Measurement of the

15  Descargar (0)

Texto completo

(1)

Measurement of the

t-Channel Single Top Quark Production Cross Section

in

pp Collisions at

p

ffiffiffi

s

¼ 7 TeV

S. Chatrchyan et al.* (CMS Collaboration)

(Received 16 June 2011; published 25 August 2011)

Electroweak production of the top quark is measured for the first time in pp collisions atpffiffiffis¼ 7 TeV, using a data set collected with the CMS detector at the LHC and corresponding to an integrated luminosity of 36 pb1. With an event selection optimized for t-channel production, two complementary analyses are performed. The first one exploits the special angular properties of the signal, together with background estimates from the data. The second approach uses a multivariate analysis technique to probe the compatibility with signal topology expected from electroweak top-quark production. The combined measurement of the cross section is 83:6 29:8ðstat þ systÞ  3:3ðlumiÞ pb, consistent with the standard model expectation.

DOI:10.1103/PhysRevLett.107.091802 PACS numbers: 13.85.Ni, 12.15.Ji, 14.65.Ha

Electroweak theory predicts three mechanisms for single-top quark production in hadron-hadron collisions: t-channel, s-channel, and tW (or W-associated) produc-tion. Single-top events have been observed by the D0 and CDF experiments at the Tevatron p p collider [1–3], and first measurements of individual channels have recently been reported [4–6]. In proton-proton collisions at 7 TeV, t-channel single-top quark production, Fig. 1, has the largest cross section and the cleanest final-state topology, because of the presence of a light jet recoiling against the single-top quark. In the standard model (SM), next-to-leading order (NLO) computations with resummation of collinear and soft-gluon corrections at next-to-next-to-leading logarithmic accuracy predict t¼ 64:3þ2:1þ1:50:71:7 pb [7], for a top mass of mt¼ 173 GeV=c2 and with parton distribution functions (PDFs) as given in Ref. [8]. The first uncertainty comes from doubling and halving the renor-malization and factorization scales and the second from PDF uncertainty at the 90% confidence level. The single-top cross section measurement can be used as a test of the Cabibbo-Kobayashi-Maskawa matrix unitarity [9], of the PDFs and of the higher-order corrections from quantum chromodynamics. Departures from the SM prediction are expected in several new physics scenarios, for example, in models with flavor-changing neutral currents (FCNCs) or anomalous top-quark couplings [10].

This Letter presents the first measurement of the t-channel single-top quark production cross section in pp collisions atpffiffiffis¼ 7 TeV in the decay channels t ! eb, t! b, and t ! b with leptonic  decays. Two

complementary measurements are performed. The first analysis exploits two angular observables sensitive to t-channel single-top quark production: the noncentral pseudorapidity distribution of the light jet, and the cosine of the angle between this jet and the final-state lepton, in the reconstructed top-quark rest frame. A multivariate analysis technique with boosted decision trees (BDTs) [11,12] is used in the second method, which probes the overall compatibility of the signal event candidates with the event topology of electroweak top-quark production. Hereafter, these analyses will be referred to as 2D analysis and BDT analysis, respectively. The 2D analysis is the first single-top quark measurement that does not depend on multivariate techniques.

Both analyses use a data sample corresponding to an integrated luminosity of 35:9 1:4 pb1[13], collected by the Compact Muon Solenoid (CMS) detector [14] operat-ing at the Large Hadron Collider (LHC). The central feature of the CMS detector is a superconducting solenoid providing a field of 3.8 T. Located within the solenoid are the silicon pixel and strip tracker, the crystal electromag-netic calorimeter, and the brass or scintillator hadron calorimeter. Muons are measured in gas-ionization detec-tors embedded in the steel return yoke. In addition to the barrel and end cap detectors, a quartz-fiber Cherenkov

FIG. 1. Feynman diagrams for single-top quark production in t channel: 2! 2 (left) and 2 ! 3 (right) processes.

*Full author list given at the end of the article.

Published by the American Physical Society under the terms of the Creative Commons Attribution 3.0 License. Further distri-bution of this work must maintain attridistri-bution to the author(s) and the published article’s title, journal citation, and DOI.

(2)

detector extends the jet acceptance tojj ¼ 5, where the pseudorapidity  is defined as ¼  ln tan2, where  is the polar angle of the particle or jet trajectory with respect to the counterclockwise beam direction.

Events are selected by requiring the presence of at least one muon or electron having high transverse momentum (pT). The particle flow (PF) algorithm described in [15] performs a global event reconstruction and provides the full list of particles identified as electrons, muons, photons, charged and neutral hadrons. A fully reconstructed isolated muon (electron) candidate originating from the leading primary vertex is required [16] with pT>20ð30Þ GeV=c, jj < 2:1 (2.5), and a veto is applied on additional leptons passing lower thresholds.

Jets are reconstructed using the anti-kT algorithm [17] with a distance parameter of 0.5, clustering particles iden-tified by the PF algorithm. Jets within the full calorimeter acceptance are considered, with pT>30 GeV=c after cor-rections for the jet energy scale, as determined from simu-lations and collision data [18]. The BDT analysis first identifies isolated leptons, which are then excluded for the jet clustering step. In the 2D analysis, possible jet-lepton ambiguities are resolved on the basis of the distance R pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðÞ2þ ðÞ2between the reconstructed jet and the nearest lepton [16]. The event is accepted for further analysis only if exactly two jets are reconstructed.

In order to reduce the large background from Wþ light partons, we apply a b-tagging algorithm [19] that calcu-lates the signed 3D impact-parameter (IP) significance (IP=IP) of all the tracks, passing tight quality criteria, associated with the jet.

The tracks are ordered decreasingly, following their value of IP=IP, and a tight selection threshold is applied on the impact-parameter significance of the third track in the list. This threshold corresponds to a b-jet identification efficiency of40% and a misidentification rate of 0:1%. The efficiency and misidentification probability are deter-mined in the data as a function of pT and  [19]. The 2D analysis exploits the expectation that most of the signal events, even in the 2! 3 process, have only one b quark inside the tracking acceptance (jj < 2:4). Events are re-jected if the jet failing the tight threshold passes a loose threshold on the IP significance of the second track. The loose threshold corresponds to an efficiency and mis-identification rate of about 80% and 10%, respectively. The BDT analysis applies no veto on the second b-tagged jet, and rejects events where the jets are back-to-back, which are found to be poorly reproduced by the Wþ jets simulation. To further suppress contributions from processes where the muon (electron) does not come from the decay of a W boson, we require a transverse mass of the W boson MT >40ð50Þ GeV=c2, where the trans-verse missing energy (EmissT ) from the PF algorithm is used as a measurement of the pTof the undetected neutrino. No cut on EmissT is applied.

The 2D analysis selects 112 (72) events in the muon (electron) decay channel, while the BDT analysis selects 139 (82). In both analyses a signal purity of around 18% (16%) is expected in the muon (electron) decay channel. The main backgrounds are tt, Wb b, Wþ light-partons, Wc, tW, and processes where the lepton does not originate from a W=Z, hereafter called QCD events.

The t-channel events from Monte Carlo simulation used in this study have been generated with theMADGRAPH4.4

event generator [20]. To give a fair approximation of the full next-to-leading order properties of the signal, we com-bine the dominant NLO contribution (2! 3 diagram qg! q0t b and its charge conjugate) with the leading order diagram (2! 2, qb ! q0t) by a matching procedure based on Ref. [21].MADGRAPHis used also for tt, single-top s and tW channels, and W=Zþ jets. Di-boson production (WW, WZ, ZZ) is simulated usingPYTHIA6.4.22 [22]. The CTEQ 6.6 PDF sets [23] are used for all simulated samples. All generated events undergo a full simulation of the detector response based onGEANT4[24].

The NLO theoretical prediction is used to normalize the single-top production in s and tW channels [25,26] and diboson processes [27]. The tt cross section is normalized to 150 pb, constrained using the uncertainty from the result of a dedicated analysis. The same analysis constrains the VQ Q (V ¼ W, Z and Q ¼ b, c) and Wc components, obtaining, in particular, a factor of 2 1 for Wb b over the LO prediction.

The QCD yield is estimated from the same data set by a maximum likelihood fit to the MT distribution after all other selection criteria have been applied. The MT distri-bution for QCD events is taken from a control sample obtained by inverting the lepton isolation requirement. The latter requirement rejects most of the signal-like events (single top, W=Zþ jets, tt) leaving a QCD-dominated sample. The distribution for the sum of all non-QCD processes is taken from simulation. The uncer-tainty on this estimate is conservatively estimated such as to cover the differences observed when varying the fit range and the QCD shape.

The BDT analysis normalizes the result of the Wþ jets simulation to the inclusive W cross section at next-to-next-to-leading order (NNLO) [27], while the collision data are used in the 2D analysis to extract the normalization of the Wþ light-partons background. Two control samples are used, orthogonal to the standard selection. Control sample ‘‘region A,’’ dominated by the Wþ light partons background, is defined by the requirement of one isolated lepton and exactly two jets, one of which is required to be within the tracker acceptance and with at least two tracks satisfying the quality selection of the b-tagging algorithm. Both jets should fail the tight b-tagging selection. A second control sample, ‘‘region B,’’ is defined as a subset of the former where at least one jet passes the loose b-tagging selection although it fails the tight one. In both samples a fit

(3)

of the MT distribution is performed, allowing the QCD and Wþ light-partons background to float, while all other processes, including heavy-flavor contributions and the t-channel signal, are constrained to their expected values. A scale factor of 1.27 in the muon and 1.05 in the electron decay channel is observed between the number of Wþ light-partons events obtained from the fit in sample region B and the predictions from simulation. These scale factors are used to obtain the central value of the predicted back-ground. A30% ( 20%) uncertainty is assigned on the muon (electron) scale factor, covering both the statistical uncertainty from the fit, the difference between the back-ground predictions obtained from the two control samples, region-A and region-B, and between data and simulation results for both samples. The normalization of Zþ jets background is rescaled by the same factor as that for the Wþ light-parton background.

A top-quark candidate is reconstructed in each event by pairing the b-tagged jet with a W-boson candidate. The latter is reconstructed by imposing the W-boson mass as a kinematic constraint, leading to a quadratic equation in the longitudinal neutrino momentum, pz;. When two real solutions are found the smallest jpz;j is taken, and for complex solutions the imaginary component is eliminated by modifying EmissT;x and EmissT;y independently, such as to give MT ¼ MW [28].

In the 2D analysis a two-dimensional maximum like-lihood fit is performed. One of the two fit variables is the cosine of the angle  between the direction of the out-going lepton and the spin axis, approximated by the direc-tion of the untagged jet, in the top-quark rest frame [29,30]. This observable has a distinct slope in signal events, com-ing from the almost 100% polarization of the top-quark due to the V-A structure of the electroweak interaction [31]. This property holds true also in many theories beyond the SM [32]. The other fit variable is the pseudorapidity dis-tribution of the untagged jet, light jet, interpreted as the light quark jet recoiling against the single top, whose characteristic  distribution allows a discrimination against the typically central jets from the main background processes. The distributions in cos and light jet are shown in Fig.2for events passing the 2D selection.

The inputs to the fit are the distributions for the signal and backgrounds in the cos-light jetplane, separately in the muon and electron decay channels. The overall back-ground is allowed to float unconstrained in the fit, while its relative components are fixed according to the background estimates. The QCD and Wþ light-partons shapes are taken from the anti-isolated and region-A control samples described above, respectively, while all others are taken from the simulation.

The BDT method combines a given set of observables into one single classifier variable bdt. A total of 37 ob-servables have been chosen. Their selection has been in-spired by the D0 analysis [33] and optimized for the LHC

kinematics. The most discriminant ones are the lepton momentum, the mass of the system formed by the recon-structed W boson and the two jets, the pT of the system formed by the two jets, the pT of the jet passing tight b-tagging requirements, and the reconstructed top-quark mass. The validity of the description of all the input variables in the simulation has been checked using a Kolmogorov-Smirnov test in a W-enriched control sample with no b-tagged jet, shown in Fig. 3 (top). The bdt classifier has been validated both in simulation and in the data: negligible differences are found by comparing its distribution for signal events with MADGRAPH, SINGLE-TOP [21], and MC@NLO 3.4 [34], and for tt events with

MADGRAPH,PYTHIAandMC@NLO. In the W-enriched con-trol sample the distribution of bdt from the simulation is statistically compatible with the data.

The cross section is extracted from binned bdt distri-butions using a Bayesian approach with a uniformly

* θ cos -1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1 Events 0 5 10 15 20 25 30 35 * θ cos -1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1 Events 0 5 10 15 20 25 30 35 = 7 TeV s , -1 CMS, 36 pb | light jet η | 0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 Events 0 10 20 30 40 50 | light jet η | 0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 Events 0 10 20 30 40 50 data t channel tW + s ch. t t c +Wc b Wb Wc W+light jets QCD Other = 7 TeV s , -1 CMS, 36 pb

FIG. 2 (color online). Cosine of the angle between the charged lepton and the untagged jet ( cos, top panel) and pseudorapid-ity of the untagged jet (light jet, bottom panel) after the 2D

selection, for both electron and muon decay channels. QCD and Wþ light-partons events are normalized to the data, tt, VQ Q (V¼ W, Z and Q ¼ b, c), and Wc are normalized to the result of a dedicated measurement, all other processes are normalized to theoretical expectations.

(4)

distributed positive prior. The normalizations of the back-grounds and the other systematic uncertainties are treated as nuisance parameters. The measured distribution of the classifier bdt is shown in Fig.3(bottom).

The following sources of systematic uncertainties are common to both analyses: background normalization; jet energy scale [18], propagated coherently to the EmissT mea-surement; calibration of the unclustered energy deposits contributing to EmissT , varied by 10%; b-tagging and mistagging efficiencies [19]; modeling of the signal and of the main backgrounds; and a 4% uncertainty on the integrated luminosity [13].

The uncertainty on the signal model is estimated by comparingMADGRAPH andSINGLETOPevents with differ-ent fragmdiffer-entation models. The uncertainty on the tt and W=Zþ jets models is determined by comparing simulated samples with varied renormalization and factorization scales (within half and double the nominal values, inde-pendently for tt and for W=Zþ jets), initial- and final-state

radiation parameters, and two different fragmentation models.

The impact of pileup is estimated by comparing the default simulated samples with no pileup and dedicated samples where minimum bias interactions are superim-posed with a probability distribution roughly correspond-ing to the one observed in the overall 2010 data set. The shapes of the bdt classifier and of both variables used in the 2D analysis are negligibly affected.

In the 2D analysis a conservative systematic uncertainty is assigned to the degree of correlation between light jet and cos (estimated as 6% from simulation) by compar-ing to the result obtained uscompar-ing the product of uncorrelated one-dimensional distributions for the signal. The Wþ light-partons background shapes in light jetand cos are extracted from the data in the 2D analysis, and studies with simulated events show that the shapes extracted from the control sample are statistically consistent with those in the signal region for the same process. Nevertheless, a small difference is observed in the light jet shapes in the two selections for the Wc process, and we conservatively consider this difference as a systematic uncertainty on all Wþ jets processes.

The efficiencies of the muon and electron triggers, iden-tification, and isolation for the 2D selection have been evaluated from the data using dilepton events at the Z peak [16]. The uncertainties on these efficiencies have a negligible effect on this analysis.

The impact of each individual source of uncertainty on both analyses has been estimated with an ensemble of pseudoexperiments. The dominant systematic uncertainty on the cross section determination comes from the b-tagging efficiency, known within15%, because of its large effect on the signal acceptance. Nevertheless, this source has a negligible effect on the shapes of the final discriminant variables in both analyses. Other important systematic uncertainties come from the signal model, the factorization or renormalization scale for W=Zþ jets, the jet energy scale, and the Wc background.

TableIshows the cross section measured by both analy-ses in each decay channel, corrected for acceptance and branching ratios. In the muonþ electron combination all systematic uncertainties are considered fully correlated, with the exception of the uncertainty on multijet QCD obtained from the data. All measurements are consistent among each other and with the SM expectation.

Under the assumption that all uncertainties are Gaussian and symmetric, which is fulfilled by the dominant uncer-tainties, the 2D and BDT cross section measurements are combined with the BLUE technique [35], taking into account a statistical correlation of 51% estimated with pseudoexperiments, and treating all the systematic un-certainties as fully correlated with the exceptions of those coming from estimates based on the data. The combined result is exp¼ 83:6  29:8ðstat þ systÞ  3:3ðlumiÞ pb bdt -1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1 Events 0 200 400 600 800 1000 1200 1400 1600 1800 bdt -1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1 Events 0 200 400 600 800 1000 1200 1400 1600 1800 Q variation = 7 TeV s , -1 CMS, 36 pb bdt -1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1 Events 0 10 20 30 40 50 60 70 bdt -1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1 Events 0 10 20 30 40 50 60 70 data t channel tW + s ch. t t c +Wc b Wb Wc W+light jets QCD Other = 7 TeV s , -1 CMS, 36 pb

FIG. 3 (color online). Boosted decision tree discriminant (bdt) for both electron and muon decay channels in the W-enriched control sample (top panel), with simulation normalized to the data, also shown for Wþ jets samples with doubled and halved renormalization and factorization scales (Q). Same observable after the complete BDT selection (bottom panel), with the signal scaled to the measured cross section and all systematic uncer-tainties and backgrounds scaled to the medians of their posterior distributions.

(5)

where the BDT analysis contributes with the largest weight (89%).

The expected and observed significances, including sys-tematic uncertainties, are estimated with an ensemble of pseudoexperiments. The probability of the predicted back-ground distributions to fluctuate to the observed data cor-responds to 3.7 (3.5) Gaussian standard deviations in the 2D (BDT) analysis, combining the electron and muon decay channels, while 2:1þ1:01:1 (2:9þ1:00:9) are expected when assuming SM t-channel production cross section. The combined significance is well approximated by the BDT significance of 3.5 Gaussian standard deviations.

We infer an effective value ofjVtbj under the assumption that jVtdj and jVtsj are much smaller than jVtbj, and therefore that jVtbj ¼ ffiffiffiffiffiffiffi exp th q ¼ 1:140:22ðexpÞ0:02ðthÞ where th is the SM prediction under the jVtbj ¼ 1 as-sumption. Using the SM assumption that 0 jVtbj2 1, at the 95% confidence level we infer the lower bound jVtbj > 0:62 (0.68) from the 2D (BDT) analysis, respectively.

In summary, we confirm the Tevatron observation of single-top quark production and present the first measure-ment of the t-channel single-top quark production cross section in pp collisions at pffiffiffis¼ 7 TeV, finding a good agreement with the SM prediction [7].

We wish to congratulate our colleagues in the CERN accelerator departments for the excellent performance of the LHC machine. We thank the technical and administra-tive staff at CERN and other CMS institutes, and acknowl-edge support from: FMSR (Austria); FNRS and FWO (Belgium); CNPq, CAPES, FAPERJ, and FAPESP (Brazil); MES (Bulgaria); CERN; CAS, MoST, and NSFC (China); COLCIENCIAS (Colombia); MSES (Croatia); RPF (Cyprus); Academy of Sciences and NICPB (Estonia); Academy of Finland, ME, and HIP (Finland); CEA and CNRS/IN2P3 (France); BMBF, DFG, and HGF (Germany); GSRT (Greece); OTKA and NKTH (Hungary); DAE and DST (India); IPM (Iran); SFI (Ireland); INFN (Italy); NRF and WCU (Korea); LAS (Lithuania); CINVESTAV, CONACYT, SEP, and UASLP-FAI (Mexico); PAEC (Pakistan); SCSR (Poland); FCT (Portugal); JINR (Armenia, Belarus, Georgia, Ukraine, Uzbekistan); MST and MAE (Russia); MSTD (Serbia);

MICINN and CPAN (Spain); Swiss Funding Agencies (Switzerland); NSC (Taipei); TUBITAK and TAEK (Turkey); STFC (United Kingdom); DOE and NSF (USA).

[1] V. M. Abazov et al. (D0), Phys. Rev. Lett. 103, 092001 (2009).

[2] T. Aaltonen et al. (CDF Collaboration),Phys. Rev. Lett. 103, 092002 (2009).

[3] Tevatron Electroweak Working Group (CDF) and (D0), arXiv:0908.2171.

[4] V. M. Abazov et al. (D0),Phys. Lett. B 682, 363 (2010). [5] V. M. Abazov et al. (D0 Collaboration),arXiv:1105.2788. [6] T. Aaltonen et al. (CDF Collaboration),Phys. Rev. D 82,

112005 (2010).

[7] N. Kidonakis,Phys. Rev. D 83, 091503(R)(2011). [8] A. D. Martin et al.,Eur. Phys. J. C 63, 189 (2009). [9] J. Alwall et al.,Eur. Phys. J. C 49, 791 (2007).

[10] T. M. P. Tait and C.-P. Yuan,Phys. Rev. D 63, 014018 (2000). [11] L. Breiman et al., Classication and Regression Trees

(Wadsworth and Brooks, Monterey, CA, 1984).

[12] Y. Freund and E. Schapire, Proceedings of the Thirteenth International Conference on Machine Learning (Morgan Kaufmann Publishers, San Francisco, CA, 1996), p. 148. [13] CMS Collaboration (CMS), Report No. CMS-DP-11-002,

2011.

[14] S. Chatrchyan et al. (CMS),JINST 3, S08004 (2008). [15] CMS Collaboration (CMS), Report No.

CMS-PAS-PFT-09-001, 2009.

[16] CMS Collaboration (CMS),arXiv:1106.0902[Eur. Phys. J. C (to be published)].

[17] M. Cacciari, G. P. Salam, and G. Soyez,J. High Energy Phys. 04 (2008) 063.

[18] CMS Collaboration (CMS), Report No. CMS-PAS-JME-10-010, 2010.

[19] CMS Collaboration (CMS), Report No. CMS-PAS-BTV-10-001, 2010.

[20] F. Maltoni and T. Stelzer,J. High Energy Phys. 02 (2003) 027.

[21] E. Boos et al.,Phys. At. Nucl. 69, 1317 (2006). [22] T. Sjostrand et al.,J. High Energy Phys. 05 (2006) 026. [23] J. Pumplin et al.,J. High Energy Phys. 07 (2002) 012. [24] J. Allison et al.,IEEE Trans. Nucl. Sci. 53, 270 (2006). [25] N. Kidonakis,Phys. Rev. D 81, 054028 (2010).

[26] J. Campbell and F. Tramontano,Nucl. Phys. B 726, 109 (2005).

[27] R. Gavin et al.,arXiv:1011.3540.

[28] J. Bauer, Ph.D. thesis, Karlsruher Institut fu¨r Technologie, 2010.

[29] G. Mahlon and S. Parke,Phys. Rev. D 55, 7249 (1997). [30] P. Motylinski,Phys. Rev. D 80, 074015 (2009).

[31] G. Mahlon and S. J. Parke,Phys. Lett. B 476, 323 (2000). [32] S. Batebi, S. M. Etesami, and M.

Mohammadi-Najafabadi,Phys. Rev. D 83, 057502 (2011).

[33] V. M. Abazov et al. (D0),Phys. Rev. D 78, 012005 (2008). [34] S. Frixione and B. R. Webber,J. High Energy Phys. 06

(2002) 029.

[35] L. Lyons, D. Gibaut, and P. Cliord, Nucl. Instrum. Methods Phys. Res., Sect. A 270, 110 (1988).

TABLE I. Cross section measurements by channel and by analysis. The first uncertainty is statistical, the second system-atic. An additional 4% uncertainty on the luminosity [13] for each measurement is not included.

Channel 2D analysis BDT analysis

 104:1  42:3þ24:828:0pb 90:4  35:1þ16:519:7pb e 154:2  56:0þ40:646:6pb 59:2  35:1þ13:113:7pb þ e 124:2  33:8þ30:033:9pb 78:7  25:4þ13:214:6pb

(6)

S. Chatrchyan,1V. Khachatryan,1A. M. Sirunyan,1A. Tumasyan,1W. Adam,2T. Bergauer,2M. Dragicevic,2J. Ero¨,2 C. Fabjan,2M. Friedl,2R. Fru¨hwirth,2V. M. Ghete,2J. Hammer,2,bS. Ha¨nsel,2M. Hoch,2N. Ho¨rmann,2J. Hrubec,2 M. Jeitler,2W. Kiesenhofer,2M. Krammer,2D. Liko,2I. Mikulec,2M. Pernicka,2H. Rohringer,2R. Scho¨fbeck,2

J. Strauss,2A. Taurok,2F. Teischinger,2P. Wagner,2W. Waltenberger,2G. Walzel,2E. Widl,2C.-E. Wulz,2 V. Mossolov,3N. Shumeiko,3J. Suarez Gonzalez,3S. Bansal,4L. Benucci,4E. A. De Wolf,4X. Janssen,4J. Maes,4

T. Maes,4L. Mucibello,4S. Ochesanu,4B. Roland,4R. Rougny,4M. Selvaggi,4H. Van Haevermaet,4 P. Van Mechelen,4N. Van Remortel,4F. Blekman,5S. Blyweert,5J. D’Hondt,5O. Devroede,5R. Gonzalez Suarez,5

A. Kalogeropoulos,5M. Maes,5W. Van Doninck,5P. Van Mulders,5G. P. Van Onsem,5I. Villella,5O. Charaf,6 B. Clerbaux,6G. De Lentdecker,6V. Dero,6A. P. R. Gay,6G. H. Hammad,6T. Hreus,6P. E. Marage,6L. Thomas,6

C. Vander Velde,6P. Vanlaer,6V. Adler,7A. Cimmino,7S. Costantini,7M. Grunewald,7B. Klein,7J. Lellouch,7 A. Marinov,7J. Mccartin,7D. Ryckbosch,7F. Thyssen,7M. Tytgat,7L. Vanelderen,7P. Verwilligen,7S. Walsh,7 N. Zaganidis,7S. Basegmez,8G. Bruno,8J. Caudron,8L. Ceard,8E. Cortina Gil,8J. De Favereau De Jeneret,8 C. Delaere,8,bD. Favart,8A. Giammanco,8G. Gre´goire,8J. Hollar,8V. Lemaitre,8J. Liao,8O. Militaru,8C. Nuttens,8

S. Ovyn,8D. Pagano,8A. Pin,8K. Piotrzkowski,8N. Schul,8N. Beliy,9T. Caebergs,9E. Daubie,9G. A. Alves,10 L. Brito,10D. De Jesus Damiao,10M. E. Pol,10M. H. G. Souza,10W. L. Alda´ Ju´nior,11W. Carvalho,11 E. M. Da Costa,11C. De Oliveira Martins,11S. Fonseca De Souza,11L. Mundim,11H. Nogima,11V. Oguri,11 W. L. Prado Da Silva,11A. Santoro,11S. M. Silva Do Amaral,11A. Sznajder,11C. A. Bernardes,12,cF. A. Dias,12 T. R. Fernandez Perez Tomei,12E. M. Gregores,12,cC. Lagana,12F. Marinho,12P. G. Mercadante,12,cS. F. Novaes,12

Sandra S. Padula,12N. Darmenov,13,bV. Genchev,13,bP. Iaydjiev,13,bS. Piperov,13M. Rodozov,13S. Stoykova,13 G. Sultanov,13V. Tcholakov,13R. Trayanov,13A. Dimitrov,14R. Hadjiiska,14A. Karadzhinova,14V. Kozhuharov,14 L. Litov,14M. Mateev,14B. Pavlov,14P. Petkov,14J. G. Bian,15G. M. Chen,15H. S. Chen,15C. H. Jiang,15D. Liang,15

S. Liang,15X. Meng,15J. Tao,15J. Wang,15J. Wang,15X. Wang,15Z. Wang,15H. Xiao,15M. Xu,15J. Zang,15 Z. Zhang,15Y. Ban,16S. Guo,16Y. Guo,16W. Li,16Y. Mao,16S. J. Qian,16H. Teng,16B. Zhu,16W. Zou,16 A. Cabrera,17B. Gomez Moreno,17A. A. Ocampo Rios,17A. F. Osorio Oliveros,17J. C. Sanabria,17N. Godinovic,18

D. Lelas,18K. Lelas,18R. Plestina,18,dD. Polic,18I. Puljak,18Z. Antunovic,19M. Dzelalija,19V. Brigljevic,20 S. Duric,20K. Kadija,20S. Morovic,20A. Attikis,21M. Galanti,21J. Mousa,21C. Nicolaou,21F. Ptochos,21

P. A. Razis,21M. Finger,22M. Finger, Jr.,22Y. Assran,23,eS. Khalil,23,fM. A. Mahmoud,23,gA. Hektor,24 M. Kadastik,24M. Mu¨ntel,24M. Raidal,24L. Rebane,24A. Tiko,24V. Azzolini,25P. Eerola,25G. Fedi,25S. Czellar,26 J. Ha¨rko¨nen,26A. Heikkinen,26V. Karima¨ki,26R. Kinnunen,26M. J. Kortelainen,26T. Lampe´n,26K. Lassila-Perini,26 S. Lehti,26T. Linde´n,26P. Luukka,26T. Ma¨enpa¨a¨,26E. Tuominen,26J. Tuominiemi,26E. Tuovinen,26D. Ungaro,26

L. Wendland,26K. Banzuzi,27A. Karjalainen,27A. Korpela,27T. Tuuva,27D. Sillou,28M. Besancon,29 S. Choudhury,29M. Dejardin,29D. Denegri,29B. Fabbro,29J. L. Faure,29F. Ferri,29S. Ganjour,29F. X. Gentit,29

A. Givernaud,29P. Gras,29G. Hamel de Monchenault,29P. Jarry,29E. Locci,29J. Malcles,29M. Marionneau,29 L. Millischer,29J. Rander,29A. Rosowsky,29I. Shreyber,29M. Titov,29P. Verrecchia,29S. Baffioni,30F. Beaudette,30

L. Benhabib,30L. Bianchini,30M. Bluj,30,hC. Broutin,30P. Busson,30C. Charlot,30T. Dahms,30L. Dobrzynski,30 S. Elgammal,30R. Granier de Cassagnac,30M. Haguenauer,30P. Mine´,30C. Mironov,30C. Ochando,30P. Paganini,30

D. Sabes,30R. Salerno,30Y. Sirois,30C. Thiebaux,30B. Wyslouch,30,iA. Zabi,30J.-L. Agram,31,jJ. Andrea,31 D. Bloch,31D. Bodin,31J.-M. Brom,31M. Cardaci,31E. C. Chabert,31C. Collard,31E. Conte,31,jF. Drouhin,31,j C. Ferro,31J.-C. Fontaine,31,jD. Gele´,31U. Goerlach,31S. Greder,31P. Juillot,31M. Karim,31,jA.-C. Le Bihan,31 Y. Mikami,31P. Van Hove,31F. Fassi,32D. Mercier,32C. Baty,33S. Beauceron,33N. Beaupere,33M. Bedjidian,33 O. Bondu,33G. Boudoul,33D. Boumediene,33H. Brun,33J. Chasserat,33R. Chierici,33D. Contardo,33P. Depasse,33

H. El Mamouni,33J. Fay,33S. Gascon,33B. Ille,33T. Kurca,33T. Le Grand,33M. Lethuillier,33L. Mirabito,33 S. Perries,33V. Sordini,33S. Tosi,33Y. Tschudi,33P. Verdier,33D. Lomidze,34G. Anagnostou,35S. Beranek,35 M. Edelhoff,35L. Feld,35N. Heracleous,35O. Hindrichs,35R. Jussen,35K. Klein,35J. Merz,35N. Mohr,35 A. Ostapchuk,35A. Perieanu,35F. Raupach,35J. Sammet,35S. Schael,35D. Sprenger,35H. Weber,35M. Weber,35

B. Wittmer,35M. Ata,36E. Dietz-Laursonn,36M. Erdmann,36R. Fischer,36T. Hebbeker,36A. Hinzmann,36 K. Hoepfner,36R. S. Ho¨ing,36T. Klimkovich,36D. Klingebiel,36P. Kreuzer,36D. Lanske,36,aJ. Lingemann,36

C. Magass,36M. Merschmeyer,36A. Meyer,36P. Papacz,36H. Pieta,36H. Reithler,36S. A. Schmitz,36 L. Sonnenschein,36J. Steggemann,36D. Teyssier,36M. Bontenackels,37M. Davids,37M. Duda,37G. Flu¨gge,37

(7)

H. Geenen,37M. Giffels,37W. Haj Ahmad,37D. Heydhausen,37F. Hoehle,37B. Kargoll,37T. Kress,37Y. Kuessel,37 A. Linn,37A. Nowack,37L. Perchalla,37O. Pooth,37J. Rennefeld,37P. Sauerland,37A. Stahl,37M. Thomas,37 D. Tornier,37M. H. Zoeller,37M. Aldaya Martin,38W. Behrenhoff,38U. Behrens,38M. Bergholz,38,kA. Bethani,38 K. Borras,38A. Cakir,38A. Campbell,38E. Castro,38D. Dammann,38G. Eckerlin,38D. Eckstein,38A. Flossdorf,38

G. Flucke,38A. Geiser,38J. Hauk,38H. Jung,38,bM. Kasemann,38I. Katkov,38,lP. Katsas,38C. Kleinwort,38 H. Kluge,38A. Knutsson,38M. Kra¨mer,38D. Kru¨cker,38E. Kuznetsova,38W. Lange,38W. Lohmann,38,kR. Mankel,38 M. Marienfeld,38I.-A. Melzer-Pellmann,38A. B. Meyer,38J. Mnich,38A. Mussgiller,38J. Olzem,38A. Petrukhin,38

D. Pitzl,38A. Raspereza,38A. Raval,38M. Rosin,38R. Schmidt,38,kT. Schoerner-Sadenius,38N. Sen,38 A. Spiridonov,38M. Stein,38J. Tomaszewska,38R. Walsh,38C. Wissing,38C. Autermann,39V. Blobel,39

S. Bobrovskyi,39J. Draeger,39H. Enderle,39U. Gebbert,39M. Go¨rner,39K. Kaschube,39G. Kaussen,39 H. Kirschenmann,39R. Klanner,39J. Lange,39B. Mura,39S. Naumann-Emme,39F. Nowak,39N. Pietsch,39 C. Sander,39H. Schettler,39P. Schleper,39E. Schlieckau,39M. Schro¨der,39T. Schum,39J. Schwandt,39H. Stadie,39

G. Steinbru¨ck,39J. Thomsen,39C. Barth,40J. Bauer,40J. Berger,40V. Buege,40T. Chwalek,40W. De Boer,40 A. Dierlamm,40G. Dirkes,40M. Feindt,40J. Gruschke,40C. Hackstein,40F. Hartmann,40M. Heinrich,40H. Held,40 K. H. Hoffmann,40S. Honc,40J. R. Komaragiri,40T. Kuhr,40D. Martschei,40S. Mueller,40Th. Mu¨ller,40M. Niegel,40 O. Oberst,40A. Oehler,40J. Ott,40T. Peiffer,40G. Quast,40K. Rabbertz,40F. Ratnikov,40N. Ratnikova,40M. Renz,40

S. Ro¨cker,40C. Saout,40A. Scheurer,40P. Schieferdecker,40F.-P. Schilling,40G. Schott,40H. J. Simonis,40 F. M. Stober,40D. Troendle,40J. Wagner-Kuhr,40T. Weiler,40M. Zeise,40V. Zhukov,40,lE. B. Ziebarth,40 G. Daskalakis,41T. Geralis,41S. Kesisoglou,41A. Kyriakis,41D. Loukas,41I. Manolakos,41A. Markou,41 C. Markou,41C. Mavrommatis,41E. Ntomari,41E. Petrakou,41L. Gouskos,42T. J. Mertzimekis,42A. Panagiotou,42 E. Stiliaris,42I. Evangelou,43C. Foudas,43P. Kokkas,43N. Manthos,43I. Papadopoulos,43V. Patras,43F. A. Triantis,43 A. Aranyi,44G. Bencze,44L. Boldizsar,44C. Hajdu,44,bP. Hidas,44D. Horvath,44,mA. Kapusi,44K. Krajczar,44,n F. Sikler,44,bG. I. Veres,44,nG. Vesztergombi,44,nN. Beni,45J. Molnar,45J. Palinkas,45Z. Szillasi,45V. Veszpremi,45

P. Raics,46Z. L. Trocsanyi,46B. Ujvari,46S. B. Beri,47V. Bhatnagar,47N. Dhingra,47R. Gupta,47M. Jindal,47 M. Kaur,47J. M. Kohli,47M. Z. Mehta,47N. Nishu,47L. K. Saini,47A. Sharma,47A. P. Singh,47J. Singh,47 S. P. Singh,47S. Ahuja,48B. C. Choudhary,48P. Gupta,48S. Jain,48A. Kumar,48A. Kumar,48M. Naimuddin,48 K. Ranjan,48R. K. Shivpuri,48S. Banerjee,49S. Bhattacharya,49S. Dutta,49B. Gomber,49S. Jain,49R. Khurana,49

S. Sarkar,49R. K. Choudhury,50D. Dutta,50S. Kailas,50V. Kumar,50P. Mehta,50A. K. Mohanty,50,bL. M. Pant,50 P. Shukla,50T. Aziz,51M. Guchait,51,oA. Gurtu,51M. Maity,51,pD. Majumder,51G. Majumder,51K. Mazumdar,51

G. B. Mohanty,51A. Saha,51K. Sudhakar,51N. Wickramage,51S. Banerjee,52S. Dugad,52N. K. Mondal,52 H. Arfaei,53H. Bakhshiansohi,53,qS. M. Etesami,53A. Fahim,53,qM. Hashemi,53A. Jafari,53,qM. Khakzad,53 A. Mohammadi,53,rM. Mohammadi Najafabadi,53S. Paktinat Mehdiabadi,53B. Safarzadeh,53M. Zeinali,53,s M. Abbrescia,54a,54bL. Barbone,54a,54bC. Calabria,54a,54bA. Colaleo,54aD. Creanza,54a,54cN. De Filippis,54a,54c,b

M. De Palma,54a,54bL. Fiore,54aG. Iaselli,54a,54cL. Lusito,54a,54bG. Maggi,54a,54cM. Maggi,54aN. Manna,54a,54b B. Marangelli,54a,54bS. My,54a,54cS. Nuzzo,54a,54bN. Pacifico,54a,54bG. A. Pierro,54aA. Pompili,54a,54b G. Pugliese,54a,54cF. Romano,54a,54cG. Roselli,54a,54bG. Selvaggi,54a,54bL. Silvestris,54aR. Trentadue,54a S. Tupputi,54a,54bG. Zito,54aG. Abbiendi,55aA. C. Benvenuti,55aD. Bonacorsi,55aS. Braibant-Giacomelli,55a,55b

L. Brigliadori,55aP. Capiluppi,55a,55bA. Castro,55a,55bF. R. Cavallo,55aM. Cuffiani,55a,55bG. M. Dallavalle,55a F. Fabbri,55aA. Fanfani,55a,55bD. Fasanella,55aP. Giacomelli,55aM. Giunta,55aC. Grandi,55aS. Marcellini,55a

G. Masetti,55bM. Meneghelli,55a,55bA. Montanari,55aF. L. Navarria,55a,55bF. Odorici,55aA. Perrotta,55a F. Primavera,55aA. M. Rossi,55a,55bT. Rovelli,55a,55bG. Siroli,55a,55bR. Travaglini,55a,55bS. Albergo,56a,56b

G. Cappello,56a,56bM. Chiorboli,56a,56b,bS. Costa,56a,56bA. Tricomi,56a,56bC. Tuve,56a,56bG. Barbagli,57a V. Ciulli,57a,57bC. Civinini,57aR. D’Alessandro,57a,57bE. Focardi,57a,57bS. Frosali,57a,57bE. Gallo,57aS. Gonzi,57a,57b

P. Lenzi,57a,57bM. Meschini,57aS. Paoletti,57aG. Sguazzoni,57aA. Tropiano,57a,bL. Benussi,58S. Bianco,58 S. Colafranceschi,58,tF. Fabbri,58D. Piccolo,58P. Fabbricatore,59R. Musenich,59A. Benaglia,60a,60b F. De Guio,60a,60b,bL. Di Matteo,60a,60bS. Gennai,60a,bA. Ghezzi,60a,60bS. Malvezzi,60aA. Martelli,60a,60b A. Massironi,60a,60bD. Menasce,60aL. Moroni,60aM. Paganoni,60a,60bD. Pedrini,60aS. Ragazzi,60a,60bN. Redaelli,60a

S. Sala,60aT. Tabarelli de Fatis,60a,60bS. Buontempo,61aC. A. Carrillo Montoya,61a,bN. Cavallo,61a,u A. De Cosa,61a,61bF. Fabozzi,61a,uA. O. M. Iorio,61a,bL. Lista,61aM. Merola,61a,61bP. Paolucci,61aP. Azzi,62a N. Bacchetta,62aP. Bellan,62a,62bD. Bisello,62a,62bA. Branca,62aR. Carlin,62a,62bP. Checchia,62aT. Dorigo,62a

(8)

I. Lazzizzera,62a,62cM. Margoni,62a,62bM. Mazzucato,62aA. T. Meneguzzo,62a,62bM. Nespolo,62a,bL. Perrozzi,62a,b N. Pozzobon,62a,62bP. Ronchese,62a,62bF. Simonetto,62a,62bE. Torassa,62aM. Tosi,62a,62bS. Vanini,62a,62b P. Zotto,62a,62bG. Zumerle,62a,62bP. Baesso,63a,63bU. Berzano,63aS. P. Ratti,63a,63bC. Riccardi,63a,63bP. Torre,63a,63b

P. Vitulo,63a,63bC. Viviani,63a,63bM. Biasini,64a,64bG. M. Bilei,64aB. Caponeri,64a,64bL. Fano`,64a,64b P. Lariccia,64a,64bA. Lucaroni,64a,64b,bG. Mantovani,64a,64bM. Menichelli,64aA. Nappi,64a,64bF. Romeo,64a,64b

A. Santocchia,64a,64bS. Taroni,64a,64b,bM. Valdata,64a,64bP. Azzurri,65a,65cG. Bagliesi,65aJ. Bernardini,65a,65b T. Boccali,65a,bG. Broccolo,65a,65cR. Castaldi,65aR. T. D’Agnolo,65a,65cR. Dell’Orso,65aF. Fiori,65a,65bL. Foa`,65a,65c

A. Giassi,65aA. Kraan,65aF. Ligabue,65a,65cT. Lomtadze,65aL. Martini,65a,vA. Messineo,65a,65bF. Palla,65a G. Segneri,65aA. T. Serban,65aP. Spagnolo,65aR. Tenchini,65aG. Tonelli,65a,65b,bA. Venturi,65a,bP. G. Verdini,65a L. Barone,66a,66bF. Cavallari,66aD. Del Re,66a,66bE. Di Marco,66a,66bM. Diemoz,66aD. Franci,66a,66bM. Grassi,66a,b

E. Longo,66a,66bP. Meridiani,66aS. Nourbakhsh,66aG. Organtini,66a,66bF. Pandolfi,66a,66b,bR. Paramatti,66a S. Rahatlou,66a,66bC. Rovelli,66a,bN. Amapane,67a,67bR. Arcidiacono,67a,67cS. Argiro,67a,67bM. Arneodo,67a,67c C. Biino,67aC. Botta,67a,67b,bN. Cartiglia,67aR. Castello,67a,67bM. Costa,67a,67bN. Demaria,67aA. Graziano,67a,67b,b C. Mariotti,67aM. Marone,67a,67bS. Maselli,67aE. Migliore,67a,67bG. Mila,67a,67bV. Monaco,67a,67bM. Musich,67a,67b M. M. Obertino,67a,67cN. Pastrone,67aM. Pelliccioni,67a,67bA. Potenza,67a,67bA. Romero,67a,67bM. Ruspa,67a,67c R. Sacchi,67a,67bV. Sola,67a,67bA. Solano,67a,67bA. Staiano,67aA. Vilela Pereira,67aS. Belforte,68aF. Cossutti,68a

G. Della Ricca,68a,68bB. Gobbo,68aD. Montanino,68a,68bA. Penzo,68aS. G. Heo,69S. K. Nam,69S. Chang,70 J. Chung,70D. H. Kim,70G. N. Kim,70J. E. Kim,70D. J. Kong,70H. Park,70S. R. Ro,70D. Son,70D. C. Son,70 T. Son,70Zero Kim,71J. Y. Kim,71S. Song,71S. Choi,72B. Hong,72M. Jo,72H. Kim,72J. H. Kim,72T. J. Kim,72

K. S. Lee,72D. H. Moon,72S. K. Park,72K. S. Sim,72M. Choi,73S. Kang,73H. Kim,73C. Park,73I. C. Park,73 S. Park,73G. Ryu,73Y. Choi,74Y. K. Choi,74J. Goh,74M. S. Kim,74J. Lee,74S. Lee,74H. Seo,74I. Yu,74 M. J. Bilinskas,75I. Grigelionis,75M. Janulis,75D. Martisiute,75P. Petrov,75T. Sabonis,75H. Castilla-Valdez,76

E. De La Cruz-Burelo,76I. Heredia-de La Cruz,76R. Lopez-Fernandez,76R. Magan˜a Villalba,76 A. Sa´nchez-Herna´ndez,76L. M. Villasenor-Cendejas,76S. Carrillo Moreno,77F. Vazquez Valencia,77 H. A. Salazar Ibarguen,78E. Casimiro Linares,79A. Morelos Pineda,79M. A. Reyes-Santos,79D. Krofcheck,80 J. Tam,80P. H. Butler,81R. Doesburg,81H. Silverwood,81M. Ahmad,82I. Ahmed,82M. I. Asghar,82H. R. Hoorani,82

W. A. Khan,82T. Khurshid,82S. Qazi,82G. Brona,83M. Cwiok,83W. Dominik,83K. Doroba,83A. Kalinowski,83 M. Konecki,83J. Krolikowski,83T. Frueboes,84R. Gokieli,84M. Go´rski,84M. Kazana,84K. Nawrocki,84 K. Romanowska-Rybinska,84M. Szleper,84G. Wrochna,84P. Zalewski,84N. Almeida,85P. Bargassa,85A. David,85

P. Faccioli,85P. G. Ferreira Parracho,85M. Gallinaro,85P. Musella,85A. Nayak,85J. Pela,85,bP. Q. Ribeiro,85 J. Seixas,85J. Varela,85S. Afanasiev,86I. Belotelov,86P. Bunin,86I. Golutvin,86A. Kamenev,86V. Karjavin,86 G. Kozlov,86A. Lanev,86P. Moisenz,86V. Palichik,86V. Perelygin,86S. Shmatov,86V. Smirnov,86A. Volodko,86

A. Zarubin,86V. Golovtsov,87Y. Ivanov,87V. Kim,87P. Levchenko,87V. Murzin,87V. Oreshkin,87I. Smirnov,87 V. Sulimov,87L. Uvarov,87S. Vavilov,87A. Vorobyev,87An. Vorobyev,87Yu. Andreev,88A. Dermenev,88 S. Gninenko,88N. Golubev,88M. Kirsanov,88N. Krasnikov,88V. Matveev,88A. Pashenkov,88A. Toropin,88 S. Troitsky,88V. Epshteyn,89V. Gavrilov,89V. Kaftanov,89,aM. Kossov,89,bA. Krokhotin,89N. Lychkovskaya,89

V. Popov,89G. Safronov,89S. Semenov,89V. Stolin,89E. Vlasov,89A. Zhokin,89E. Boos,90M. Dubinin,90,w L. Dudko,90A. Ershov,90A. Gribushin,90O. Kodolova,90I. Lokhtin,90A. Markina,90S. Obraztsov,90M. Perfilov,90

S. Petrushanko,90L. Sarycheva,90V. Savrin,90A. Snigirev,90V. Andreev,91M. Azarkin,91I. Dremin,91 M. Kirakosyan,91A. Leonidov,91S. V. Rusakov,91A. Vinogradov,91I. Azhgirey,92I. Bayshev,92S. Bitioukov,92

V. Grishin,92,bV. Kachanov,92D. Konstantinov,92A. Korablev,92V. Krychkine,92V. Petrov,92R. Ryutin,92 A. Sobol,92L. Tourtchanovitch,92S. Troshin,92N. Tyurin,92A. Uzunian,92A. Volkov,92P. Adzic,93,x M. Djordjevic,93D. Krpic,93,xJ. Milosevic,93M. Aguilar-Benitez,94J. Alcaraz Maestre,94P. Arce,94C. Battilana,94

E. Calvo,94M. Cepeda,94M. Cerrada,94M. Chamizo Llatas,94N. Colino,94B. De La Cruz,94A. Delgado Peris,94 C. Diez Pardos,94D. Domı´nguez Va´zquez,94C. Fernandez Bedoya,94J. P. Ferna´ndez Ramos,94A. Ferrando,94 J. Flix,94M. C. Fouz,94P. Garcia-Abia,94O. Gonzalez Lopez,94S. Goy Lopez,94J. M. Hernandez,94M. I. Josa,94

G. Merino,94J. Puerta Pelayo,94I. Redondo,94L. Romero,94J. Santaolalla,94M. S. Soares,94C. Willmott,94 C. Albajar,95G. Codispoti,95J. F. de Troco´niz,95J. Cuevas,96J. Fernandez Menendez,96S. Folgueras,96 I. Gonzalez Caballero,96L. Lloret Iglesias,96J. M. Vizan Garcia,96J. A. Brochero Cifuentes,97I. J. Cabrillo,97

A. Calderon,97S. H. Chuang,97J. Duarte Campderros,97M. Felcini,97,yM. Fernandez,97G. Gomez,97 J. Gonzalez Sanchez,97C. Jorda,97P. Lobelle Pardo,97A. Lopez Virto,97J. Marco,97R. Marco,97

(9)

C. Martinez Rivero,97F. Matorras,97F. J. Munoz Sanchez,97J. Piedra Gomez,97,zT. Rodrigo,97 A. Y. Rodrı´guez-Marrero,97A. Ruiz-Jimeno,97L. Scodellaro,97M. Sobron Sanudo,97I. Vila,97 R. Vilar Cortabitarte,97D. Abbaneo,98E. Auffray,98G. Auzinger,98P. Baillon,98A. H. Ball,98D. Barney,98 A. J. Bell,98,aaD. Benedetti,98C. Bernet,98,dW. Bialas,98P. Bloch,98A. Bocci,98S. Bolognesi,98M. Bona,98 H. Breuker,98K. Bunkowski,98T. Camporesi,98G. Cerminara,98T. Christiansen,98J. A. Coarasa Perez,98B. Cure´,98 D. D’Enterria,98A. De Roeck,98S. Di Guida,98N. Dupont-Sagorin,98A. Elliott-Peisert,98B. Frisch,98W. Funk,98 A. Gaddi,98G. Georgiou,98H. Gerwig,98D. Gigi,98K. Gill,98D. Giordano,98F. Glege,98R. Gomez-Reino Garrido,98 M. Gouzevitch,98P. Govoni,98S. Gowdy,98L. Guiducci,98M. Hansen,98C. Hartl,98J. Harvey,98J. Hegeman,98 B. Hegner,98H. F. Hoffmann,98A. Honma,98V. Innocente,98P. Janot,98K. Kaadze,98E. Karavakis,98P. Lecoq,98 C. Lourenc¸o,98T. Ma¨ki,98M. Malberti,98L. Malgeri,98M. Mannelli,98L. Masetti,98A. Maurisset,98F. Meijers,98 S. Mersi,98E. Meschi,98R. Moser,98M. U. Mozer,98M. Mulders,98E. Nesvold,98,bM. Nguyen,98T. Orimoto,98 L. Orsini,98E. Perez,98A. Petrilli,98A. Pfeiffer,98M. Pierini,98M. Pimia¨,98D. Piparo,98G. Polese,98A. Racz,98 W. Reece,98J. Rodrigues Antunes,98G. Rolandi,98,bbT. Rommerskirchen,98M. Rovere,98H. Sakulin,98C. Scha¨fer,98

C. Schwick,98I. Segoni,98A. Sharma,98P. Siegrist,98M. Simon,98P. Sphicas,98,ccM. Spiropulu,98,wM. Stoye,98 P. Tropea,98A. Tsirou,98P. Vichoudis,98M. Voutilainen,98W. D. Zeuner,98W. Bertl,99K. Deiters,99W. Erdmann,99

K. Gabathuler,99R. Horisberger,99Q. Ingram,99H. C. Kaestli,99S. Ko¨nig,99D. Kotlinski,99U. Langenegger,99 F. Meier,99D. Renker,99T. Rohe,99J. Sibille,99,ddA. Starodumov,99,eeL. Ba¨ni,100P. Bortignon,100L. Caminada,100,ff

N. Chanon,100Z. Chen,100S. Cittolin,100G. Dissertori,100M. Dittmar,100J. Eugster,100K. Freudenreich,100 C. Grab,100W. Hintz,100P. Lecomte,100W. Lustermann,100C. Marchica,100,ffP. Martinez Ruiz del Arbol,100 P. Milenovic,100,ggF. Moortgat,100C. Na¨geli,100,ffP. Nef,100F. Nessi-Tedaldi,100L. Pape,100F. Pauss,100T. Punz,100

A. Rizzi,100F. J. Ronga,100M. Rossini,100L. Sala,100A. K. Sanchez,100M.-C. Sawley,100B. Stieger,100 L. Tauscher,100,aA. Thea,100K. Theofilatos,100D. Treille,100C. Urscheler,100R. Wallny,100M. Weber,100

L. Wehrli,100J. Weng,100E. Aguilo,101C. Amsler,101V. Chiochia,101S. De Visscher,101C. Favaro,101 M. Ivova Rikova,101B. Millan Mejias,101P. Otiougova,101C. Regenfus,101P. Robmann,101A. Schmidt,101 H. Snoek,101Y. H. Chang,102K. H. Chen,102C. M. Kuo,102S. W. Li,102W. Lin,102Z. K. Liu,102Y. J. Lu,102 D. Mekterovic,102R. Volpe,102J. H. Wu,102S. S. Yu,102P. Bartalini,103P. Chang,103Y. H. Chang,103Y. W. Chang,103

Y. Chao,103K. F. Chen,103W.-S. Hou,103Y. Hsiung,103K. Y. Kao,103Y. J. Lei,103R.-S. Lu,103J. G. Shiu,103 Y. M. Tzeng,103M. Wang,103A. Adiguzel,104M. N. Bakirci,104,hhS. Cerci,104,iiC. Dozen,104I. Dumanoglu,104

E. Eskut,104S. Girgis,104G. Gokbulut,104I. Hos,104E. E. Kangal,104A. Kayis Topaksu,104G. Onengut,104 K. Ozdemir,104S. Ozturk,104,jjA. Polatoz,104K. Sogut,104,kkD. Sunar Cerci,104,iiB. Tali,104,iiH. Topakli,104,hh

D. Uzun,104L. N. Vergili,104M. Vergili,104I. V. Akin,105T. Aliev,105B. Bilin,105S. Bilmis,105M. Deniz,105 H. Gamsizkan,105A. M. Guler,105K. Ocalan,105A. Ozpineci,105M. Serin,105R. Sever,105U. E. Surat,105 E. Yildirim,105M. Zeyrek,105M. Deliomeroglu,106D. Demir,106,llE. Gu¨lmez,106B. Isildak,106M. Kaya,106,mm O. Kaya,106,mmM. O¨ zbek,106S. Ozkorucuklu,106,nnN. Sonmez,106,ooL. Levchuk,107F. Bostock,108J. J. Brooke,108

T. L. Cheng,108E. Clement,108D. Cussans,108R. Frazier,108J. Goldstein,108M. Grimes,108D. Hartley,108 G. P. Heath,108H. F. Heath,108L. Kreczko,108S. Metson,108D. M. Newbold,108,ppK. Nirunpong,108A. Poll,108

S. Senkin,108V. J. Smith,108L. Basso,109,qqK. W. Bell,109A. Belyaev,109,qqC. Brew,109R. M. Brown,109 B. Camanzi,109D. J. A. Cockerill,109J. A. Coughlan,109K. Harder,109S. Harper,109J. Jackson,109B. W. Kennedy,109

E. Olaiya,109D. Petyt,109B. C. Radburn-Smith,109C. H. Shepherd-Themistocleous,109I. R. Tomalin,109 W. J. Womersley,109S. D. Worm,109R. Bainbridge,110G. Ball,110J. Ballin,110R. Beuselinck,110O. Buchmuller,110

D. Colling,110N. Cripps,110M. Cutajar,110G. Davies,110M. Della Negra,110W. Ferguson,110J. Fulcher,110 D. Futyan,110A. Gilbert,110A. Guneratne Bryer,110G. Hall,110Z. Hatherell,110J. Hays,110G. Iles,110M. Jarvis,110 G. Karapostoli,110L. Lyons,110B. C. MacEvoy,110A.-M. Magnan,110J. Marrouche,110B. Mathias,110R. Nandi,110 J. Nash,110A. Nikitenko,110,eeA. Papageorgiou,110M. Pesaresi,110K. Petridis,110M. Pioppi,110,rrD. M. Raymond,110 S. Rogerson,110N. Rompotis,110A. Rose,110M. J. Ryan,110C. Seez,110P. Sharp,110A. Sparrow,110A. Tapper,110 S. Tourneur,110M. Vazquez Acosta,110T. Virdee,110S. Wakefield,110N. Wardle,110D. Wardrope,110T. Whyntie,110 M. Barrett,111M. Chadwick,111J. E. Cole,111P. R. Hobson,111A. Khan,111P. Kyberd,111D. Leslie,111W. Martin,111 I. D. Reid,111L. Teodorescu,111K. Hatakeyama,112H. Liu,112C. Henderson,113T. Bose,114E. Carrera Jarrin,114

C. Fantasia,114A. Heister,114J. St. John,114P. Lawson,114D. Lazic,114J. Rohlf,114D. Sperka,114L. Sulak,114 A. Avetisyan,115S. Bhattacharya,115J. P. Chou,115D. Cutts,115A. Ferapontov,115U. Heintz,115S. Jabeen,115 G. Kukartsev,115G. Landsberg,115M. Luk,115M. Narain,115D. Nguyen,115M. Segala,115T. Sinthuprasith,115

(10)

T. Speer,115K. V. Tsang,115R. Breedon,116G. Breto,116M. Calderon De La Barca Sanchez,116S. Chauhan,116 M. Chertok,116J. Conway,116P. T. Cox,116J. Dolen,116R. Erbacher,116E. Friis,116W. Ko,116A. Kopecky,116 R. Lander,116H. Liu,116S. Maruyama,116T. Miceli,116M. Nikolic,116D. Pellett,116J. Robles,116S. Salur,116 T. Schwarz,116M. Searle,116J. Smith,116M. Squires,116M. Tripathi,116R. Vasquez Sierra,116C. Veelken,116 V. Andreev,117K. Arisaka,117D. Cline,117R. Cousins,117A. Deisher,117J. Duris,117S. Erhan,117C. Farrell,117 J. Hauser,117M. Ignatenko,117C. Jarvis,117C. Plager,117G. Rakness,117P. Schlein,117,aJ. Tucker,117V. Valuev,117

J. Babb,118A. Chandra,118R. Clare,118J. Ellison,118J. W. Gary,118F. Giordano,118G. Hanson,118G. Y. Jeng,118 S. C. Kao,118F. Liu,118H. Liu,118O. R. Long,118A. Luthra,118H. Nguyen,118B. C. Shen,118,aR. Stringer,118 J. Sturdy,118S. Sumowidagdo,118R. Wilken,118S. Wimpenny,118W. Andrews,119J. G. Branson,119G. B. Cerati,119

D. Evans,119F. Golf,119A. Holzner,119R. Kelley,119M. Lebourgeois,119J. Letts,119B. Mangano,119S. Padhi,119 C. Palmer,119G. Petrucciani,119H. Pi,119M. Pieri,119R. Ranieri,119M. Sani,119V. Sharma,119S. Simon,119 E. Sudano,119M. Tadel,119Y. Tu,119A. Vartak,119S. Wasserbaech,119,ssF. Wu¨rthwein,119A. Yagil,119J. Yoo,119

D. Barge,120R. Bellan,120C. Campagnari,120M. D’Alfonso,120T. Danielson,120K. Flowers,120P. Geffert,120 J. Incandela,120C. Justus,120P. Kalavase,120S. A. Koay,120D. Kovalskyi,120V. Krutelyov,120S. Lowette,120 N. Mccoll,120V. Pavlunin,120F. Rebassoo,120J. Ribnik,120J. Richman,120R. Rossin,120D. Stuart,120W. To,120 J. R. Vlimant,120A. Apresyan,121A. Bornheim,121J. Bunn,121Y. Chen,121M. Gataullin,121Y. Ma,121A. Mott,121 H. B. Newman,121C. Rogan,121K. Shin,121V. Timciuc,121P. Traczyk,121J. Veverka,121R. Wilkinson,121Y. Yang,121

R. Y. Zhu,121B. Akgun,122R. Carroll,122T. Ferguson,122Y. Iiyama,122D. W. Jang,122S. Y. Jun,122Y. F. Liu,122 M. Paulini,122J. Russ,122H. Vogel,122I. Vorobiev,122J. P. Cumalat,123M. E. Dinardo,123B. R. Drell,123 C. J. Edelmaier,123W. T. Ford,123A. Gaz,123B. Heyburn,123E. Luiggi Lopez,123U. Nauenberg,123J. G. Smith,123

K. Stenson,123K. A. Ulmer,123S. R. Wagner,123S. L. Zang,123L. Agostino,124J. Alexander,124D. Cassel,124 A. Chatterjee,124N. Eggert,124L. K. Gibbons,124B. Heltsley,124W. Hopkins,124A. Khukhunaishvili,124B. Kreis,124 G. Nicolas Kaufman,124J. R. Patterson,124D. Puigh,124A. Ryd,124M. Saelim,124E. Salvati,124X. Shi,124W. Sun,124 W. D. Teo,124J. Thom,124J. Thompson,124J. Vaughan,124Y. Weng,124L. Winstrom,124P. Wittich,124A. Biselli,125

G. Cirino,125D. Winn,125S. Abdullin,126M. Albrow,126J. Anderson,126G. Apollinari,126M. Atac,126 J. A. Bakken,126L. A. T. Bauerdick,126A. Beretvas,126J. Berryhill,126P. C. Bhat,126I. Bloch,126F. Borcherding,126

K. Burkett,126J. N. Butler,126V. Chetluru,126H. W. K. Cheung,126F. Chlebana,126S. Cihangir,126W. Cooper,126 D. P. Eartly,126V. D. Elvira,126S. Esen,126I. Fisk,126J. Freeman,126Y. Gao,126E. Gottschalk,126D. Green,126 K. Gunthoti,126O. Gutsche,126J. Hanlon,126R. M. Harris,126J. Hirschauer,126B. Hooberman,126H. Jensen,126

M. Johnson,126U. Joshi,126R. Khatiwada,126B. Klima,126K. Kousouris,126S. Kunori,126S. Kwan,126 C. Leonidopoulos,126P. Limon,126D. Lincoln,126R. Lipton,126J. Lykken,126K. Maeshima,126J. M. Marraffino,126

D. Mason,126P. McBride,126T. Miao,126K. Mishra,126S. Mrenna,126Y. Musienko,126,ttC. Newman-Holmes,126 V. O’Dell,126R. Pordes,126O. Prokofyev,126N. Saoulidou,126E. Sexton-Kennedy,126S. Sharma,126 W. J. Spalding,126L. Spiegel,126P. Tan,126L. Taylor,126S. Tkaczyk,126L. Uplegger,126E. W. Vaandering,126

R. Vidal,126J. Whitmore,126W. Wu,126F. Yang,126F. Yumiceva,126J. C. Yun,126D. Acosta,127P. Avery,127 D. Bourilkov,127M. Chen,127S. Das,127M. De Gruttola,127G. P. Di Giovanni,127D. Dobur,127A. Drozdetskiy,127

R. D. Field,127M. Fisher,127Y. Fu,127I. K. Furic,127J. Gartner,127B. Kim,127J. Konigsberg,127A. Korytov,127 A. Kropivnitskaya,127T. Kypreos,127K. Matchev,127G. Mitselmakher,127L. Muniz,127C. Prescott,127 R. Remington,127A. Rinkevicius,127M. Schmitt,127B. Scurlock,127P. Sellers,127N. Skhirtladze,127M. Snowball,127 D. Wang,127J. Yelton,127M. Zakaria,127V. Gaultney,128L. Kramer,128L. M. Lebolo,128S. Linn,128P. Markowitz,128

G. Martinez,128J. L. Rodriguez,128T. Adams,129A. Askew,129J. Bochenek,129J. Chen,129B. Diamond,129 S. V. Gleyzer,129J. Haas,129S. Hagopian,129V. Hagopian,129M. Jenkins,129K. F. Johnson,129H. Prosper,129

L. Quertenmont,129S. Sekmen,129V. Veeraraghavan,129M. M. Baarmand,130B. Dorney,130S. Guragain,130 M. Hohlmann,130H. Kalakhety,130R. Ralich,130I. Vodopiyanov,130M. R. Adams,131I. M. Anghel,131 L. Apanasevich,131Y. Bai,131V. E. Bazterra,131R. R. Betts,131J. Callner,131R. Cavanaugh,131C. Dragoiu,131 L. Gauthier,131C. E. Gerber,131D. J. Hofman,131S. Khalatyan,131G. J. Kunde,131F. Lacroix,131M. Malek,131

C. O’Brien,131C. Silkworth,131C. Silvestre,131A. Smoron,131D. Strom,131N. Varelas,131U. Akgun,132 E. A. Albayrak,132B. Bilki,132W. Clarida,132F. Duru,132C. K. Lae,132E. McCliment,132J.-P. Merlo,132 H. Mermerkaya,132,uuA. Mestvirishvili,132A. Moeller,132J. Nachtman,132C. R. Newsom,132E. Norbeck,132 J. Olson,132Y. Onel,132F. Ozok,132S. Sen,132J. Wetzel,132T. Yetkin,132K. Yi,132B. A. Barnett,133B. Blumenfeld,133 A. Bonato,133C. Eskew,133D. Fehling,133G. Giurgiu,133A. V. Gritsan,133Z. J. Guo,133G. Hu,133P. Maksimovic,133

(11)

S. Rappoccio,133M. Swartz,133N. V. Tran,133A. Whitbeck,133P. Baringer,134A. Bean,134G. Benelli,134 O. Grachov,134R. P. Kenny Iii,134M. Murray,134D. Noonan,134S. Sanders,134J. S. Wood,134V. Zhukova,134

A. F. Barfuss,135T. Bolton,135I. Chakaberia,135A. Ivanov,135S. Khalil,135M. Makouski,135Y. Maravin,135 S. Shrestha,135I. Svintradze,135Z. Wan,135J. Gronberg,136D. Lange,136D. Wright,136A. Baden,137 M. Boutemeur,137S. C. Eno,137D. Ferencek,137J. A. Gomez,137N. J. Hadley,137R. G. Kellogg,137M. Kirn,137

Y. Lu,137A. C. Mignerey,137K. Rossato,137P. Rumerio,137F. Santanastasio,137A. Skuja,137J. Temple,137 M. B. Tonjes,137S. C. Tonwar,137E. Twedt,137B. Alver,138G. Bauer,138J. Bendavid,138W. Busza,138E. Butz,138

I. A. Cali,138M. Chan,138V. Dutta,138P. Everaerts,138G. Gomez Ceballos,138M. Goncharov,138K. A. Hahn,138 P. Harris,138Y. Kim,138M. Klute,138Y.-J. Lee,138W. Li,138C. Loizides,138P. D. Luckey,138T. Ma,138S. Nahn,138

C. Paus,138D. Ralph,138C. Roland,138G. Roland,138M. Rudolph,138G. S. F. Stephans,138F. Sto¨ckli,138 K. Sumorok,138K. Sung,138E. A. Wenger,138R. Wolf,138S. Xie,138M. Yang,138Y. Yilmaz,138A. S. Yoon,138 M. Zanetti,138S. I. Cooper,139P. Cushman,139B. Dahmes,139A. De Benedetti,139P. R. Dudero,139G. Franzoni,139 J. Haupt,139K. Klapoetke,139Y. Kubota,139J. Mans,139N. Pastika,139V. Rekovic,139R. Rusack,139M. Sasseville,139

A. Singovsky,139N. Tambe,139L. M. Cremaldi,140R. Godang,140R. Kroeger,140L. Perera,140R. Rahmat,140 D. A. Sanders,140D. Summers,140K. Bloom,141S. Bose,141J. Butt,141D. R. Claes,141A. Dominguez,141M. Eads,141

J. Keller,141T. Kelly,141I. Kravchenko,141J. Lazo-Flores,141H. Malbouisson,141S. Malik,141G. R. Snow,141 U. Baur,142A. Godshalk,142I. Iashvili,142S. Jain,142A. Kharchilava,142A. Kumar,142S. P. Shipkowski,142 K. Smith,142J. Zennamo,142G. Alverson,143E. Barberis,143D. Baumgartel,143O. Boeriu,143M. Chasco,143 S. Reucroft,143J. Swain,143D. Trocino,143D. Wood,143J. Zhang,143A. Anastassov,144A. Kubik,144N. Odell,144

R. A. Ofierzynski,144B. Pollack,144A. Pozdnyakov,144M. Schmitt,144S. Stoynev,144M. Velasco,144S. Won,144 L. Antonelli,145D. Berry,145A. Brinkerhoff,145M. Hildreth,145C. Jessop,145D. J. Karmgard,145J. Kolb,145 T. Kolberg,145K. Lannon,145W. Luo,145S. Lynch,145N. Marinelli,145D. M. Morse,145T. Pearson,145R. Ruchti,145

J. Slaunwhite,145N. Valls,145M. Wayne,145J. Ziegler,145B. Bylsma,146L. S. Durkin,146J. Gu,146C. Hill,146 P. Killewald,146K. Kotov,146T. Y. Ling,146M. Rodenburg,146G. Williams,146N. Adam,147E. Berry,147P. Elmer,147

D. Gerbaudo,147V. Halyo,147P. Hebda,147A. Hunt,147J. Jones,147E. Laird,147D. Lopes Pegna,147D. Marlow,147 T. Medvedeva,147M. Mooney,147J. Olsen,147P. Piroue´,147X. Quan,147B. Safdi,147H. Saka,147D. Stickland,147

C. Tully,147J. S. Werner,147A. Zuranski,147J. G. Acosta,148X. T. Huang,148A. Lopez,148H. Mendez,148 S. Oliveros,148J. E. Ramirez Vargas,148A. Zatserklyaniy,148E. Alagoz,149V. E. Barnes,149G. Bolla,149 L. Borrello,149D. Bortoletto,149M. De Mattia,149A. Everett,149A. F. Garfinkel,149L. Gutay,149Z. Hu,149

M. Jones,149O. Koybasi,149M. Kress,149A. T. Laasanen,149N. Leonardo,149C. Liu,149V. Maroussov,149 P. Merkel,149D. H. Miller,149N. Neumeister,149I. Shipsey,149D. Silvers,149A. Svyatkovskiy,149H. D. Yoo,149 J. Zablocki,149Y. Zheng,149P. Jindal,150N. Parashar,150C. Boulahouache,151K. M. Ecklund,151F. J. M. Geurts,151 B. P. Padley,151R. Redjimi,151J. Roberts,151J. Zabel,151B. Betchart,152A. Bodek,152Y. S. Chung,152R. Covarelli,152 P. de Barbaro,152R. Demina,152Y. Eshaq,152H. Flacher,152A. Garcia-Bellido,152P. Goldenzweig,152Y. Gotra,152

J. Han,152A. Harel,152D. C. Miner,152D. Orbaker,152G. Petrillo,152W. Sakumoto,152D. Vishnevskiy,152 M. Zielinski,152A. Bhatti,153R. Ciesielski,153L. Demortier,153K. Goulianos,153G. Lungu,153S. Malik,153 C. Mesropian,153O. Atramentov,154A. Barker,154D. Duggan,154Y. Gershtein,154R. Gray,154E. Halkiadakis,154

D. Hidas,154D. Hits,154A. Lath,154S. Panwalkar,154R. Patel,154K. Rose,154S. Schnetzer,154S. Somalwar,154 R. Stone,154S. Thomas,154G. Cerizza,155M. Hollingsworth,155S. Spanier,155Z. C. Yang,155A. York,155 R. Eusebi,156W. Flanagan,156J. Gilmore,156A. Gurrola,156T. Kamon,156V. Khotilovich,156R. Montalvo,156 I. Osipenkov,156Y. Pakhotin,156J. Pivarski,156A. Safonov,156S. Sengupta,156A. Tatarinov,156D. Toback,156 M. Weinberger,156N. Akchurin,157C. Bardak,157J. Damgov,157C. Jeong,157K. Kovitanggoon,157S. W. Lee,157

T. Libeiro,157P. Mane,157Y. Roh,157A. Sill,157I. Volobouev,157R. Wigmans,157E. Yazgan,157E. Appelt,158 E. Brownson,158D. Engh,158C. Florez,158W. Gabella,158M. Issah,158W. Johns,158P. Kurt,158C. Maguire,158 A. Melo,158P. Sheldon,158B. Snook,158S. Tuo,158J. Velkovska,158M. W. Arenton,159M. Balazs,159S. Boutle,159

B. Cox,159B. Francis,159R. Hirosky,159A. Ledovskoy,159C. Lin,159C. Neu,159R. Yohay,159S. Gollapinni,160 R. Harr,160P. E. Karchin,160P. Lamichhane,160M. Mattson,160C. Milste`ne,160A. Sakharov,160M. Anderson,161 M. Bachtis,161J. N. Bellinger,161D. Carlsmith,161S. Dasu,161J. Efron,161L. Gray,161K. S. Grogg,161M. Grothe,161

R. Hall-Wilton,161M. Herndon,161A. Herve´,161P. Klabbers,161J. Klukas,161A. Lanaro,161C. Lazaridis,161 J. Leonard,161R. Loveless,161A. Mohapatra,161F. Palmonari,161D. Reeder,161I. Ross,161A. Savin,161

(12)

(CMS Collaboration)

1Yerevan Physics Institute, Yerevan, Armenia 2Institut fu¨r Hochenergiephysik der OeAW, Wien, Austria 3National Centre for Particle and High Energy Physics, Minsk, Belarus

4

Universiteit Antwerpen, Antwerpen, Belgium

5Vrije Universiteit Brussel, Brussel, Belgium 6Universite´ Libre de Bruxelles, Bruxelles, Belgium

7Ghent University, Ghent, Belgium

8Universite´ Catholique de Louvain, Louvain-la-Neuve, Belgium 9Universite´ de Mons, Mons, Belgium

10Centro Brasileiro de Pesquisas Fisicas, Rio de Janeiro, Brazil 11Universidade do Estado do Rio de Janeiro, Rio de Janeiro, Brazil 12Instituto de Fisica Teorica, Universidade Estadual Paulista, Sao Paulo, Brazil

13

Institute for Nuclear Research and Nuclear Energy, Sofia, Bulgaria

14University of Sofia, Sofia, Bulgaria 15Institute of High Energy Physics, Beijing, China

16State Key Lab. of Nucl. Phys. and Tech., Peking University, Beijing, China 17Universidad de Los Andes, Bogota, Colombia

18Technical University of Split, Split, Croatia 19University of Split, Split, Croatia 20Institute Rudjer Boskovic, Zagreb, Croatia

21University of Cyprus, Nicosia, Cyprus 22Charles University, Prague, Czech Republic

23Academy of Scientific Research and Technology of the Arab Republic of Egypt,

Egyptian Network of High Energy Physics, Cairo, Egypt

24National Institute of Chemical Physics and Biophysics, Tallinn, Estonia 25Department of Physics, University of Helsinki, Helsinki, Finland

26Helsinki Institute of Physics, Helsinki, Finland 27Lappeenranta University of Technology, Lappeenranta, Finland 28

Laboratoire d’Annecy-le-Vieux de Physique des Particules, IN2P3-CNRS, Annecy-le-Vieux, France

29DSM/IRFU, CEA/Saclay, Gif-sur-Yvette, France

30Laboratoire Leprince-Ringuet, Ecole Polytechnique, IN2P3-CNRS, Palaiseau, France

31Institut Pluridisciplinaire Hubert Curien, Universite´ de Strasbourg, Universite´ de Haute Alsace Mulhouse,

CNRS/IN2P3, Strasbourg, France

32Centre de Calcul de l’Institut National de Physique Nucleaire et de Physique des Particules (IN2P3), Villeurbanne, France 33Universite´ de Lyon, Universite´ Claude Bernard Lyon 1, CNRS-IN2P3, Institut de Physique Nucle´aire de Lyon, Villeurbanne, France

34Institute of High Energy Physics and Informatization, Tbilisi State University, Tbilisi, Georgia 35RWTH Aachen University, I. Physikalisches Institut, Aachen, Germany

36

RWTH Aachen University, III. Physikalisches Institut A, Aachen, Germany

37RWTH Aachen University, III. Physikalisches Institut B, Aachen, Germany 38Deutsches Elektronen-Synchrotron, Hamburg, Germany

39University of Hamburg, Hamburg, Germany 40Institut fu¨r Experimentelle Kernphysik, Karlsruhe, Germany 41Institute of Nuclear Physics ‘‘Demokritos’’, Aghia Paraskevi, Greece

42University of Athens, Athens, Greece 43University of Ioa´nnina, Ioa´nnina, Greece

44KFKI Research Institute for Particle and Nuclear Physics, Budapest, Hungary 45Institute of Nuclear Research ATOMKI, Debrecen, Hungary

46University of Debrecen, Debrecen, Hungary 47Panjab University, Chandigarh, India

48University of Delhi, Delhi, India 49Saha Institute of Nuclear Physics, Kolkata, India

50Bhabha Atomic Research Centre, Mumbai, India 51Tata Institute of Fundamental Research—EHEP, Mumbai, India 52

Tata Institute of Fundamental Research—HECR, Mumbai, India

53Institute for Research and Fundamental Sciences (IPM), Tehran, Iran 54aINFN Sezione di Bari, Bari, Italy

(13)

54cPolitecnico di Bari, Bari, Italy 55aINFN Sezione di Bologna, Bologna, Italy

55bUniversita` di Bologna, Bologna, Italy 56aINFN Sezione di Catania, Catania, Italy

56bUniversita` di Catania, Catania, Italy 57aINFN Sezione di Firenze, Firenze, Italy

57bUniversita` di Firenze, Firenze, Italy

58INFN Laboratori Nazionali di Frascati, Frascati, Italy 59

INFN Sezione di Genova, Genova, Italy

60aINFN Sezione di Milano-Bicocca, Milano, Italy 60bUniversita` di Milano-Bicocca, Milano, Italy

61aINFN Sezione di Napoli, Napoli, Italy 61bUniversita` di Napoli ‘‘Federico II’’, Napoli, Italy

62aINFN Sezione di Padova, Padova, Italy 62bUniversita` di Padova, Padova, Italy 62cUniversita` di Trento (Trento), Padova, Italy

63aINFN Sezione di Pavia, Pavia, Italy 63bUniversita` di Pavia, Pavia, Italy 64aINFN Sezione di Perugia, Perugia, Italy

64bUniversita` di Perugia, Perugia, Italy 65aINFN Sezione di Pisa, Pisa, Italy

65bUniversita` di Pisa, Pisa, Italy 65cScuola Normale Superiore di Pisa, Pisa, Italy

66aINFN Sezione di Roma, Roma, Italy 66b

Universita` di Roma ‘‘La Sapienza’’, Roma, Italy

67aINFN Sezione di Torino, Torino, Italy 67bUniversita` di Torino, Torino, Italy

67cUniversita` del Piemonte Orientale (Novara), Torino, Italy 68aINFN Sezione di Trieste, Trieste, Italy

68bUniversita` di Trieste, Trieste, Italy 69Kangwon National University, Chunchon, Korea

70Kyungpook National University, Daegu, Korea 71Chonnam National University, Institute for Universe

and Elementary Particles, Kwangju, Korea

72Korea University, Seoul, Korea 73University of Seoul, Seoul, Korea 74Sungkyunkwan University, Suwon, Korea

75Vilnius University, Vilnius, Lithuania

76Centro de Investigacion y de Estudios Avanzados del IPN, Mexico City, Mexico 77Universidad Iberoamericana, Mexico City, Mexico

78Benemerita Universidad Autonoma de Puebla, Puebla, Mexico 79Universidad Auto´noma de San Luis Potosı´, San Luis Potosı´, Mexico

80University of Auckland, Auckland, New Zealand 81University of Canterbury, Christchurch, New Zealand

82National Centre for Physics, Quaid-I-Azam University, Islamabad, Pakistan 83Institute of Experimental Physics, Faculty of Physics, University of Warsaw, Warsaw, Poland

84Soltan Institute for Nuclear Studies, Warsaw, Poland 85

Laborato´rio de Instrumentac¸a˜o e Fı´sica Experimental de Partı´culas, Lisboa, Portugal

86Joint Institute for Nuclear Research, Dubna, Russia

87Petersburg Nuclear Physics Institute, Gatchina (St Petersburg), Russia 88Institute for Nuclear Research, Moscow, Russia

89Institute for Theoretical and Experimental Physics, Moscow, Russia 90Moscow State University, Moscow, Russia

91P.N. Lebedev Physical Institute, Moscow, Russia

92State Research Center of Russian Federation, Institute for High Energy Physics, Protvino, Russia 93University of Belgrade, Faculty of Physics and Vinca Institute of Nuclear Sciences, Belgrade, Serbia

94

Centro de Investigaciones Energe´ticas Medioambientales y Tecnolo´gicas (CIEMAT), Madrid, Spain

95Universidad Auto´noma de Madrid, Madrid, Spain 96Universidad de Oviedo, Oviedo, Spain

97Instituto de Fı´sica de Cantabria (IFCA), CSIC-Universidad de Cantabria, Santander, Spain 98CERN, European Organization for Nuclear Research, Geneva, Switzerland

(14)

99Paul Scherrer Institut, Villigen, Switzerland

100Institute for Particle Physics, ETH Zurich, Zurich, Switzerland 101Universita¨t Zu¨rich, Zurich, Switzerland

102National Central University, Chung-Li, Taiwan 103National Taiwan University (NTU), Taipei, Taiwan

104Cukurova University, Adana, Turkey

105Middle East Technical University, Physics Department, Ankara, Turkey 106Bogazici University, Istanbul, Turkey

107

National Scientific Center, Kharkov Institute of Physics and Technology, Kharkov, Ukraine

108University of Bristol, Bristol, United Kingdom 109Rutherford Appleton Laboratory, Didcot, United Kingdom

110Imperial College, London, United Kingdom 111Brunel University, Uxbridge, United Kingdom

112Baylor University, Waco, Texas 76706, USA

113The University of Alabama, Tuscaloosa, Alabama 35487, USA 114Boston University, Boston, Massachusetts 02215, USA 115Brown University, Providence, Rhode Island 02912, USA 116University of California, Davis, Davis, California 95616, USA 117University of California, Los Angeles, Los Angeles, California 90095, USA

118University of California, Riverside, Riverside, California 92521, USA 119University of California, San Diego, La Jolla, California 92093, USA 120University of California, Santa Barbara, Santa Barbara, California 93106, USA

121California Institute of Technology, Pasadena, California 91125, USA 122Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, USA 123

University of Colorado at Boulder, Boulder, Colorado 80309, USA

124Cornell University, Ithaca, New York 14853, USA 125Fairfield University, Fairfield, Connecticut 06824, USA 126Fermi National Accelerator Laboratory, Batavia, Illinois 60510, USA

127University of Florida, Gainesville, Florida 32611, USA 128Florida International University, Miami, Florida 33199, USA

129Florida State University, Tallahassee, Florida 32306, USA 130Florida Institute of Technology, Melbourne, Florida 32901, USA 131University of Illinois at Chicago (UIC), Chicago, Illinois 60607, USA

132The University of Iowa, Iowa City, Iowa 52242, USA 133Johns Hopkins University, Baltimore, Maryland 21218, USA

134The University of Kansas, Lawrence, Kansas 66045, USA 135Kansas State University, Manhattan, Kansas 66506, USA

136Lawrence Livermore National Laboratory, Livermore, California 94720, USA 137University of Maryland, College Park, Maryland 20742, USA 138Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA

139University of Minnesota, Minneapolis, Minnesota 55455, USA 140University of Mississippi, University, Mississippi 38677, USA 141University of Nebraska-Lincoln, Lincoln, Nebraska 68588, USA 142State University of New York at Buffalo, Buffalo, New York 14260, USA

143Northeastern University, Boston, Massachusetts 02115, USA 144Northwestern University, Evanston, Illinois 60208, USA 145University of Notre Dame, Notre Dame, Indiana 46556, USA

146

The Ohio State University, Columbus, Ohio 43210, USA

147Princeton University, Princeton, New Jersey 08544, USA 148University of Puerto Rico, Mayaguez, Puerto Rico 00680,

149Purdue University, West Lafayette, Indiana 47907, USA 150Purdue University Calumet, Hammond, Indiana 46323, USA

151Rice University, Houston, Texas 77251, USA 152University of Rochester, Rochester, New York 14627, USA 153The Rockefeller University, New York, New York 10021, USA

154Rutgers, the State University of New Jersey, Piscataway, New Jersey 08854, USA 155

University of Tennessee, Knoxville, Tennessee 37996, USA

156Texas A&M University, College Station, Texas 77843, USA 157Texas Tech University, Lubbock, Texas 79409, USA 158Vanderbilt University, Nashville, Tennessee 37235, USA 159University of Virginia, Charlottesville, Virginia 22901, USA

(15)

160Wayne State University, Detroit, Michigan 48202, USA 161University of Wisconsin, Madison, Wisconsin 53706, USA

aDeceased.

bAlso at CERN, European Organization for Nuclear Research, Geneva, Switzerland. cAlso at Universidade Federal do ABC, Santo Andre, Brazil.

dAlso at Laboratoire Leprince-Ringuet, Ecole Polytechnique, IN2P3-CNRS, Palaiseau, France. eAlso at Suez Canal University, Suez, Egypt.

fAlso at British University, Cairo, Egypt. gAlso at Fayoum University, El-Fayoum, Egypt.

hAlso at Soltan Institute for Nuclear Studies, Warsaw, Poland.

iAlso at Massachusetts Institute of Technology, Cambridge, MA, USA. jAlso at Universite´ de Haute-Alsace, Mulhouse, France.

kAlso at Brandenburg University of Technology, Cottbus, Germany. l

Also at Moscow State University, Moscow, Russia.

mAlso at Institute of Nuclear Research ATOMKI, Debrecen, Hungary. nAlso at Eo¨tvo¨s Lora´nd University, Budapest, Hungary.

oAlso at Tata Institute of Fundamental Research-HECR, Mumbai, India. pAlso at University of Visva-Bharati, Santiniketan, India.

qAlso at Sharif University of Technology, Tehran, Iran. rAlso at Shiraz University, Shiraz, Iran.

sAlso at Isfahan University of Technology, Isfahan, Iran.

tAlso at Facolta` Ingegneria Universita` di Roma ‘‘La Sapienza’’, Roma, Italy. uAlso at Universita` della Basilicata, Potenza, Italy.

vAlso at Universita` degli studi di Siena, Siena, Italy.

wAlso at California Institute of Technology, Pasadena, CA, USA. xAlso at Faculty of Physics of University of Belgrade, Belgrade, Serbia. yAlso at University of California, Los Angeles, Los Angeles, CA, USA. zAlso at University of Florida, Gainesville, FL, USA.

aa

Also at Universite´ de Gene`ve, Geneva, Switzerland.

bbAlso at Scuola Normale e Sezione dell’ INFN, Pisa, Italy. ccAlso at University of Athens, Athens, Greece.

ddAlso at The University of Kansas, Lawrence, KS, USA.

eeAlso at Institute for Theoretical and Experimental Physics, Moscow, Russia. ffAlso at Paul Scherrer Institut, Villigen, Switzerland.

ggAlso at University of Belgrade, Faculty of Physics and Vinca Institute of Nuclear Sciences, Belgrade, Serbia. hhAlso at Gaziosmanpasa University, Tokat, Turkey.

iiAlso at Adiyaman University, Adiyaman, Turkey. jjAlso at The University of Iowa, Iowa City, IA, USA. kkAlso at Mersin University, Mersin, Turkey.

llAlso at Izmir Institute of Technology, Izmir, Turkey. mmAlso at Kafkas University, Kars, Turkey.

nnAlso at Suleyman Demirel University, Isparta, Turkey. ooAlso at Ege University, Izmir, Turkey.

pp

Also at Rutherford Appleton Laboratory, Didcot, United Kingdom.

qqAlso at School of Physics and Astronomy, University of Southampton, Southampton, United Kingdom. rrAlso at INFN Sezione di Perugia, Universita` di Perugia, Perugia, Italy.

ssAlso at Utah Valley University, Orem, UT, USA. ttAlso at Institute for Nuclear Research, Moscow, Russia. uuAlso at Erzincan University, Erzincan, Turkey.

Figure

FIG. 1. Feynman diagrams for single-top quark production in t channel: 2 ! 2 (left) and 2 ! 3 (right) processes.
FIG. 1. Feynman diagrams for single-top quark production in t channel: 2 ! 2 (left) and 2 ! 3 (right) processes. p.1
FIG. 2 (color online). Cosine of the angle between the charged lepton and the untagged jet ( cos  , top panel) and  pseudorapid-ity of the untagged jet ( light jet , bottom panel) after the 2D
FIG. 2 (color online). Cosine of the angle between the charged lepton and the untagged jet ( cos  , top panel) and pseudorapid-ity of the untagged jet ( light jet , bottom panel) after the 2D p.3
Table I shows the cross section measured by both analy- analy-ses in each decay channel, corrected for acceptance and branching ratios

Table I

shows the cross section measured by both analy- analy-ses in each decay channel, corrected for acceptance and branching ratios p.4
TABLE I. Cross section measurements by channel and by analysis. The first uncertainty is statistical, the second  system-atic

TABLE I.

Cross section measurements by channel and by analysis. The first uncertainty is statistical, the second system-atic p.5

Referencias

Related subjects :