... the finite differences and finiteelement approximations of the two dimensional wave equation were ...A mixedfiniteelement approximation was also proposed in [5] with good ...
... stabilized mixedfiniteelement method for Darcy ...dual- mixed approach suitable residual type terms arising from Darcy’s law and the mass conservation ...
... new mixedfiniteelement method for the generalized Stokes prob- ...the finiteelement subspaces providing stability coincide with those employed for the usual Stokes flows except for ...
... primal, mixed and augmented formulations for the DIR prob- lem, together with their finite-element discretization schemes for their numerical ...and mixed variational formulations, as well as ...
... stabilized mixed finite element method for plane linear elasticity was presented and analyzed recently in ...and mixed boundary conditions, ...finite element subspaces for the corresponding ...
... On the other hand, we recall that the application of adaptive algorithms, based on a posteriori error estimates, usually guarantees the quasi-optimal rate of convergence of the finite element solution to boundary ...
... mentioned gradient, the present analysis is much simpler than in [3,16], and leads to a stable Galerkin scheme with low-order finite element subspaces. Indeed, the extended PEERS space is not needed any more, and ...
... primal, mixed and augmented formulations for the DIR problem, together with their finite-element discretization schemes for their numerical ...and mixed variational formulations, as well as ...
... Abstract. The aim of this paper is to analyze a mixedfiniteelement method for computing the vibration modes of a Timoshenko curved rod with arbitrary geometry. Optimal order error estimates are ...
... In this paper we consider inf-sup stable mixedfiniteelement approximations to the model (2) with grad-div stabilization. Our aim is to prove error bounds with constants independent on inverse ...
... The remainder of the paper is structured as follows. In Section 2 we present the mixedfiniteelement formulation, make some necessary definitions, and discuss the algebraic properties of the ...
... Figure 7 shows the sectional shape and dimensions of Hojobo’s Doza. Though the real Doza shape is circular, the FEM-simulated shape was configured with quadrilateral factors (See Fig. 1) on condition that the area of ...
... ABAQUS cannot report the stress field in the user defined elements; under these conditions a non enriched element in front of the crack tip must be analyzed to implement the minimum shear stress range criterion. ...
... We consider the same standard piecewise linear and continuous elements to discretize each variable on the solid displacement. For the fluid displacement we choose the lowest degree Raviart- Thomas tetrahedral finite ...
... Examination of phenomena occurring in the nearfield of multi-element nonlinear source has been performed using arrangement shown in Figure 1. The PVdF needle hydrophone with a nominal diameter of 1 mm was scanned ...
... continuity requierements, including the fir9t deri vative or even the curvature. The most important aspect of the FEM both for this type of problem snd for other problems, involves the selection of shape or interpolation ...
... In the manufacturing industry, inspection procedures are becoming more common every day. This task constists on measuring how much difference ex- ists between the original-ideal object specified by the designer, and the ...
... T h e use of several k i n d s of elements within the family c a n relieve s o m e c o m p u t a t i o n a l effort. L o w degree elements can be used near t h e b o u n d a r y , n o r m a l l y in large n u m b e r s ...
... Abstract: This paper presents the results of research on mixed mode fracture of sandwich panels of plasterboard and rock wool. The experimental data of the performed tests are supplied. The specimens were made ...