PDF superior PRUEBA DE ACCESO (LOGSE) UNIVERSIDAD DE CANTABRIA JUNIO - 2008 (RESUELTOS por Antonio Menguiano) MATEMÁTICAS II Tiempo máximo: 1 horas y 30 minutos

PRUEBA DE ACCESO (LOGSE) UNIVERSIDAD DE CANTABRIA JUNIO - 2008 (RESUELTOS por Antonio Menguiano) MATEMÁTICAS II Tiempo máximo: 1 horas y 30 minutos

PRUEBA DE ACCESO (LOGSE) UNIVERSIDAD DE CANTABRIA JUNIO - 2008 (RESUELTOS por Antonio Menguiano) MATEMÁTICAS II Tiempo máximo: 1 horas y 30 minutos

Evidentemente los vectores directores son linealmente independientes, lo cual significa que las recta r y s se cruzan o se cortan. Para diferenciar el caso vamos a de- terminar un vector c tal que tenga como origen un punto de r, P(1, 3, 0) y como extre- mo un punto de s, Q(2, -5, 0):

16 Lee mas

PRUEBA DE ACCESO (LOGSE) UNIVERSIDAD DE CANTABRIA SEPTIEMBRE - 2002 (RESUELTOS por Antonio Menguiano) MATEMÁTICAS II Tiempo máximo: 1 horas y 30 minutos

PRUEBA DE ACCESO (LOGSE) UNIVERSIDAD DE CANTABRIA SEPTIEMBRE - 2002 (RESUELTOS por Antonio Menguiano) MATEMÁTICAS II Tiempo máximo: 1 horas y 30 minutos

Debe responderse necesariamente a los tres bloques, escogiendo en cada uno de ellos una sola de las opciones (A o B). 2.- Debe exponerse con claridad el planteamiento [r]

10 Lee mas

PRUEBA DE ACCESO (LOGSE) UNIVERSIDAD DE CANTABRIA SEPTIEMBRE - 2001 (RESUELTOS por Antonio Menguiano) MATEMÁTICAS II Tiempo máximo: 1 horas y 30 minutos

PRUEBA DE ACCESO (LOGSE) UNIVERSIDAD DE CANTABRIA SEPTIEMBRE - 2001 (RESUELTOS por Antonio Menguiano) MATEMÁTICAS II Tiempo máximo: 1 horas y 30 minutos

El ejercicio consta de tres bloques de problemas y cada bloque tiene dos opcio- nes. Debe exponerse con claridad el planteamiento del problema o el método utilizado pa[r]

13 Lee mas

PRUEBA DE ACCESO (LOGSE) UNIVERSIDAD DE BALEARES JUNIO - 2009 (RESUELTOS por Antonio Menguiano) MATEMÁTICAS II Tiempo máximo: 1 horas y 30 minutos

PRUEBA DE ACCESO (LOGSE) UNIVERSIDAD DE BALEARES JUNIO - 2009 (RESUELTOS por Antonio Menguiano) MATEMÁTICAS II Tiempo máximo: 1 horas y 30 minutos

Penalizan los errores de cálculo. Los errores graves, y especial- mente, aquellos que lleven a resultados incoherentes o absurdos, serán penalizados con la aplicación del 50 [r]

12 Lee mas

PRUEBA DE ACCESO (LOGSE) UNIVERSIDAD DE BALEARES JUNIO – 2007 (RESUELTOS por Antonio Menguiano) MATEMÁTICAS II Tiempo máximo: 1 horas y 30 minutos

PRUEBA DE ACCESO (LOGSE) UNIVERSIDAD DE BALEARES JUNIO – 2007 (RESUELTOS por Antonio Menguiano) MATEMÁTICAS II Tiempo máximo: 1 horas y 30 minutos

Por estar la recta s determinada por dos planos, su vector director puede determi- narse teniendo en cuenta que es, al mismo tiempo, perpendicular a los vectores norma- les a los dos planos, o sea, es cualquier vector linealmente dependiente del producto vectorial de los vectores normales a los planos:

12 Lee mas

PRUEBA DE ACCESO (LOGSE) UNIVERSIDAD DE BALEARES JUNIO – 2006 (RESUELTOS por Antonio Menguiano) MATEMÁTICAS II Tiempo máximo: 1 horas y 30 minutos

PRUEBA DE ACCESO (LOGSE) UNIVERSIDAD DE BALEARES JUNIO – 2006 (RESUELTOS por Antonio Menguiano) MATEMÁTICAS II Tiempo máximo: 1 horas y 30 minutos

Se valorarán positivamente la corrección y la claridad en el lenguaje (matemático y no ma- temático) empleado por el alumno. Se valorarán negativamente los errores de cálculo. Todos lo[r]

13 Lee mas

PRUEBA DE ACCESO (LOGSE) UNIVERSIDAD DE BALEARES JUNIO – 2005 (RESUELTOS por Antonio Menguiano) MATEMÁTICAS II Tiempo máximo: 1 horas y 30 minutos

PRUEBA DE ACCESO (LOGSE) UNIVERSIDAD DE BALEARES JUNIO – 2005 (RESUELTOS por Antonio Menguiano) MATEMÁTICAS II Tiempo máximo: 1 horas y 30 minutos

(Para que una función racional tenga asíntotas oblicuas es necesario que el grado del numerador sea una unidad mayor que el grado del denominador).. Se pide: a ) Hallar la ecuación gen[r]

10 Lee mas

PRUEBA DE ACCESO (LOGSE) UNIVERSIDAD DE BALEARES JUNIO – 2013 (RESUELTOS por Antonio Menguiano) MATEMÁTICAS II Tiempo máximo: 1 horas y 30 minutos

PRUEBA DE ACCESO (LOGSE) UNIVERSIDAD DE BALEARES JUNIO – 2013 (RESUELTOS por Antonio Menguiano) MATEMÁTICAS II Tiempo máximo: 1 horas y 30 minutos

Se valorarán la corrección y la claridad en el lenguaje (matemático y no matemático) empleado por el alumno. Se valorarán negativamente los errores de cálculo.. b ) Resuélvalo en el ca[r]

14 Lee mas

PRUEBA DE ACCESO (LOGSE) UNIVERSIDAD DE BALEARES JUNIO - 2004 (RESUELTOS por Antonio Menguiano) MATEMÁTICAS II Tiempo máximo: 1 horas y 30 minutos

PRUEBA DE ACCESO (LOGSE) UNIVERSIDAD DE BALEARES JUNIO - 2004 (RESUELTOS por Antonio Menguiano) MATEMÁTICAS II Tiempo máximo: 1 horas y 30 minutos

Las asíntotas pueden ser horizontales, verticales y oblicuas.. Para que existe un punto de inflexión para x = 0 es necesario que no se anule la tercera derivada para este valor. Para d[r]

12 Lee mas

PRUEBA DE ACCESO (LOGSE) UNIVERSIDAD DE BALEARES JUNIO - 2003 (RESUELTOS por Antonio Menguiano) MATEMÁTICAS II Tiempo máximo: 1 horas y 30 minutos

PRUEBA DE ACCESO (LOGSE) UNIVERSIDAD DE BALEARES JUNIO - 2003 (RESUELTOS por Antonio Menguiano) MATEMÁTICAS II Tiempo máximo: 1 horas y 30 minutos

Con objeto de facilitar la representación gráfica de la función vamos a determinar su punto máximo que, según el apartado a ) se produce para x = -1, ya que la función es continua y pasa de ser creciente a decreciente para x = -1; no obstante, vamos a justifi- car analíticamente que se trata de un máximo.

14 Lee mas

PRUEBA DE ACCESO (LOGSE) UNIVERSIDAD DE BALEARES JUNIO - 2002 (RESUELTOS por Antonio Menguiano) MATEMÁTICAS II Tiempo máximo: 1 horas y 30 minutos

PRUEBA DE ACCESO (LOGSE) UNIVERSIDAD DE BALEARES JUNIO - 2002 (RESUELTOS por Antonio Menguiano) MATEMÁTICAS II Tiempo máximo: 1 horas y 30 minutos

(Los nú- meros negativos no tienen logaritmo y el logaritmo de cero es menos infinito, que no es real). De los límites de los apartados anteriores se deduce que no tiene asíntotas. Con [r]

12 Lee mas

PRUEBA DE ACCESO (LOGSE) UNIVERSIDAD DE BALEARES SEPTIEMBRE - 2008 (RESUELTOS por Antonio Menguiano) MATEMÁTICAS II Tiempo máximo: 1 horas y 30 minutos

PRUEBA DE ACCESO (LOGSE) UNIVERSIDAD DE BALEARES SEPTIEMBRE - 2008 (RESUELTOS por Antonio Menguiano) MATEMÁTICAS II Tiempo máximo: 1 horas y 30 minutos

Se valorará la corrección y la claridad en el lenguaje (matemático o no matemático) em- pleado por el alumno. Penalizan los errores de cálculo. Los errores graves, y especial- mente, aqu[r]

13 Lee mas

PRUEBA DE ACCESO (LOGSE) UNIVERSIDAD DE CASTILLA Y LEÓN JUNIO - 2003 (RESUELTOS por Antonio Menguiano) MATEMÁTICAS II Tiempo máximo: 1 horas y 30 minutos

PRUEBA DE ACCESO (LOGSE) UNIVERSIDAD DE CASTILLA Y LEÓN JUNIO - 2003 (RESUELTOS por Antonio Menguiano) MATEMÁTICAS II Tiempo máximo: 1 horas y 30 minutos

Criterios generales de evaluación de la prueba: Se observarán fundamentalmente los siguientes aspectos: correcta utilización de los conceptos, definiciones y propiedades relacionadas con la naturaleza de la situación que se trata de resolver. Justificaciones teóricas que se aporten para el desarrollo de las respuestas. Claridad y coherencia en la exposición. Precisión en los cálculos y en las notaciones.

17 Lee mas

PRUEBA DE ACCESO (LOGSE) UNIVERSIDAD DE CASTILLA Y LEÓN JUNIO - 2002 (RESUELTOS por Antonio Menguiano) MATEMÁTICAS II Tiempo máximo: 1 horas y 30 minutos

PRUEBA DE ACCESO (LOGSE) UNIVERSIDAD DE CASTILLA Y LEÓN JUNIO - 2002 (RESUELTOS por Antonio Menguiano) MATEMÁTICAS II Tiempo máximo: 1 horas y 30 minutos

Criterios generales de evaluación de la prueba: Se observarán fundamentalmente los siguientes aspectos: correcta utilización de los conceptos, definiciones y propiedades relacionadas con la naturaleza de la situación que se trata de resolver. Justificaciones teóricas que se aporten para el desarrollo de las respuestas. Claridad y coherencia en la exposición. Precisión en los cálculos y en las notaciones.

16 Lee mas

PRUEBA DE ACCESO (LOGSE) UNIVERSIDAD DE CANTABRIA SEPTIEMBRE - 2003 (RESUELTOS por Antonio Menguiano) MATEMÁTICAS II Tiempo máximo: 1 horas y 30 minutos

PRUEBA DE ACCESO (LOGSE) UNIVERSIDAD DE CANTABRIA SEPTIEMBRE - 2003 (RESUELTOS por Antonio Menguiano) MATEMÁTICAS II Tiempo máximo: 1 horas y 30 minutos

El producto de una matriz por un número es otra matriz cuyos elementos resultan de multiplicar cada elemento de la primera matriz por el número. Otra propiedad de los determinantes:[r]

11 Lee mas

PRUEBA DE ACCESO (LOGSE) UNIVERSIDAD DE CANTABRIA SEPTIEMBRE - 2004 (RESUELTOS por Antonio Menguiano) MATEMÁTICAS II Tiempo máximo: 1 horas y 30 minutos

PRUEBA DE ACCESO (LOGSE) UNIVERSIDAD DE CANTABRIA SEPTIEMBRE - 2004 (RESUELTOS por Antonio Menguiano) MATEMÁTICAS II Tiempo máximo: 1 horas y 30 minutos

Al igual que en el apartado anterior, nos limitamos al estudio de la función g(x).. 2-B) Una ventana tiene forma de un semicírculo colocado sobre un rectángulo. El rectángulo es de cris[r]

12 Lee mas

PRUEBA DE ACCESO (LOGSE) UNIVERSIDAD DE CANTABRIA SEPTIEMBRE - 2005 (RESUELTOS por Antonio Menguiano) MATEMÁTICAS II Tiempo máximo: 1 horas y 30 minutos

PRUEBA DE ACCESO (LOGSE) UNIVERSIDAD DE CANTABRIA SEPTIEMBRE - 2005 (RESUELTOS por Antonio Menguiano) MATEMÁTICAS II Tiempo máximo: 1 horas y 30 minutos

1-B) a ) Considera una caja de cartón de base rec- tangular y sin tapa superior. La longitud de uno de los lados del rectángulo de la base es siete veces la del otro. Calcula las dimensiones que ha de tener esta caja para que su volumen sea de 49 cm 3 y para que su fabricación sea lo más económica posible. b ) Si el metro cuadrado de cartón se vende a 2’5 euros, ¿cuánto cuesta cada caja?

17 Lee mas

PRUEBA DE ACCESO (LOGSE) UNIVERSIDAD DE CANTABRIA JUNIO - 2000 (RESUELTOS por Antonio Menguiano) MATEMÁTICAS II Tiempo máximo: 1 horas y 30 minutos

PRUEBA DE ACCESO (LOGSE) UNIVERSIDAD DE CANTABRIA JUNIO - 2000 (RESUELTOS por Antonio Menguiano) MATEMÁTICAS II Tiempo máximo: 1 horas y 30 minutos

Debe responderse necesariamente a los tres bloques, escogiendo en cada uno de ellos una sola de las opciones (A o B). 2.- Debe exponerse con claridad el planteamiento [r]

11 Lee mas

PRUEBA DE ACCESO (LOGSE) UNIVERSIDAD DE CANTABRIA JUNIO - 2007 (RESUELTOS por Antonio Menguiano) MATEMÁTICAS II Tiempo máximo: 1 horas y 30 minutos

PRUEBA DE ACCESO (LOGSE) UNIVERSIDAD DE CANTABRIA JUNIO - 2007 (RESUELTOS por Antonio Menguiano) MATEMÁTICAS II Tiempo máximo: 1 horas y 30 minutos

Para que una función sea derivable en un punto es condición necesaria que sea continua en ese punto. Una función es derivable en un punto si, y solo si, existen la derivada por la iz- q[r]

13 Lee mas

PRUEBA DE ACCESO (LOGSE) UNIVERSIDAD DE CANTABRIA JUNIO - 2006 (RESUELTOS por Antonio Menguiano) MATEMÁTICAS II Tiempo máximo: 1 horas y 30 minutos

PRUEBA DE ACCESO (LOGSE) UNIVERSIDAD DE CANTABRIA JUNIO - 2006 (RESUELTOS por Antonio Menguiano) MATEMÁTICAS II Tiempo máximo: 1 horas y 30 minutos

De la observación de la figura se deduce que en el intervalo ( − ∞ , 0 ) no tiene puntos de inflexión; en todo caso, si el intervalo fuera semiabierto, ( − ∞ , 0 ] , el posible punto de inflexión estaría en el punto A(0, 1), pero no lo es por no ser derivable la fun- ción para x = 0, como se demuestra en el apartado anterior.

12 Lee mas

Show all 10000 documents...

Related subjects