www.elsevier.es/cesjef
Cuadernos
de
economía
ARTICLE
Analysis
of
the
evolution
of
sovereign
bond
yields
by
wavelet
techniques
David
Chinarro
a,∗,
Eduardo
Martínez
b,
Simón
J.
Sosvilla
caSanJorgeUniversity,Spain
bLaLagunaUniversity,Spain
cComplutenseUniversity,Spain
Received29June2015;accepted3July2015 Availableonline5August2015
JEL CLASSIFICATION C14; C21; E43; F34; F37; G12; G15; G17 KEYWORDS Sovereignbond; Wavelet; Coherence; Entropy; Timeseries; Correlation; Comovement
Abstract Theterm‘‘wavelets’’coversasetofresourcesfromthemathematicalanalysisthat
hasproventheirefficiencyinsystemidentificationonareassuchashydrology,geology,
glaciol-ogy,climatologyandenergy resourcesoptimization. Themethodologyundergoneonsystems
engineeringcouldbeextrapolatedtoeverythingconceptualizedas‘‘complexsystem’’whatever
itsnaturebe.Thewavelettechniquesprovidethedescriptionofnon-stationarycomponents
andtheevolutionofmacroeconomicvariablesinthefrequencydomain.Theidentificationof
predominantfrequentialscalesandtransienteffectsintimeserieshighlightsthe
multiresolu-tionalanalysisthatwouldbemoredifficulttotreatwithtraditionalmethodsofeconometrics.
Areviewoftheliteraturewillshowthepotentialproblemsthatcanbesolvedwiththese
tech-niques,includingpredictionofbenefitscalculated ontheevolutionoftheriskpremiumofa
country,theextractionofsymmetricmacroeconomicshocksincountryclusters,ordetectionof
transienteffectsonthemutualinfluenceofsovereignbondsbetweenpairsofcountries,among
others.Thedissertationwillculminateinspecificapplicationsthatshowthepowerofwavelet
techniquesinidentifyingpossibledeterminantsandcorrelationoftheevolutionofsovereign
bondyieldsintheeuroareacountries.
© 2015 AsociaciónCuadernos de Economía. Publishedby Elsevier España, S.L.U. All rights
reserved.
CÓDIGOSJEL
C14; C21; E43;
Análisisdelaevolucióndelosréditosdelosbonossoberanos,utilizandolastécnicas deondículas
Resumen Eltérmino‘‘ondículas’’cubreunconjuntoderecursosdelanálisismatemáticoque
hademostradosueficaciaenlaidentificacióndesistemasenáreastalescomolahidrología,
∗Correspondingauthor.
E-mailaddress:dchinarro@usj.es(D.Chinarro).
http://dx.doi.org/10.1016/j.cesjef.2015.07.001
F34; F37; G12; G15; G17 PALABRASCLAVE Bonosoberano; Wavelet; Coherencia; Entropía; Seriestemporales; Correlación; Comovimiento
geología,glaciología,climatologíayoptimizacióndelosrecursosenergéticos.Lametodología
utilizada en la ingenieríade sistemas podría extrapolarse a todolo conceptualizado como
‘‘sistemacomplejo’’,fuerecualfueresunaturaleza.Lastécnicasde‘‘ondículas’’aportanla
descripcióndeloscomponentesnoestacionariosylaevolucióndelasvariables
macroeconómi-casenelcampodelafrecuencia.Laidentificacióndelasescalasfrecuencialespredominantesy
losefectostransitoriosenlasseriestemporalesenfatizaelanálisismulti-resolución,quepodría
sermásdifícildetratarconelusodemétodoseconométricostradicionales.Unarevisiónde
laliteraturareflejarálosproblemaspotencialesquepuedensolucionarseutilizandoestas
téc-nicas,talescomolaprediccióndelosbeneficioscalculadossobrelaevolucióndelaprimade
riesgoenunpaís,laextraccióndelosshocksmacroeconómicossimétricosenlosclustersdel
país,oladeteccióndelosefectostransitoriossobrelainfluenciamutuadelosbonossoberanos
entrelosparesdepaíses,entreotros.Ladisertacióndesembocaráenaplicacionesespecíficas
quereflejaránelpoderdelastécnicasdeondículasenlaidentificacióndeposibles
determin-antes,ylacorrelacióndelaevolucióndelosréditosdelosbonossoberanosenlospaísesdela
zonaEuro.
© 2015AsociaciónCuadernos deEconomía. Publicado porElsevier España,S.L.U. Todoslos
derechosreservados.
1.
Introduction
Classically, thedebt issuedby anational governmentwas
transformedinto bondsin the currency of a countrywith
a more stable economy. It could be used as a source
of income for pension funds, university donations,
char-ities and other institutions. Recent developments in the
euro-zoneandtheincursionofotherdevelopedand
emerg-ing markets have contributed toa shift in thinkingabout
the materiality of responsible investment in this type of
credit investing, which casts doubt on the existence of
risk-free sovereign bonds. The Principles for Responsible
Investment(PRI)givenbyKohutetal.(2013)exploresthe
ways of applying to fixed income environmental, social and governance(ESG) factorsin deciding where investors couldput theirmoneyin. Theenvironmental factors gen-erally consideredareclimate change, biodiversity,energy resources, biocapacity and ecosystem qualityand natural disasters. Social factors include: human rights, educa-tion,healthlevels,demographicchangeemploymentlevels, socialexclusionandpoverty,trustininstitutions,crimeand safety, and food security. Governance factors are institu-tionalstrength,corruption,regimestability,politicalrights, regulatoryeffectiveness andaccountingstandards,among others.
Intimeseriesanalysis,thereareseveralobjectiveswhich canbeclassifiedintothecategoriesofdescription, explana-tion,forecasting,controlandmonitoring.Asimpleobjective ofanytimeseriesanalysisistoprovideaconcise descrip-tion of the past values of a series which involves the underlyinggeneratingprocessofthetimeseries.Dataplot complementstheformalandquantitativeanalysistoshow importantfeaturesoftheseriessuchastrend,seasonality, outliersanddiscontinuities.Timeseriesobservationstaken ontwoormorevariablescanbeusedtoexplainthatthe vari-ationinonetimeseriesproducescorrespondentchangesin theothertimeseries.
Systemengineeringisdefinedbroadlyastheartand sci-enceof creatingwhole solutions to complexproblems. It providesmethods to find the right model adapted tothe peculiarities of the system in study. Identification tech-niques,developedtorepresenttypicalengineeringartificial systemsthroughlinearandnonlinearmodels,canbeapplied inthestudyofeconomysystems.Thetechniquealsocalled data-drivenmodelingisbasedonanalysisofdatafromone system,seekinginparticularconnectionsbetweenthe sys-temstatevariables(inputandoutputvariables).
Mathematical models are formal statements or equa-tions to express the relationship between system inputs, outputsandoperations,toperformsimulationsorforecast thefutureeconomystate. Mathematicalmodelstructures andcomputability power that ever have helped to finan-cial analysts are strongly required now in order to shed light on a complex problem where a lot of these factors areimmeasurable assomeof ESG.The immediateimpact is the rise of yields for the sovereign bonds of the issu-ing country and also, likely an international propagation ofthisimpact.The hypothesisisthatfromacomovement study ontime seriesevolution of sovereign bonds in sev-eralEuropean countries, and applyingwell-known system engineering methods, we can assess, or at least put in evidence, the periocity and intensivity of these impacts propagation. In this regard, special tools, as thosebased on wavelet transform, are being considered in prepar-ing time series such as smoothing of signals, spectral analysis, coherence levels and outliers detection, among others.
Theliteraturerapidlyspreadoutandwaveletanalysisis nowusedextensivelyinphysics,geophysics(Grinstedetal., 2004),epidemiology(Cazellesetal.,2007),neuroscience, signal processing (Ricker, 2003), hydroclimatology (Rivera etal.,2007),oceanography(Meyersetal.,1992), hydroge-ology(Labatetal.,1999;Chinarroetal.,2012),electricity demand(Hernndezetal.,2013),remotesensingdata(Ebadi
etal.,2013),computingcomplexproblemasMaxwell’scurl equations(AmatandMuoz,2008),amongotherfields.
Intheeconomicandfinancialliterature,comovementis assessedinthetimedomainthroughthewell-known corre-lationcoefficient.TheworkofKydlandandPrescott(1982)
andLongandPlosser(1983),andmanyauthorshave inves-tigatedthepropertiesofbusinesscycles.
The comovement and dependencies between the eco-nomic time series analyzed in the frequency domain can be found in the pioneering paper of Croux et al. (2001)
whopropose thecohesion, asameasurein thefrequency domain of dynamic comovement between several time series.Theydynamiccorrelationstoestimatedeterminants ofoutputcomovementbetweenOECDcountriesarestudied by Fidrmucet al. (2012), where trade intensity,financial integration,and specialization patterns have significantly differenteffectsoncomovementsatdifferentfrequencies.
Genay et al. (2001) supplied a unified view of filter-ingtechniques withaspecialfocusonwaveletanalysisin financeandeconomicsofferingtestingissueswith descrip-tive focus on access to a wide spectrum of parametric andnonparametric filteringmethods. Cariani (2012) com-pareswaveletsbasedmethodtoanalyzethebusinesscycles in Romania between 1991 and 2011, with the standard approachesinliterature.SangbaeKima(2007)establisheda relationshipbetweenchangesinstockpricesandbondyields intheG7countriesthroughWaveletanalysis.Businesscycles inatransitioneconomyarerevealedbyCariani(2012).Ona wavelet-basedapproach,theyshowanevidenceofbusiness cyclespropertiesvaryingintime,frequencyandintensity.
Thewaveletanalysisisproposedtoassesssimultaneously thecomovementatthefrequencyscalesandalongthetime line. So,it is possible tocapture the timeand frequency varyingfeaturesofcomovementwithinaunifiedframework whichconstitutesarefinementtopreviousapproaches.
Aftercollectingtimeseriesofsovereignbondfromeleven countries(Fig.1),thispaperemphasizesthemethodsand explanationsonwaveletstechniques,withspecialfocuson exactlywhatwaveletanalysiscanrevealabouteconomics timeseries.Itofferstestingissueswhichcanbeperformed withwaveletsinconjunctionwiththemulti-resolution anal-ysis to coevaluate two or more time series of sovereign bonds.Thepaperisorganizedasfollows.InSection2,the methodologyoftheproposedmethodisdescribed.In Sec-tion3the usabilityof themethod isdemonstrated inthe applicationofsovereign bondcoevolutioninseveral Euro-peancountries.ThepaperisconcludedinSection4.
2.
Method
description
2.1. Dynamicalbreakdownofthetime
TheexpressionL(R)2isaHilbertspace,withinnerproduct
Rf(t)g∗(t)dt(g*isgcomplexconjugated),forallfandg functionsdefinedinthisspace.Moreover,fandgshouldbe squareintegrablefunctions,soRf(t)g∗(t)dt<∞. Since thisintegralisusuallyreferredtoastheenergyofthe func-tionf,thisspaceisalsoknownasthespaceoffunctionswith finiteenergy.Therefore,withinnerproductinL(R)2canbe definedasanassociatednorm||f||=f,f2.
ThePlancherelrelationisf(t),g(t)=ˆf(t),ˆg(t)where
f(t),g(t)∈L2(R)and ˆf denotesdeFouriertransformoff(t): ˆ
f(t)=−∞∞ f(t)e−i2ωtdt. The Plancherel identitysays that
an energyofa functionispreserved by theFourier trans-form:||f(t)||2=||ˆf(t)||2(Korner,1988).
To discover properties at different frequencies, it is common to utilize Fourier analysis. However, under the Fouriertransform,thetimeinformationofatime-seriesis completely lost. Because of this loss of information it is hard todistinguishtransient relationsor toidentify when structural changes do occur. Moreover, these techniques aredefinitivelynotappropriatetodealwithnon-stationary time-series. To overcome the problems of analyzing non-stationary data, Gabor (1946) introduced the Short Time FourierTransform.Thebasicideaistobreakatimeseries intosmallersamplesandapplytheFouriertransformtoeach sample. However,this approachisinefficient becausethe frequency resolution is the same across all different fre-quencies(Raihanetal.,2001).
2.2. Waveletanalysis
Wavelets are well appropriated for analyzing signals that hold local nonlinearities and singularities. Applying wavelets,importantinformationappearsthrougha simulta-neousanalysisofthesignaltimeandfrequencyproperties (Mallat, 1998). The continuous wavelet transform (CWT) ˜
f(t)s, ofafunctionf(t),onthebaseofthewaveletmother s, is definedastheinner productf(t), s,inthe
mea-surableandsquareintegralspacesL(R)2(Daubechies,1990; Mallat,1989),asissetoutinEq.(1):
[W f](s,)= ∞ −∞ f(t) ∗s,(t)dt (1) s,(t)= 1 √ s t− s (2) where * is the complexconjugate. The motherwavelet
(t) is normalized || ||2=∞
−∞| (t)|2dt=1. All wavelet
functions usedinthetransformationarederivedfromthe mother wavelet through translation (shifting) and scaling (dilationorcompression),modifyingsandin s,.
Thecrosswaveletspectrum(XWS)betweenf(t)andg(t) signals aroundtimet andscale s is definedby (3) asthe convolutionoftheCWTofbothsignals(Mallat,1989).
X [f(t),g(t)]s, =[W f](s,)⊗[W g](s,) (3)
The wavelet power spectrum (WPS) or autocorrelation functionofthewavelettransformationofasignalisdefined as
P [f(t)]s,=[W f](s,)⊗[W f](s,) (4)
The representation of the continuous wavelet trans-form(Eq.(4))producesunnecessaryredundantinformation. Therefore,forpracticalpurposesthediscretewavelet trans-formtoasetof selectedaccordingtothepower seriesis usedbands.Thisdiscretizationproducesanarrayofpowers:
P [f(t)]a,b=[Ci,j] (5)
where j=20, 21, ..., 2k for each band of frequency and i≥0 are the values of discrete time considered. A
50 Austria Belgium Finland France Germany Greece Ireland Italy Netherland Portugal Spain 45 40 35 30 25 20 Y ields on so v e reign bonds 15 10 5 0
12Feb9312Feb9412Feb9512Feb9611Feb9711Feb9811Feb9911Feb0010Feb0110Feb0210Feb0310Feb0409Feb0509Feb0609Feb0709Feb0808Feb0908Feb1008Feb1108Feb1207Feb13
Figure1 Representationofsovereignbondyieldforeachcountryinstudyfrom1993to2014.
scalogram or spectrogram is the graphic representation of the normalized wavelet power of a signal f(t) in a time-varyingfrequencydomain,withinathree-dimensional space: time (x), scale/frequency (y) and power (z). The examplegivenin Fig.2 isadiscretepowerspectrum rep-resentation.Colortonesstandforcoefficientvaluesinthe spectral matrix (Eq. (5)), Y-axis is the range of selected powerbandsandXisthetimingofthesignal.
The wavelettransform appliedto a finite length time series inevitably suffers from border distortions. The affectedregionisdelimitedbytheconeofinfluence(COI) ofthewaveletspectrumthatcanbecalculatedaccording toGrinstedetal.(2004).
Waveletpowercoherence(WPC)isarelativemeasureof thecorrelation betweentwosignals.Sois thenormalized crossspectrum(Eq.(4))of twosignalsin both powerand
2 3 3 4 5 6 7 8 10 11 13 16 19 23 27 32 38 45 Y ields on so v ereign bonds 54 64 76 91 108 128 152 181 215 256 304 362 431 512 12Feb9327Oct9311J ul94
23Mar9505Dec9516Aug9630Apr9712Jan9824Sep9808Jun9918Feb0001No v00
16Jul0128Mar0210Dec0222Aug0305Ma y04
17Jan0529Sep0513Jun0623Feb0707No v07
21Jul0802Apr0915Dec0927Aug1011Aug1123Jan1204O ct12
18Jun13
1/256 1/128 1/64 1/32 1/16 1/8 1/4 1/2 1 2 4 8 16 32 64 128 256 Spain-wavelet spectrum
Figure2 WaveletpowerspectrumofsovereignbondevolutioninSpain.TheY-axisisthewaveletscale(bondyieldinpercent).The
X-axisistime(days).Curvedlinesoneithersideindicatetheconeofinfluence(dashedline)whereedgeeffectsbecomeimportant. Spectralstrengthisshownbycolorsrangingfromdeepblue(weak)todeepred(strong).Thethickblackcontourdesignatesthe5% significancelevelagainstrednoise.(Forinterpretationofthereferencestocolorinthisfigurelegend,thereaderisreferredtothe webversionofthearticle.)
12Feb9327Oct9311Jul9423Mar9505Dec9516Aug9630Apr9712Jan9824Sep9808Jun9918Feb0001No v00
16Jul0128Mar0210Dec0222Aug0305Ma y04
17Jan0529Sep0513Jun0623Feb0707No v07
21Jul0802Apr0915Dec0927Aug1011Aug1123Jan1204Oct1218Jun13
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 4 8 16 32 64 128 256 512 1024 2048 Y ields on so v ereign bonds
Spain-Germany wavelet coherence
Figure3 CoherencespectrumobtainedthroughtheNormalizedCrossWaveletSpectrumofsovereignbondstimeseriesinSpain andGermany.The5%ofsignificancelevelsareplottedwithblackthick line.Theleft axisisthewaveletscale(h).The bottom axisistime.CurvedlinesoneithersideindicatetheCOI.Thespectralstrengthspreadsoutfromweakvalues(blue)tostrongones (darkred)forhighcoherence.(Forinterpretationofthereferencestocolorinthisfigurelegend,thereaderisreferredtotheweb versionofthearticle.)
phase.WPC is the normalized measurementof the cross-powerspectrum,asexpressedin:
C [f(t),g(t)]s, =
|X [f(t),g(t)]s,|
|P [f(t)]s,P [f(g)]s,|1/2
(6)
Thecoherencevaluesrangefrom0to1andrevealhow much input and output series are correlated in terms of powerandphaseatagivenfrequencyinatimeinstant.The WPCisusefulforelucidatingwhichofthemultipleinput sig-nalsourcesrepresentthemaincontributiontotheresponse signal. This contribution is shown in frequency and time bands.An exampleis Fig.3 for therepresentation ofthe crossspectralpowerbetweentwocountries’bonds.
2.3. Waveletentropy
Shannon (1948) put forward the concept of information entropyfirstly;heputtheentropyastheuncertainty ofa randomeventortheamountofinformation.Theentropyis themeasureofthedegreeofdisorderofthesignal.Alow valueofentropycanrevealusefulinformationaboutcertain underlying dynamical processes or events associatedwith thesignal.Inspectralanalysis,averyorderedprocessis rep-resentedbyaveryclearandhighlightedband.Thewavelet powerdistributionofadisorderedsignalwillbealmostzero exceptinthewaveletresolutionlevel.
Sincewaveletanalysishasgoodabilityoftime-frequency localization, the combination of multi-resolution wavelet andinformationentropyleadstowaveletentropydefinition of a signal. A timeseriesgenerated by a randomprocess
18No v93
02Aug9414Apr9527Dec9509Sep9622Ma y97 03Feb9816Oct9 8 30Jun9913Ma r00 23No v00
07Aug0119Apr0201Jan0315Sep0327Ma y04 08Feb0521Oct0 5 05Jul0619Ma r07 29No v07 1/256 1/128 1/64 1/32 1/16 1/8 1/4 1/2 1 2 4 8 16 32 64 128 256 0 10 20 30 40 50 60 70 80 90 100 2 3 3 4 5 6 7 8 10 11 13 16 19 23 27 32 38 45 54 64 Y ields on so v ereign bonds
Figure4 TheleftsideisthewaveletpowerspectruminhighfrequenciesofIrelandsovereignbonds.Rightsideistheentropy representationofthewaveletcoefficientsbyfrequencybands.Peaksoflowentropyissuggestingtheemphasizedthebands.
3 4 6 8 11 16 23 32 45 64 91 128 181 256 362 512 724 1024 1448 2048 12Feb9327O ct93
11Jul9423Mar95 05Dec95 16Aug9630Apr97 12Jan9824Sep98 08Jun9918Feb0001No v00
16Jul0128Mar02 10Dec02 22Aug0305Ma y04
17Jan0529Sep05 13Jun0623Feb0707No v07 1/256 1/258 1/64 1/32 1/16 1/8 1/4 1/2 1 2 4 8 16 32 64 128 256 Y ields on so v ereign bonds Greece-wavelet spectrum
FigureA.1 WaveletpowerspectrumofsovereignbondevolutioninGreece.
will represent a disordered behavior and will have a flat powerrepresentationforallfrequencybands.Consequently theentropywilltakehighvaluesfor allfrequencies. Nev-ertheless,timeseriesofeconomicdataarenotcompletely disordered or ordered. Wavelet entropy (WE)can help in providingaproceduretodetect frequencybandswithlow entropy,i.e.an ordered behaviorandconsistent periodic-ity.Shannon(1948)givesausefulcriterionforanalyzingthe entropyandestimatingaprobabilitydistribution.Thetotal waveletentropybased onnormalizedShannon entropyat scalej,inamovingdatawindow,isestimatedbythedetail coefficientsateachtime,asisshowedinEq.(7):
Ej=−
∞
k=1[Ci,j]log[Ci,j] (7) wherewisthewindowlengthofthemovingwindowinthe fundamentalfrequencyoftheoriginalsignal.
3.
Data
analysis
3.1. Timeseriesanalysisinthetimedomain
Timeseriesareconstitutedbythevaluesofsovereignbonds from 11 countries of the Euro area, with daily sampling except non-working days(Fig. 1).To ensure continuityin thetimeseries,ithasbeenassumedthatthevaluesremain constantduring non-working days.The timeseriesranges coverfrom12/02/1993to27/01/2014forAustria,Belgium, Finland, France, Germany, Ireland, Italy, Netherland and Spain;from15/07/1993forPortugal;andfrom31/03/1999 forGreece.Onceobtainedgraphicallytheevolutioninthe time domain of the time series for each country, an ini-tialassessment of apossible co-evolutionof thepricesof sovereignbondscanbeobserved.
3.2. Timeseriesanalysisinthefrequencydomain
Onesingularcharacteristicof waveletanalysisis the arbi-trarychoiceofthewaveletfunction(inFourierandinother transformsthebasis functionisfixed). Butseveralfactors shouldbeconsideredin ordertoselectasuitablewavelet togetbestperformance.Figs.2andA.1---A.5depictthe evo-lutionofsovereignbondsinGermany,Greece,Ireland,Italy, Portugal,andSpain,respectively.
Inordertohelprevealthehighlightedfrequencybands inthespectrum,awaveletentropyis applied(Eq.(7)).A veryordered timeseriesshould present a periodic mono-frequencysignal (signal witha narrowband spectrum).In thesovereignbondsconsideredataglancethewavelet rep-resentationisresolvedina fewwaveletresolution levels, withwaveletpower valuesnear zeroin high frequencies. Sometimes the graphic observation cannot be sufficiently clear. Colored frames are extended and interact both in thehorizontaldimension(time)andverticaldimension (fre-quency),makingblurred thebands powerrepresentation. Therefore,additionaltoolsareneededtoassistthe graph-icalinterpretation,dilucidatetheperiodicitiesandconfirm theclusteringoffrequencybands.Inordertodisclose possi-blehiddeninformation,arestrictedfocusonhighfrequency areaofspectrumis performed(4).So,anewpower spec-trumvaluesinsomebandsappear,althoughyetwithblurred dispersionthat couldbe confusinga primaface observer. Inordertoprecise theexistence of frequency bands,the graphical observation is supported by analysis of wavelet entropy(WE).The leftsideof Fig.4isthewaveletpower spectrum in high frequencies of Ireland sovereign bonds. Right side is the entropy representation of the wavelet coefficientsbyfrequencybands.Peaksoflowentropyarean indicatorofahighlightband.Thisisappliedinthisrestricted areaanddepictedinFig.4.
Now,forthisexample,twobandsoflowentropyindicate ahighorderlevelsintheprobabilitydistributionforthese
3 4 6 8 11 16 23 32 45 64 91 128 181 256 362 512 724 1024 1448 2048 12Feb9327O ct93
11Jul9423Mar9505Dec9516Aug9630Apr9712Jan9824Sep9808Jun9918Feb0001No v00
16Jul0128Mar0210Dec0222Aug0305Ma y04
17Jan0529Sep0513Jun0623Feb0707No v07 1/256 1/128 1/64 1/32 1/16 1/8 1/4 1/2 1 2 4 8 16 32 64 128 256 Y ields on so v ereign bonds Ireland-wavelet spectrum
21Jul0802Apr0915Dec0927Aug1011Aug1123Jan1204O ct12
18Jun13
FigureA.2 WaveletpowerspectrumofsovereignbondevolutioninIreland.
3 4 6 8 11 16 23 32 45 64 91 128 181 256 362 512 724 1024 1448 2048 12Feb9327O ct93
11Jul9423Mar9505Dec9516Aug9630Apr9712Jan9824Sep9808Jun9918Feb0001No v00
16Jul0128Mar0210Dec0222Aug0305Ma y04
17Jan0529Sep0513Jun0623Feb0707No v07 1/256 1/512 1/128 1/64 1/32 1/16 1/8 1/4 1/2 1 2 4 8 16 32 64 128 256 512 Y ields on so v ereign bonds Italy-wavelet spectrum
21Jul0802Apr0915Dec0927Aug1011Aug1123Jan1204O ct12
18Jun13
FigureA.3 WaveletpowerspectrumofsovereignbondevolutioninItaly.
bands.The most notableis between14 and16 frequency bandwhich is showinga weekly period.Inthe sameway, wecannoteabout30-daysperiodtoexistandalso,another peakoflowentropycanbenotedbetween45and50band. Therefore,thesignalfollowssomepossibleimportantthree eventswiththeseperiodicities.
A detailed wavelet spectral analysis was performed on each country making a progressive focus on differ-ent areas of the spectrum, starting from the lowest
frequency band (long period) to the lowest frequency. The results are presented in Table 1 with the help of entropy analysis to clarify the peak of frequency
or central value of frequency in each band (Eq.
(7)).
Very similarfrequency componentsare observed in all countries.Itisnoteworthytoshowtheannualand semian-nualvalues.Buttheobservercanbeespeciallystruckbythe veryprecisequarterlyvaluethathappensinallcountries.
3 4 6 8 11 16 23 32 45 64 91 128 181 256 362 512 724 1024 1448 2048 12Feb9327Oct9311J ul94
23Mar9505Dec9516Aug9630Apr9712Jan9824Sep9808Jun9918Feb0001No v00
16Jul0128Mar0210Dec0222Aug0305Ma y04
17Jan0529Sep0513Jun0623Feb0707No v07 1/256 1/128 1/64 1/32 1/16 1/8 1/4 1/2 1 2 4 8 16 32 64 128 256 Y ields on so v ereign bonds Portugal-wavelet spectrum
21Jul0802Apr0915Dec0927Aug1011Aug1123Jan1204O ct12
18Jun13
FigureA.4 WaveletpowerspectrumofsovereignbondevolutioninPortugal.
3 4 6 8 11 16 23 32 45 64 91 128 181 256 362 512 724 1024 1448 2048 12Feb9327O ct93
11Jul9423Mar9505Dec9516Aug9630Apr9712Jan9824Sep9808Jun9918Feb0001No v00
16Jul0128Mar0210Dec0222Aug0305Ma y04
17Jan0529Sep0513Jun0623Feb0707No v07 1/256 1/128 1/64 1/32 1/16 1/8 1/4 1/2 1 2 4 8 16 32 64 128 256 Y ields on so v ereign bonds Germany-wavelet spectrum
21Jul0802Apr0915Dec0927Aug1011Aug1123Jan1204O ct12
18Jun13
FigureA.5 WaveletpowerspectrumofsovereignbondevolutioninGermany.
Also,athighfrequencies periodsaround45days,3weeks and2weeksusuallyappear.
3.3. Crosswaveletanalysis
Crosswaveletanalysisandwaveletcoherencearepowerful methods for testing proposed linkages between two time
series.Thereforeitwouldbesuitablefortheidentification ofcomovementbetweentwosovereignbondstimeseries.
Figs.3,A.3,A.4,A.6,andA.7depictthecorrelationin termsofcoherencebetweenthesovereignbondinGermany andwithoneinSpain,Greece,Ireland,ItalyandPortugal, respectively.
Fig.3 shows the wavelet coherence between the Ger-man and Spanish bond yields, following Eq. (6). In each
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 4 8 16 32 64 128 256 512 1024 2048 Y ields on so v ereign bonds
Germany-Greece wavelet coherence
12Feb9327Oct93 11J ul94
23Mar95 05Dec95 16Aug9630Apr97 12Jan9824Sep98 08Jun9918Feb0001No v00
16Jul0128Mar02 10Dec02 22Aug0305Ma y04
17Jan0529Sep05 13Jun0623Feb0707No v07
FigureA.6 NormalizedCrossWaveletPowerSpectrum(coherence)ofsovereignbondevolutionsinGermanyandGreece.
12Feb9327Oct9311Jul9423Mar9505Dec9516Aug9630Apr9712Jan9824Sep9808Jun9918Feb0001No v00
16Jul0128Mar0210Dec0222Aug0305Ma y04
17Jan0529Sep0513Jun0623Feb0707No v07
21Jul0802Apr0915Dec0927Aug1011Aug1123Jan1204Oct1218Jun13
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 4 8 16 32 64 128 256 512 1024 2048 Y ields on so v ereign bonds
Germany-Ireland wavelet coherence
FigureA.7 WaveletcoherencebetweenbothsovereignbondevolutionsinGermanyandIreland.
pointof the frequency-time map,the coherence resultis a value between 0 for dark blue color, and 1 for dark red color. A value of 1 for a given frequency band, indi-cates that the response energy is 100%, due to both signal enters in clear relationship. This suggests there are two behaviors of this bivariate set acting as a sys-tem: (a) A strong coherent behavior that happens when
the system clearly reacts in a correlated mode or there is a clear relationship between both signals. The strong coherence between January 1998 and April 2009 indi-cates a co-movement of both signals. (b) A weak or non-coherent behavior that occurs before January 1998 and after April 2009 when both signals evolve indepen-dently.
Table1 Frequency bandsdetected in allcountries
ana-lyzedbywaveletspectrum.
Country Frequencybands Observation
Austria 363,304*,185,91,46*,28,18 *Weak Belgium 362,177,91,24,14 Finland 365,176,90,48,27,21 France 310,178,91,44,26,23* *Weak Germany 390,191,91,40,24,12 Greece 370,181,91,54,30(26)*16,13 *Uncertain Ireland 390,174,91,70*,46,30,16,14 *Weak Italy 368,190,90,37,24,14* *Uncertain Netherland 363,185,91,45,23,14 Portugal *,181,91,28,13 *Blurred Spain 362,173,91,41,23,14
4.
Conclusion
Theuseofwavelettransformsallowedtodiscoverthemain
periodic features of the sovereign bonds of 11 countries
inEurope. Adetailedwaveletspectralanalysisrevealson
each countrydifferent frequency bands.Entropy provides
the central value of frequency in each band. The result
isthatverysimilarfrequencycomponentsareobservedin
allcountries.Inadditionofannualandsemiannualvalues,
12Feb9327Oct9311Jul9423Mar9505Dec9516Aug9630Apr9712Jan9824Sep9808Jun9918Feb0001No v00
16Jul0128Mar0210Dec0222Aug0305Ma y04
17Jan0529Sep0513Jun0623Feb0707No v07
21Jul0802Apr0915Dec0927Aug1011Aug1123Jan1204Oct1218Jun13
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 4 8 16 32 64 128 256 512 1024 2048 Y ields on so v ereign bonds
Germany-Italy wavelet coherence
FigureA.8 WaveletcoherencebetweenbothsovereignbondevolutionsinGermanyandItaly.
thereis averyprecise quarterlyvalue thathappensinall
countries. Also, it is remarkable the frequencies periods
around45days,3-weeksand2-weekscycles.
Inthedetailedanalysisofthepossibleco-evolution
Ger-man versus Spanish sovereign bonds, a strong coherent
behavior of signals is unveiled by the wavelet
coher-ence analysis. The strong coherence between January
1998 and April 2009, shows the co-movement of both
signals or the period when both sovereign bond yields
are impacted by the same factors. The asynchronism,
between both signals, due to low wavelet coherence,
is observed before January 1998 and after April 2009
whenlikely differenteconomic factorsare independently
involved. The methodologyused in the example for
Ger-manyandSpaincanbeappliedtoanalyzeothercouplesof
countries.
Appendix
A.
Graphic
results
This appendix reflects the main graphic results obtained.
Dataprocessing wascarried out by programming
applica-tionsinMatlablanguage(MathWorkCo.)andsomeroutines
codedinJavaLanguage,whichhavebeendesigned
specif-ically for this purpose. Also,system identification library
and wavelet functions provided by the Matlab package
havebeenincludedtoimprovethealgorithmperformance
12Feb9327Oct9311Jul9423Mar9505Dec9516Aug9630Apr9712Jan9824Sep9808Jun9918Feb0001No v00
16Jul0128Mar0210Dec0222Aug0305Ma y04
17Jan0529Sep0513Jun0623Feb0707No v07
21Jul0802Apr0915Dec0927Aug1011Aug1123Jan1204Oct1218Jun13
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 4 8 16 32 64 128 256 512 1024 2048 Y ields on so v ereign bonds
Germany-Portugal wavelet coherence
FigureA.9 WaveletcoherencebetweenbothsovereignbondevolutionsinGermanyandPortugal.
References
Amat,S.,Muoz,J.,2008.SomewaveletstoolsforMaxwell’s equa-tions.CarthagonovaJournalofMathematics1,1---18.
Cariani, P., 2012. Stylized facts of business cycles in a transi-tioneconomy intime and frequency.Economic Modeling29, 2163---2173.
Cazelles,B.,Chavez,M., Magny,G.C.D.,Gugan,J.-F.,Hales, S., 2007.Time-dependentspectralanalysisofepidemiological time-serieswithwavelets.JournaloftheRoyalSocietyInterface4, 625---636.
Chinarro, D., Villarroel, J., Cuch, J., 2012. Wavelet analysisof Fuenmayorkarstspring,SanJulindeBanzo,Huesca,Spain. Envi-ronmentalEarthSciences65,2231---2243.
Croux, C.,Forni, M., Reichlin, L., 2001. A measure of comove-mentfor economicvariables: theoryand empirics.Reviewof EconomicsandStatistics83,232---241.
Daubechies,I.,1990.Thewavelettransformtime-frequency local-ization and signal analysis. IEEE Transactions on Information Theory36,961---1004.
Ebadi,L.,Shafri,H.Z.M.,Mansor,S.B.,Ashurov,R.,2013.Areview ofapplyingsecond-generationwaveletsfornoiseremovalfrom remotesensingdata.EnvironmentalEarthSciences,1---12.
Fidrmuc,J.,Ikeda,T.,Iwatsubo,K.,2012.International transmis-sion ofbusiness cycles: evidence from dynamic correlations. EconomicsLetters114,252---255.
Gabor, D., 1946. Theory of communication. Journal of IEE 93, 429---457.
Genay,R.,Seluk,F.,Whitcher,B.,2001.AnIntroductiontoWavelets andOtherFilteringMethodsinFinanceandEconomics.Academic Press,Elsevier.
Grinsted,A.,Moore1,J.C.,Jevrejeva,S.,2004.Applicationofthe crosswavelet transform and wavelet coherence to geophysi-caltimeseries.NonlinearProcessesinGeophysics11,561---566
http://www.glaciology.net/Home/PDFs
Hernndez, L., Baladrn, C., Aguiar, J.M., Carro, B., Snchez-Esguevillas, A., Lloret, J., Chinarro, D., Gmez, J.J., Cook, D., 2013. A multi-agent-system architecture for smart grid
managementandforecastingofenergydemandinvirtualpower plants.CommunicationsMagazine,IEEE51,106---113.
Kohut,J.,Beeching,A.,Kohut,J., Schmidt,E.,Sommer,F., Col-laborators,2013.SovereignBonds:SpotlightonESGRisks.Tech. Rep.UNEPFinanceInitiativeandUnitedNationGlobalCompact.
Korner,T.W., 1988.Fourier Analysis.Cambridge UniversityPress, Cambridge.
Kydland,F.E.,Prescott, E.C.,1982.Time tobuildand aggregate fluctuations.Econometrica50,1345---1370.
Labat,D.,Ababou,R.,Mangin,A.,1999.Analyseenondelettesen hydrologiekarstique.Geoscience329,881---887.
Long, J.B.,Plosser,C.I.,1983. RealBusiness Cycles.Jopurnal of PoliticalEconomy91-1,39---69.
Mallat,S.,1989.Atheoryformultiresolutionsignaldecomposition: thewavelettransform.IEEETransactionsonPatternAnalysisand MachineIntelligence11,674---693.
Mallat,S.,1998. AWaveletTourofSignalProcessing,seconded. AcademicPress,ColePolytechnique,CourantInstitute,NewYork University,Paris.
Meyers,S.D., Kelly,B.G.,O’Brien,J.J.,1992.Anintroductionto waveletanalysisinoceanographyandmeteorology:with appli-cationtothedispersionofYanaiwaves.MonthlyWeatherReview 121,13---31,101---105.
Raihan,S.M.,Wen,Y.,Zeng,B.,2001.JointTime-Frequency Dis-tributionsforBusinessCycleAnalysis.WaveletAnalysisandIts Applications.Springer,Berlin/Heidelberg.
Ricker, D.W., 2003. Echo Signal Processing, Kindle ed. The Springer International Series in Engineering and Computer Science.
Rivera,D.,Lillo,M.,Arum,J.,2007.ENSOinfluenceonprecipitation ofChillan,Chile:anapproachusingwavelets.GestiónAmbiental 13,33---48.
SangbaeKima,F.I.,2007.Ontherelationshipbetweenchangesin stockpricesandbondyieldsintheG7countries:wavelet anal-ysis.JournalofInternationalFinancialMarkets,Institutions& Money17,167---179.
Shannon,C.,1948.Amathematicaltheoryofcommunication.Bell SystemTechnicalJournal27,379---423,623-656.