... affine Lie algebras, or in terms of a particular class of representations of quantum groups at roots of ...of Liegroups and Lie ...theory, groups may have non trivial subgroups ...
... Proof 5.1. We proceed by induction on the dimension n of G. The result is true if the dimension of G is one, since G ∼ = R (see [1,theorem2]). Assume that the result is true for all completely solvable Lie ...
... shown that they have a (local) canonical form depending on three smooth func- tions. Walker metrics appear in a natural way being associated with tangent and cotangent bundles in various constructions (for more details ...
... Heisenberg Lie group and the 4-dimensional real Diamond Lie group has dimension zero or ...solvable Liegroups (and corresponding algebras) having the similar ...solvable Lie group is ...
... connected Lie group with Lie algebra g (see [9]). Liegroups which are endowed with multiplicative Poisson structures are called Poisson-Liegroups and Lie-Poisson ...
... of Harish-Chandra class). Although quite simple, our definition· and characteriza tion of complex flag spaces for reductive Liegroups also does not seem to appear anywhere in the current literature. This ...
... n > 2, and more generally, to the finite subgroups of SU(2). These either are of the form ϕ −1 (G), for a finite subgroup G of SO(3), or are cyclic groups of odd order. For each finite subgroup of SU(2), one can ...
... studied by C. Cordon. It is proved in [Co] t hat any naturally reductive nilpotent Lie group ( N, ( , ) ) is at most 2-step nilpotent . Moreover a characterization of the naturally reductive 2-step ni lpotent ...
... Hermitian complex structures. The main result of this paper is a classifica- tion of left invariant Hermitian complex structures on CH 2 with respect to all non-isometric left invariant Riemannian metrics (Theorem 2.2). ...
... compact Liegroups with the hypercomplex structure constructed in [31] and independently by Joyce in [22], which was generalized in [26] to the case of homogeneous ...solvable Liegroups, ...
... Leibniz algebras are non-antisymmetric versions g of Lie algebras: the commu- tator is not required to be antisymmetric, and the right adjoint operations [., Z] are required to be derivations for any Z ∈ g ([10]). ...
... In this paper we study a geometric flow on Hermitian manifolds introduced by Jeffrey Streets and Gang Tian called pluriclosed flow, which evolves Hermitian SKT structures (an special class of Hermitian manifolds). ...
... For know better the classification of indecomposable modules a natural estrategy is to identify a class of indecomposable modules for which you can wait a reasonable classifi- cation. A important class is the of ...
... de Lie ha sido extensamente estudiada, y tiene m´ ultiples aplicaciones en otras ramas de la Matem´atica, en es- pecial en la F´ısica ...de Lie tienen una estructura geom´etrica extremadamente ...de ...
... de Lie fue desarrollada principalmente por Wihelm Killing y ´ Elie ...de Lie simples de dimensi´on finita sobre C (ver [2]) y prob´o que deben ser isomorfas a alguna de las ´algebras cl´asicas o a una de ...
... Automorphism groups in the non abelian and non co-abelian ...the Lie bialgebra automorphism groups in the non abelian and non co-abelian cases are as ...
... Proposici´ on 6.1. Toda sub´algebra toral de una ´algebra de Lie g es abeliana. Demostraci´on. Si h es una sub´algebra toral de g, basta con probar que los valores propios de ad v : h → h son ceros para todos los ...
... in groups, from cradle to grave – in families, communities, villages, neighbourhoods, regions, ...of groups affiliation varying) of numerous other ...together. Groups then are defined here as ways of ...
... La noción de grupoide doble de Lie fue definida e investigada por K. Mackenzie [M1, M4]; ver también [P, M2, LW2] para aplicaciones a geometría diferencial y de Poisson. En particular, el tema de la clasificación ...
... de Lie compuesta por transformaciones lineales (operadores lineales) la existencia de una base (en nuestro estudio se pudo construir una base aplicando el método de inducción), dicha construcción no solo aclara ...