PDF superior PRUEBA DE ACCESO (LOGSE) UNIVERSIDAD DE CASTILLA Y LEÓN JUNIO - 2001 (RESUELTOS por Antonio Menguiano) MATEMÁTICAS II Tiempo máximo: 1 horas y 30 minutos

PRUEBA DE ACCESO (LOGSE) UNIVERSIDAD DE CASTILLA Y LEÓN JUNIO - 2001 (RESUELTOS por Antonio Menguiano) MATEMÁTICAS II Tiempo máximo: 1 horas y 30 minutos

PRUEBA DE ACCESO (LOGSE) UNIVERSIDAD DE CASTILLA Y LEÓN JUNIO - 2001 (RESUELTOS por Antonio Menguiano) MATEMÁTICAS II Tiempo máximo: 1 horas y 30 minutos

Optatividad: Se proponen dos pruebas, A y B. Cada una de ellas consta de dos proble- mas y cuatro cuestiones. Cada problema tendrá una puntuación máxima de tres puntos, y cada cuestión se puntuará, como máximo, con un punto. El alumno deberá escoger una de las pruebas, A o B, y desarrollar las preguntas de la misma.

18 Lee mas

PRUEBA DE ACCESO (LOGSE) UNIVERSIDAD DE CASTILLA Y LEÓN SEPTIEMBRE - 2003 (RESUELTOS por Antonio Menguiano) MATEMÁTICAS II Tiempo máximo: 1 horas y 30 minutos

PRUEBA DE ACCESO (LOGSE) UNIVERSIDAD DE CASTILLA Y LEÓN SEPTIEMBRE - 2003 (RESUELTOS por Antonio Menguiano) MATEMÁTICAS II Tiempo máximo: 1 horas y 30 minutos

Criterios generales de evaluación de la prueba: Se observarán fundamentalmente los siguientes aspectos: correcta utilización de los conceptos, definiciones y propiedades relacionadas con la naturaleza de la situación que se trata de resolver. Justificaciones teóricas que se aporten para el desarrollo de las respuestas. Claridad y coherencia en la exposición. Precisión en los cálculos y en las notaciones.

17 Lee mas

PRUEBA DE ACCESO (LOGSE) UNIVERSIDAD DE BALEARES SEPTIEMBRE 2001 (RESUELTOS por Antonio Menguiano) MATEMÁTICAS II Tiempo máximo: 1 horas y 30 minutos

PRUEBA DE ACCESO (LOGSE) UNIVERSIDAD DE BALEARES SEPTIEMBRE 2001 (RESUELTOS por Antonio Menguiano) MATEMÁTICAS II Tiempo máximo: 1 horas y 30 minutos

En ningún caso la ecuación tendrá dos raíces reales en el intervalo [0, 1], c.q.d.. Gráficamente también se puede demostrar la cuestión pedida.. 2º) Encontrar el valor máximo que p[r]

12 Lee mas

PRUEBA DE ACCESO (LOGSE) UNIVERSIDAD DE CANTABRIA SEPTIEMBRE - 2001 (RESUELTOS por Antonio Menguiano) MATEMÁTICAS II Tiempo máximo: 1 horas y 30 minutos

PRUEBA DE ACCESO (LOGSE) UNIVERSIDAD DE CANTABRIA SEPTIEMBRE - 2001 (RESUELTOS por Antonio Menguiano) MATEMÁTICAS II Tiempo máximo: 1 horas y 30 minutos

El ejercicio consta de tres bloques de problemas y cada bloque tiene dos opcio- nes. Debe exponerse con claridad el planteamiento del problema o el método utilizado pa[r]

13 Lee mas

PRUEBA DE ACCESO (LOGSE) UNIVERSIDAD DE CASTILLA Y LEÓN SEPTIEMBRE – 2000 (RESUELTOS por Antonio Menguiano) MATEMÁTICAS II Tiempo máximo: 1 horas y 30 minutos

PRUEBA DE ACCESO (LOGSE) UNIVERSIDAD DE CASTILLA Y LEÓN SEPTIEMBRE – 2000 (RESUELTOS por Antonio Menguiano) MATEMÁTICAS II Tiempo máximo: 1 horas y 30 minutos

Optatividad: Se proponen dos pruebas, A y B. Cada una de ellas consta de dos proble- mas y cuatro cuestiones. Cada problema tendrá una puntuación máxima de tres puntos, y cada cuestión se puntuará, como máximo, con un punto. El alumno deberá escoger una de las pruebas, A o B, y desarrollar las preguntas de la misma.

9 Lee mas

PRUEBA DE ACCESO (LOGSE) UNIVERSIDAD DE CASTILLA Y LEÓN SEPTIEMBRE - 2002 (RESUELTOS por Antonio Menguiano) MATEMÁTICAS II Tiempo máximo: 1 horas y 30 minutos

PRUEBA DE ACCESO (LOGSE) UNIVERSIDAD DE CASTILLA Y LEÓN SEPTIEMBRE - 2002 (RESUELTOS por Antonio Menguiano) MATEMÁTICAS II Tiempo máximo: 1 horas y 30 minutos

Optatividad: Se proponen dos pruebas, A y B. Cada una de ellas consta de dos proble- mas y cuatro cuestiones. Cada problema tendrá una puntuación máxima de tres puntos, y cada cuestión se puntuará, como máximo, con un punto. El alumno deberá escoger una de las pruebas, A o B, y desarrollar las preguntas de la misma.

13 Lee mas

PRUEBA DE ACCESO (LOGSE) UNIVERSIDAD DE CANTABRIA JUNIO - 2001 (RESUELTOS por Antonio Menguiano) MATEMÁTICAS II Tiempo máximo: 1 horas y 30 minutos

PRUEBA DE ACCESO (LOGSE) UNIVERSIDAD DE CANTABRIA JUNIO - 2001 (RESUELTOS por Antonio Menguiano) MATEMÁTICAS II Tiempo máximo: 1 horas y 30 minutos

El dominio de la f(x) es R, por ser producto de dos funciones que son continuas y derivables en su dominio, que en ambas es R, lo que hace que f(x) también lo sea.. Oblicuas: Para que[r]

14 Lee mas

PRUEBA DE ACCESO (LOGSE) UNIVERSIDAD DE CASTILLA Y LEÓN JUNIO – 2000 (RESUELTOS por Antonio Menguiano) MATEMÁTICAS II Tiempo máximo: 1 horas y 30 minutos

PRUEBA DE ACCESO (LOGSE) UNIVERSIDAD DE CASTILLA Y LEÓN JUNIO – 2000 (RESUELTOS por Antonio Menguiano) MATEMÁTICAS II Tiempo máximo: 1 horas y 30 minutos

Criterios generales de evaluación de la prueba: Se observarán fundamentalmente los siguientes aspectos: correcta utilización de los conceptos, definiciones y propiedades relacionadas con la naturaleza de la situación que se trata de resolver. Justificaciones teóricas que se aporten para el desarrollo de las respuestas. Claridad y coherencia en la exposición. Precisión en los cálculos y en las notaciones.

15 Lee mas

PRUEBA DE ACCESO (LOGSE) UNIVERSIDAD DE CASTILLA Y LEÓN JUNIO - 2002 (RESUELTOS por Antonio Menguiano) MATEMÁTICAS II Tiempo máximo: 1 horas y 30 minutos

PRUEBA DE ACCESO (LOGSE) UNIVERSIDAD DE CASTILLA Y LEÓN JUNIO - 2002 (RESUELTOS por Antonio Menguiano) MATEMÁTICAS II Tiempo máximo: 1 horas y 30 minutos

Optatividad: Se proponen dos pruebas, A y B. Cada una de ellas consta de dos proble- mas y cuatro cuestiones. Cada problema tendrá una puntuación máxima de tres puntos, y cada cuestión se puntuará, como máximo, con un punto. El alumno deberá escoger una de las pruebas, A o B, y desarrollar las preguntas de la misma.

16 Lee mas

PRUEBA DE ACCESO (LOGSE) UNIVERSIDAD DE CASTILLA Y LEÓN JUNIO - 2003 (RESUELTOS por Antonio Menguiano) MATEMÁTICAS II Tiempo máximo: 1 horas y 30 minutos

PRUEBA DE ACCESO (LOGSE) UNIVERSIDAD DE CASTILLA Y LEÓN JUNIO - 2003 (RESUELTOS por Antonio Menguiano) MATEMÁTICAS II Tiempo máximo: 1 horas y 30 minutos

Por ser la función f(x) continua en todos los puntos del intervalo [-1, 1] y deriva- ble en todos los puntos del intervalo (-1, 1) le es aplicable el Teorema de Bolzano, que dice que: “si una función f es continua en un intervalo cerrado [a, b] y en los extremos de éste toma valores de distinto signo, entonces existe al menos un valor c ∈ ( a , b ) tal que f ( ) c = 0 ”.

17 Lee mas

PRUEBA DE ACCESO (LOGSE) UNIVERSIDAD DE CASTILLA Y LEÓN SEPTIEMBRE - 2001 (RESUELTOS por Antonio Menguiano) MATEMÁTICAS II Tiempo máximo: 1 horas y 30 minutos

PRUEBA DE ACCESO (LOGSE) UNIVERSIDAD DE CASTILLA Y LEÓN SEPTIEMBRE - 2001 (RESUELTOS por Antonio Menguiano) MATEMÁTICAS II Tiempo máximo: 1 horas y 30 minutos

Optatividad: Se proponen dos pruebas, A y B. Cada una de ellas consta de dos proble- mas y cuatro cuestiones. Cada problema tendrá una puntuación máxima de tres puntos, y cada cuestión se puntuará, como máximo, con un punto. El alumno deberá escoger una de las pruebas, A o B, y desarrollar las preguntas de la misma.

17 Lee mas

PRUEBA DE ACCESO (LOGSE) UNIVERSIDAD DE BALEARES JUNIO - 2004 (RESUELTOS por Antonio Menguiano) MATEMÁTICAS II Tiempo máximo: 1 horas y 30 minutos

PRUEBA DE ACCESO (LOGSE) UNIVERSIDAD DE BALEARES JUNIO - 2004 (RESUELTOS por Antonio Menguiano) MATEMÁTICAS II Tiempo máximo: 1 horas y 30 minutos

Las asíntotas pueden ser horizontales, verticales y oblicuas.. Para que existe un punto de inflexión para x = 0 es necesario que no se anule la tercera derivada para este valor. Para d[r]

12 Lee mas

PRUEBA DE ACCESO (LOGSE) UNIVERSIDAD DE BALEARES JUNIO – 2007 (RESUELTOS por Antonio Menguiano) MATEMÁTICAS II Tiempo máximo: 1 horas y 30 minutos

PRUEBA DE ACCESO (LOGSE) UNIVERSIDAD DE BALEARES JUNIO – 2007 (RESUELTOS por Antonio Menguiano) MATEMÁTICAS II Tiempo máximo: 1 horas y 30 minutos

En el caso del ejemplo que nos ocupa se observa que la segunda derivada también se anula para el valor que anula la primera derivada: f '' ( ) x = 6 x ⇒ f '' ( ) 0 = 0 , con lo cual no puede existir ni máximo ni mínimo relativo para el valor x = 0 que anula la primera derivada, lo que demuestra lo pedido.

12 Lee mas

PRUEBA DE ACCESO (LOGSE) UNIVERSIDAD DE BALEARES JUNIO – 2006 (RESUELTOS por Antonio Menguiano) MATEMÁTICAS II Tiempo máximo: 1 horas y 30 minutos

PRUEBA DE ACCESO (LOGSE) UNIVERSIDAD DE BALEARES JUNIO – 2006 (RESUELTOS por Antonio Menguiano) MATEMÁTICAS II Tiempo máximo: 1 horas y 30 minutos

Se valorarán positivamente la corrección y la claridad en el lenguaje (matemático y no ma- temático) empleado por el alumno. Se valorarán negativamente los errores de cálculo. Todos lo[r]

13 Lee mas

PRUEBA DE ACCESO (LOGSE) UNIVERSIDAD DE BALEARES JUNIO – 2005 (RESUELTOS por Antonio Menguiano) MATEMÁTICAS II Tiempo máximo: 1 horas y 30 minutos

PRUEBA DE ACCESO (LOGSE) UNIVERSIDAD DE BALEARES JUNIO – 2005 (RESUELTOS por Antonio Menguiano) MATEMÁTICAS II Tiempo máximo: 1 horas y 30 minutos

(Para que una función racional tenga asíntotas oblicuas es necesario que el grado del numerador sea una unidad mayor que el grado del denominador).. Se pide: a ) Hallar la ecuación gen[r]

10 Lee mas

PRUEBA DE ACCESO (LOGSE) UNIVERSIDAD DE BALEARES JUNIO - 2002 (RESUELTOS por Antonio Menguiano) MATEMÁTICAS II Tiempo máximo: 1 horas y 30 minutos

PRUEBA DE ACCESO (LOGSE) UNIVERSIDAD DE BALEARES JUNIO - 2002 (RESUELTOS por Antonio Menguiano) MATEMÁTICAS II Tiempo máximo: 1 horas y 30 minutos

(Los nú- meros negativos no tienen logaritmo y el logaritmo de cero es menos infinito, que no es real). De los límites de los apartados anteriores se deduce que no tiene asíntotas. Con [r]

12 Lee mas

PRUEBA DE ACCESO (LOGSE) UNIVERSIDAD DE BALEARES JUNIO – 2013 (RESUELTOS por Antonio Menguiano) MATEMÁTICAS II Tiempo máximo: 1 horas y 30 minutos

PRUEBA DE ACCESO (LOGSE) UNIVERSIDAD DE BALEARES JUNIO – 2013 (RESUELTOS por Antonio Menguiano) MATEMÁTICAS II Tiempo máximo: 1 horas y 30 minutos

Se valorarán la corrección y la claridad en el lenguaje (matemático y no matemático) empleado por el alumno. Se valorarán negativamente los errores de cálculo.. b ) Resuélvalo en el ca[r]

14 Lee mas

PRUEBA DE ACCESO (LOGSE) UNIVERSIDAD DE BALEARES JUNIO - 2003 (RESUELTOS por Antonio Menguiano) MATEMÁTICAS II Tiempo máximo: 1 horas y 30 minutos

PRUEBA DE ACCESO (LOGSE) UNIVERSIDAD DE BALEARES JUNIO - 2003 (RESUELTOS por Antonio Menguiano) MATEMÁTICAS II Tiempo máximo: 1 horas y 30 minutos

Con objeto de facilitar la representación gráfica de la función vamos a determinar su punto máximo que, según el apartado a ) se produce para x = -1, ya que la función es continua y pasa de ser creciente a decreciente para x = -1; no obstante, vamos a justifi- car analíticamente que se trata de un máximo.

14 Lee mas

PRUEBA DE ACCESO (LOGSE) UNIVERSIDAD DE BALEARES JUNIO – 2010 (GENERAL) (RESUELTOS por Antonio Menguiano) MATEMÁTICAS II Tiempo máximo: 1 horas y 30 minutos

PRUEBA DE ACCESO (LOGSE) UNIVERSIDAD DE BALEARES JUNIO – 2010 (GENERAL) (RESUELTOS por Antonio Menguiano) MATEMÁTICAS II Tiempo máximo: 1 horas y 30 minutos

Considerando que el punto A(0, 1) es un punto de la curva y todo lo anterior se puede hacer un dibujo aproximado de la situación, que es el indicado en la figura.. Haga un dibujo de la [r]

12 Lee mas

PRUEBA DE ACCESO (LOGSE) UNIVERSIDAD DE BALEARES JUNIO - 2008 (RESUELTOS por Antonio Menguiano) MATEMÁTICAS II Tiempo máximo: 1 horas y 30 minutos

PRUEBA DE ACCESO (LOGSE) UNIVERSIDAD DE BALEARES JUNIO - 2008 (RESUELTOS por Antonio Menguiano) MATEMÁTICAS II Tiempo máximo: 1 horas y 30 minutos

Como el denominador de la derivada es siempre positivo y el denominador es siempre negativo, la derivada es negativa para cualquier valor real de x perteneciente al dominio de la función, que es D ( ) f ⇒ R − {} 1 , lo cual significa que f(x) es decreciente en su dominio.

15 Lee mas

Show all 10000 documents...

Related subjects