... el particleswarm optimization (PSO), un algoritmo de búsqueda para resolver problemas de optimización, aplicado a la resolución del wavelength converters placement ...
... and swarm intelligent algorithm (Bermeo et ...a particleswarm optimization (PSO), and the PSD was assumed to be represented only by an exponentially modified Gaussian (EMG) ...
... Obviously, a neural network with i input neurons, h hidden neurons and o output neurons it has (i+1)h +(h +1)o weights and therefore, individuals of the PSO have (i + 1)h + (h + 1)o dimensions. By considering such ...
... the particleswarm is initialized with random values corresponding to the ranges of the decision variables, these values are dependent on the test ...the swarm is evaluated using the corresponding ...
... En este trabajo presentamos un algoritmo PSO (ParticleSwarm Optimiza- tion) [11] como optimizador de programas de ciclos de sem´aforos. Para la evalu- aci´on de los programas de ciclos generados ...
... This paper presents an enhanced ParticleSwarm Optimizer approach, which is designed to solve numerical unconstrained optimization problems. The approach incorporates a dual population in an attempt to ...
... called ParticleSwarm Optimization ( PSO ) , a self-learning algorithm for localizing regions of maximum likelihood in multidimensional spaces that outperforms traditional sampling methods in terms of ...
... Abstract: Most inverse problems in the industry (and particularly in geophysical exploration) are highly underdetermined because the number of model parameters too high to achieve accurate data predictions and because ...
... Abstract. Large bandwidth on hand in WDM networks is the best choice for increasing traffic demand; although, routing and wavelength assignment (RWA) problems still remain a challenge. This work proposes a novel method ...
... meta-heur´ıstica ParticleSwarm Optimization ha demostrado conseguir buenos resultados, en diversos conjuntos de datos provenientes de distintas zonas del ...
... denominada ParticleSwarm Optimization (PSO) y un algoritmo h´ıbrido, que combina las caracter´ısticas de los dos algoritmos anteriores, denominado ...
... the particleswarm is initialized with random values corresponding to the ranges of the decision variables, these values are dependent on the test ...the swarm is evaluated using the corresponding ...
... This thesis documents my personal research as candidate for the academic degree of Master of Science in Intelligent Systems. The purpose of this work is to optimize the electronic components layout in a printed circuit ...
... El algoritmo propuesto es validado usando instancias tomadas de la OR-Library y los resultados son comparados con los obtenidos por un algoritmo evolutivo multirecombinado que incluye conocimiento acerca del problema y ...
... the particleswarm make the technique resilient to the problem of local minima ...Grammatical swarm (GS) adopts a particleswarm learning algorithm which is linked to a grammatical ...
... ParticleSwarm Optimization (PSO) ha sido utilizado exitosamente en diferentes áreas como optimización mutidimensional y multiobjetivo, y entrenamiento de redes neuronales entre otras, pero existen ...
... new particle should be created according to formulas (d) for the velocity and (e) for the new ...created particle is proven to be better, it should be replaced by the old one for the next ...best ...
... algoritmo ParticleSwarm Optimization (PSO) fue propuesto por Kennedy y Eberhart [1] inspirado en la simulación del comportamiento social de bandada de ...
... [10]. Swarmparticle optimization was developed initially by Kennedy, Eberhart [11] and sequences are individuals of a swarm, each one with a value of the objective ...the swarm with the best ...
... Esta línea de trabajo está basada en la investigación y aplicación de metaheurísticas poblacionales para la resolución de problemas multi-objetivo. En particular, se selecciona la metaheurística conocida como ...