrán condicionar la selección de un motor u otro.

Tensión Nominal. Es la tensión aplicada entre dos fases en conmutación en

bloque

Velocidad en vacío. Velocidad a la cual el motor gira sin carga aplicando el

voltaje nominal.

Intensidad en vacío. La corriente que consume el motor sin carga alimentado por

la tensión nominal, y crecerá a medida que aumente la velocidad.

Velocidad nominal. Es la velocidad de funcionamiento a tensión y par nominales

con el motor a 25ºC de temperatura.

Par nominal. Es el par generado funcionando a tensión y corriente nominales,

(24)

S e l e c c i ó n y M o d e l a d o d e M o t o r e s C C

Corriente nominal. Es la corriente en la fase activa, en conmutación, en bloque,

con la cual se genera el par nominal a una velocidad nominal dada. Con esta corriente se alcanza el máximo valor de temperatura del bobinado

Par de arranque. Es el par producido a rotor bloqueado y tensión nominal. Al

aumentar la temperatura el par de arranque disminuye.

Corriente de arranque. Es el cociente de la tensión nominal entre la resistencia

en terminales del motor. La corriente de arranque es equivalente al par de arranque.

Máximo rendimiento. Es la relación óptima entre la potencia consumida y la

potencia de salida. El punto de máximo rendimiento no es necesariamente el punto óptimo.

Resistencia en bornes fase-fase. Es la resistencia medida entre los dos

bobinados del motor a 25ºC.

Inductancia entre terminales fase-fase. Es la inductancia entre terminales,

usando una corriente sinusoidal de 1kHz.

Constante de par. Representa el cociente entre el par generado y la corriente aplicada.

Constante de velocidad. Muestra la relación ideal para cada voltio de tensión

aplicada.

Relación velocidad/Par. Es un indicador de las prestaciones del motor, a valores

pequeños indica unas mayores prestaciones del motor.

Constante de tiempo mecánica. Es el tiempo requerido por el rotor para acelerar

desde parado hasta un 63% de su velocidad en vacío.

Inercia del motor. Es el momento de inercia del rotor, besado en el eje de giro.

Resistencia térmica carcasa/ambiente.

Resistencia térmica bobinado/carcasa. Valor característico de la transmisión

térmica sin disipadores de calor. La combinación con la línea anterior define el máximo calentamiento a partir de una pérdida de carga dada.

Constante de tiempo térmica del bobinado

Constante de tiempo térmica del motor. Son los típicos valores de tiempo de

reacción para un cambio de temperatura del bobinado y motor.

(25)

AUROVA – Gonzalo Lorenzo Lledó.

Máxima temperatura del bobinado. Temperatura máxima admisible por el

bobinado

Máxima velocidad permitida. Es la máxima velocidad recomendada desde la

perspectiva térmica y mecánica.

Juego axial y radial. Son los límites de tolerancia de juego/holgura de los

rodamientos determinados por la fábrica.

Máxima aceleración. El valor de la señal de control de velocidad sufre un cambio

brusco con rampa.

Rango de velocidades. Velocidades alcanzables en el rango de control

Escala de entrada de control de velocidaddg. El valor de la señal de velocidad

nc se basa en el producto nc=kc*uc

Entrada de control de velocidad. Rango de voltajes analógicos para el control

de velocidad medidos respecto a masa.

Voltaje de alimentación. Rango de voltajes de alimentación medidos respecto a

masa a los cuales el driver puede funcionar.

Variable de control. Velocidad significa que el accionamiento tiene integrado un

control en velocidad. Sin regulación significa que el motor lleva solo una

electrónica de conmutación.

Corriente de pico. La corriente de pico a la cual se genera el par de pico, a

voltaje nominal. Con un control de velocidad activo la corriente de pico no es proporcional al par sino que también depende del voltaje de alimentación.

Par de pico. Máximo par que el motor puede entregar durante breves instantes. Peso del motor (g) y número de fases (todos los motores tienen tres fases)

Número de pares de polos. Número de polos norte del iman permanente.

Carga radial máxima. Este valor es válido para una distancia típica de la brida.

Este valor se reduce cuanto más grande es la distancia.

(26)

S e l e c c i ó n y M o d e l a d o d e M o t o r e s C C

6.- Modelado motor corriente continua

Para poder trabajar con el motor de CC que se va a utilizar en el robot, el objetivo

de este apartado es realizar un modelado genérico (función de transferencia) y simulación con el fin de ajustar de forma adecuada los parámetros de control.

Para ello se parte del siguiente esquema del motor de CC.

Figura 4: Modelado Motor CC

A partir del análisis de la figura anterior se puede observar que los motores de

corriente continua se pueden dividir en tres subsistemas: el magnético, el

eléctrico y el mecánico.

En el subsistema magnético una de las partes más importantes es el devanado

de inducido. Este elemento consiste en un arrollamiento de varias espiras que puede girar en un campo magnético constante. Dicho campo magnético puede ser generado por un imán permanente o por un devanado de excitación consistente en una bobina por la que circula una corriente de excitación if(t), que

supondremos constante para que el campo sea también constante. Al circular una

corriente ia(t) por el devanado del inducido, como resultado de la interacción con

el campo magnético se ejerce sobre el un par T(t) que es directamente

proporcional al campo magnético y a la propia corriente de inducido ia(t). Como

(27)

AUROVA – Gonzalo Lorenzo Lledó.

T(t)=Kt(t)ia(t) (17)

Por otra parte, el giro de las espiras del devanado de inducido en presencia del campo magnético, produce en bornas del mismo una caída de tensión o fuerza contraelectromotriz, e(t), proporcional a su velocidad de giro. Dando lugar a la siguiente fórmula que a continuación se indica.

(t)

θ

K

e(t)

e m •

=

(18)

En el subsistema eléctrico el devanado del inducido vuelve a tener un papel

muy importante. Se va a comportar como un conductor, con una resistencia Ra(t)

y una inductancia La(t), sobre la que hay que considerar además, la fuerza

contraelectromotriz como una fuente de tensión dependiente de la velocidad de giro. A modo de resumen la ecuación de la malla que la define es la siguiente:

)

(

)

(

)

(

)

(

)

(

)

(

K

t

dt

t

di

t

L

t

i

t

R

t

v

a a a a a e m

+

+

=

θ

(19)

Dentro del subsistema mecánico el par T(t) desarrollado por el motor se emplea

para imprimir aceleración angular m(t)

• •

θ

a la carga y en vencer la fuerza de

fricción (b m(t)

•θ ) obteniéndose la siguiente ecuación.

)

(

)

(

)

(

t

J

t

b

t

T

m m m • ••

+

=

θ

θ

(20)

Finalmente y después de analizar cuales son los diferentes subsistemas que

componen el motor de CC, se obtiene la siguiente función de transferencia en el

(28)

S e l e c c i ó n y M o d e l a d o d e M o t o r e s C C

(

)(

)

[

m a a t e

]

t a m

K

K

R

s

L

b

s

J

s

K

s

V

s

+

+

+

=

)

(

)

(

θ

(21)

Siguiendo con las tesis planteadas anteriormente a partir de la ecuación 21,

el siguiente paso para el modelado es la realización de la simulación con el

programa Matlab/Simulink. La forma de proceder es muy sencilla ya que se

realizarán las simulaciones en lazo abierto y en lazo cerrado para ir viendo como se comporta el sistema. Las entradas con las que se excitará el sistema serán

escalón, rampa y senoidal ( se plantea un caso genérico) y los posibles controles que se plantearán son los siguientes.

• Control Clásico PID, PD, PI

• Control Difuso

• Control Predictivo.

(29)

AUROVA – Gonzalo Lorenzo Lledó.

Bloque Motor. En este bloque se encuentra el motor, las entradas de

alimentación para el voltaje del rotor (constante) y voltaje de armadura

(variable).

OPTO 22. Es un sistema de comunicación del ordenador con el motor, que realiza

(30)

S e l e c c i ó n y M o d e l a d o d e M o t o r e s C C

Figura 5: OPTO 22

Bloque conversor. Tiene como objetivo convertir el rango de voltaje de entrada

del motor en un rango de intensidades. Estos valores son diferentes en función del tipo de motor.

Figura 6: Bloque Conversor

Bloque actuador. Recibe los valores de intensidad del conversor y con estos

valores y el voltaje de una fuente externa, alimenta la armadura del motor con el objetivo de controlar su velocidad.

(31)

AUROVA – Gonzalo Lorenzo Lledó.

Fuente de voltaje del rotor. Esta fuente de voltaje alimenta el rotor del motor con

un valor constante de 5V.

Figura 8: Fuente Voltaje Rotor

Fuente de voltaje de armadura. Esta fuente provee 50V continuos que son

modulados por el actuador según sea la información del controlador. Con este voltaje modulado se logra controlar la velocidad final del motor.

(32)

S e l e c c i ó n y M o d e l a d o d e M o t o r e s C C

7.- Bibliografía

Libros consultados

1.-“Motores Eléctricos. Accionamientos de máquinas. 30 tipos de Motores” J.Roldán Vilora. Ed. Paraninfo.2005

2.- “Teoría General de Máquinas Eléctricas”. Manuel Cortes Cherta, Juan Corrales Martín, Alfonso Enseñat Badía. E.T.S. Ingenieros Industriales.UNED.1991

3.-“Maquinas Eléctricas”. Jesus Fraile Mora. Editorial Mac Graw Hill .2003

Páginas webs 1.-http://isa.uniovi.es/ISAwiki/index.php/Modelado_de_un_motor_CC 2.-http://isa.uniovi.es/~idiaz/ADSTel/Practicas/ModeladoMotorCC.html 3.-http://automatica.li2.uchile.cl/exp/files/man_motor/manual_motor_cc.pdf 4.-http://proton.ucting.udg.mx/materias/robotica/r166/r98/r98.htm 5.- http://www2.uca.es/grup-invest/ntgc/crealabcp/practicas/scap1.pdf 6.-http://www.maxonmotor.es/index.htm 7.- http://cfievalladolid2.net/tecno/cyr_01/robotica/sistema/motores_servo.htm 8.- http://www.todorobot.com.ar/documentos/servomotor.pdf 9.- http://www.todorobot.com.ar/informacion/tutorial%20stepper/stepper-tutorial.htm 10.http://www.dimec.usach.cl/images/guias/32/ATML5___MOTORES_CC_Y_DRI VERS_CC.doc

-Proyectos final de carrera y tesis consultadas.

Referencias

Documento similar

Para finalizar este trabajo, expondremos en este apartado los resultados obtenidos en el transcurso de todo el proceso llevado a cabo para el diseño,

• Cuando se enciende la lámpara, es decir, cuando la corriente pasa por el cable de alimentación, hay un campo eléctrico y un campo magnético..

"No porque las dos, que vinieron de Valencia, no merecieran ese favor, pues eran entrambas de tan grande espíritu […] La razón porque no vió Coronas para ellas, sería

Tras establecer un programa de trabajo (en el que se fijaban pre- visiones para las reuniones que se pretendían celebrar los posteriores 10 de julio —actual papel de los

Por PEDRO A. EUROPEIZACIÓN DEL DERECHO PRIVADO. Re- laciones entre el Derecho privado y el ordenamiento comunitario. Ca- racterización del Derecho privado comunitario. A) Mecanismos

En cuarto lugar, se establecen unos medios para la actuación de re- fuerzo de la Cohesión (conducción y coordinación de las políticas eco- nómicas nacionales, políticas y acciones

b) El Tribunal Constitucional se encuadra dentro de una organiza- ción jurídico constitucional que asume la supremacía de los dere- chos fundamentales y que reconoce la separación

Lo que haremos será obtener el modelo matemático para una función de transferencia cuya respuesta de salida será la velocidad, una vez que tengamos esta f.d.t