PDF superior PRUEBA DE ACCESO (LOGSE) UNIVERSIDAD DE CASTILLA Y LEÓN JUNIO - 2002 (RESUELTOS por Antonio Menguiano) MATEMÁTICAS II Tiempo máximo: 1 horas y 30 minutos

PRUEBA DE ACCESO (LOGSE) UNIVERSIDAD DE CASTILLA Y LEÓN JUNIO - 2002 (RESUELTOS por Antonio Menguiano) MATEMÁTICAS II Tiempo máximo: 1 horas y 30 minutos

PRUEBA DE ACCESO (LOGSE) UNIVERSIDAD DE CASTILLA Y LEÓN JUNIO - 2002 (RESUELTOS por Antonio Menguiano) MATEMÁTICAS II Tiempo máximo: 1 horas y 30 minutos

Optatividad: Se proponen dos pruebas, A y B. Cada una de ellas consta de dos proble- mas y cuatro cuestiones. Cada problema tendrá una puntuación máxima de tres puntos, y cada cuestión se puntuará, como máximo, con un punto. El alumno deberá escoger una de las pruebas, A o B, y desarrollar las preguntas de la misma.

16 Lee mas

PRUEBA DE ACCESO (LOGSE) UNIVERSIDAD DE CANTABRIA JUNIO - 2002 (RESUELTOS por Antonio Menguiano) MATEMÁTICAS II Tiempo máximo: 1 horas y 30 minutos

PRUEBA DE ACCESO (LOGSE) UNIVERSIDAD DE CANTABRIA JUNIO - 2002 (RESUELTOS por Antonio Menguiano) MATEMÁTICAS II Tiempo máximo: 1 horas y 30 minutos

Debe responderse necesariamente a los tres bloques, escogiendo en cada uno de ellos una sola de las opciones (A o B). 2.- Debe exponerse con claridad el planteamiento [r]

12 Lee mas

PRUEBA DE ACCESO (LOGSE) UNIVERSIDAD DE CANTABRIA SEPTIEMBRE - 2002 (RESUELTOS por Antonio Menguiano) MATEMÁTICAS II Tiempo máximo: 1 horas y 30 minutos

PRUEBA DE ACCESO (LOGSE) UNIVERSIDAD DE CANTABRIA SEPTIEMBRE - 2002 (RESUELTOS por Antonio Menguiano) MATEMÁTICAS II Tiempo máximo: 1 horas y 30 minutos

Debe responderse necesariamente a los tres bloques, escogiendo en cada uno de ellos una sola de las opciones (A o B). 2.- Debe exponerse con claridad el planteamiento [r]

10 Lee mas

PRUEBA DE ACCESO (LOGSE) UNIVERSIDAD DE CASTILLA Y LEÓN SEPTIEMBRE – 2000 (RESUELTOS por Antonio Menguiano) MATEMÁTICAS II Tiempo máximo: 1 horas y 30 minutos

PRUEBA DE ACCESO (LOGSE) UNIVERSIDAD DE CASTILLA Y LEÓN SEPTIEMBRE – 2000 (RESUELTOS por Antonio Menguiano) MATEMÁTICAS II Tiempo máximo: 1 horas y 30 minutos

Optatividad: Se proponen dos pruebas, A y B. Cada una de ellas consta de dos proble- mas y cuatro cuestiones. Cada problema tendrá una puntuación máxima de tres puntos, y cada cuestión se puntuará, como máximo, con un punto. El alumno deberá escoger una de las pruebas, A o B, y desarrollar las preguntas de la misma.

9 Lee mas

PRUEBA DE ACCESO (LOGSE) UNIVERSIDAD DE CASTILLA Y LEÓN SEPTIEMBRE - 2001 (RESUELTOS por Antonio Menguiano) MATEMÁTICAS II Tiempo máximo: 1 horas y 30 minutos

PRUEBA DE ACCESO (LOGSE) UNIVERSIDAD DE CASTILLA Y LEÓN SEPTIEMBRE - 2001 (RESUELTOS por Antonio Menguiano) MATEMÁTICAS II Tiempo máximo: 1 horas y 30 minutos

Optatividad: Se proponen dos pruebas, A y B. Cada una de ellas consta de dos proble- mas y cuatro cuestiones. Cada problema tendrá una puntuación máxima de tres puntos, y cada cuestión se puntuará, como máximo, con un punto. El alumno deberá escoger una de las pruebas, A o B, y desarrollar las preguntas de la misma.

17 Lee mas

PRUEBA DE ACCESO (LOGSE) UNIVERSIDAD DE CASTILLA Y LEÓN SEPTIEMBRE - 2003 (RESUELTOS por Antonio Menguiano) MATEMÁTICAS II Tiempo máximo: 1 horas y 30 minutos

PRUEBA DE ACCESO (LOGSE) UNIVERSIDAD DE CASTILLA Y LEÓN SEPTIEMBRE - 2003 (RESUELTOS por Antonio Menguiano) MATEMÁTICAS II Tiempo máximo: 1 horas y 30 minutos

Optatividad: Se proponen dos pruebas, A y B. Cada una de ellas consta de dos proble- mas y cuatro cuestiones. Cada problema tendrá una puntuación máxima de tres puntos, y cada cuestión se puntuará, como máximo, con un punto. El alumno deberá escoger una de las pruebas, A o B, y desarrollar las preguntas de la misma.

17 Lee mas

PRUEBA DE ACCESO (LOGSE) UNIVERSIDAD DE BALEARES JUNIO - 2002 (RESUELTOS por Antonio Menguiano) MATEMÁTICAS II Tiempo máximo: 1 horas y 30 minutos

PRUEBA DE ACCESO (LOGSE) UNIVERSIDAD DE BALEARES JUNIO - 2002 (RESUELTOS por Antonio Menguiano) MATEMÁTICAS II Tiempo máximo: 1 horas y 30 minutos

(Los nú- meros negativos no tienen logaritmo y el logaritmo de cero es menos infinito, que no es real). De los límites de los apartados anteriores se deduce que no tiene asíntotas. Con [r]

12 Lee mas

PRUEBA DE ACCESO (LOGSE) UNIVERSIDAD DE CASTILLA Y LEÓN JUNIO – 2000 (RESUELTOS por Antonio Menguiano) MATEMÁTICAS II Tiempo máximo: 1 horas y 30 minutos

PRUEBA DE ACCESO (LOGSE) UNIVERSIDAD DE CASTILLA Y LEÓN JUNIO – 2000 (RESUELTOS por Antonio Menguiano) MATEMÁTICAS II Tiempo máximo: 1 horas y 30 minutos

Optatividad: Se proponen dos pruebas, A y B. Cada una de ellas consta de dos proble- mas y cuatro cuestiones. Cada problema tendrá una puntuación máxima de tres puntos, y cada cuestión se puntuará, como máximo, con un punto. El alumno deberá escoger una de las pruebas, A o B, y desarrollar las preguntas de la misma.

15 Lee mas

PRUEBA DE ACCESO (LOGSE) UNIVERSIDAD DE CASTILLA Y LEÓN JUNIO - 2001 (RESUELTOS por Antonio Menguiano) MATEMÁTICAS II Tiempo máximo: 1 horas y 30 minutos

PRUEBA DE ACCESO (LOGSE) UNIVERSIDAD DE CASTILLA Y LEÓN JUNIO - 2001 (RESUELTOS por Antonio Menguiano) MATEMÁTICAS II Tiempo máximo: 1 horas y 30 minutos

Optatividad: Se proponen dos pruebas, A y B. Cada una de ellas consta de dos proble- mas y cuatro cuestiones. Cada problema tendrá una puntuación máxima de tres puntos, y cada cuestión se puntuará, como máximo, con un punto. El alumno deberá escoger una de las pruebas, A o B, y desarrollar las preguntas de la misma.

18 Lee mas

PRUEBA DE ACCESO (LOGSE) UNIVERSIDAD DE CASTILLA Y LEÓN JUNIO - 2003 (RESUELTOS por Antonio Menguiano) MATEMÁTICAS II Tiempo máximo: 1 horas y 30 minutos

PRUEBA DE ACCESO (LOGSE) UNIVERSIDAD DE CASTILLA Y LEÓN JUNIO - 2003 (RESUELTOS por Antonio Menguiano) MATEMÁTICAS II Tiempo máximo: 1 horas y 30 minutos

Por ser la función f(x) continua en todos los puntos del intervalo [-1, 1] y deriva- ble en todos los puntos del intervalo (-1, 1) le es aplicable el Teorema de Bolzano, que dice que: “si una función f es continua en un intervalo cerrado [a, b] y en los extremos de éste toma valores de distinto signo, entonces existe al menos un valor c ∈ ( a , b ) tal que f ( ) c = 0 ”.

17 Lee mas

PRUEBA DE ACCESO (LOGSE) UNIVERSIDAD DE CASTILLA Y LEÓN SEPTIEMBRE - 2002 (RESUELTOS por Antonio Menguiano) MATEMÁTICAS II Tiempo máximo: 1 horas y 30 minutos

PRUEBA DE ACCESO (LOGSE) UNIVERSIDAD DE CASTILLA Y LEÓN SEPTIEMBRE - 2002 (RESUELTOS por Antonio Menguiano) MATEMÁTICAS II Tiempo máximo: 1 horas y 30 minutos

1º) Se consideran los planos π 1 ≡ x + y + z = 0 y π 2 ≡ x − y + z = 1 . Se pide: a ) Hallar un plano π , perpendicular a ambos y que pase por el punto P(1, 2, -1). b ) Determinar una recta r paralela a ambos pasando por el punto Q(2, 1, 1). c ) Calcular el ángulo que forman π 1 y π 2 .

13 Lee mas

PRUEBA DE ACCESO (LOGSE) UNIVERSIDAD DE BALEARES JUNIO - 2004 (RESUELTOS por Antonio Menguiano) MATEMÁTICAS II Tiempo máximo: 1 horas y 30 minutos

PRUEBA DE ACCESO (LOGSE) UNIVERSIDAD DE BALEARES JUNIO - 2004 (RESUELTOS por Antonio Menguiano) MATEMÁTICAS II Tiempo máximo: 1 horas y 30 minutos

Las asíntotas pueden ser horizontales, verticales y oblicuas.. Para que existe un punto de inflexión para x = 0 es necesario que no se anule la tercera derivada para este valor. Para d[r]

12 Lee mas

PRUEBA DE ACCESO (LOGSE) UNIVERSIDAD DE BALEARES JUNIO – 2007 (RESUELTOS por Antonio Menguiano) MATEMÁTICAS II Tiempo máximo: 1 horas y 30 minutos

PRUEBA DE ACCESO (LOGSE) UNIVERSIDAD DE BALEARES JUNIO – 2007 (RESUELTOS por Antonio Menguiano) MATEMÁTICAS II Tiempo máximo: 1 horas y 30 minutos

En el caso del ejemplo que nos ocupa se observa que la segunda derivada también se anula para el valor que anula la primera derivada: f '' ( ) x = 6 x ⇒ f '' ( ) 0 = 0 , con lo cual no puede existir ni máximo ni mínimo relativo para el valor x = 0 que anula la primera derivada, lo que demuestra lo pedido.

12 Lee mas

PRUEBA DE ACCESO (LOGSE) UNIVERSIDAD DE BALEARES JUNIO – 2006 (RESUELTOS por Antonio Menguiano) MATEMÁTICAS II Tiempo máximo: 1 horas y 30 minutos

PRUEBA DE ACCESO (LOGSE) UNIVERSIDAD DE BALEARES JUNIO – 2006 (RESUELTOS por Antonio Menguiano) MATEMÁTICAS II Tiempo máximo: 1 horas y 30 minutos

Se valorarán positivamente la corrección y la claridad en el lenguaje (matemático y no ma- temático) empleado por el alumno. Se valorarán negativamente los errores de cálculo. Todos lo[r]

13 Lee mas

PRUEBA DE ACCESO (LOGSE) UNIVERSIDAD DE BALEARES JUNIO – 2005 (RESUELTOS por Antonio Menguiano) MATEMÁTICAS II Tiempo máximo: 1 horas y 30 minutos

PRUEBA DE ACCESO (LOGSE) UNIVERSIDAD DE BALEARES JUNIO – 2005 (RESUELTOS por Antonio Menguiano) MATEMÁTICAS II Tiempo máximo: 1 horas y 30 minutos

(Para que una función racional tenga asíntotas oblicuas es necesario que el grado del numerador sea una unidad mayor que el grado del denominador).. Se pide: a ) Hallar la ecuación gen[r]

10 Lee mas

PRUEBA DE ACCESO (LOGSE) UNIVERSIDAD DE BALEARES JUNIO – 2010 (GENERAL) (RESUELTOS por Antonio Menguiano) MATEMÁTICAS II Tiempo máximo: 1 horas y 30 minutos

PRUEBA DE ACCESO (LOGSE) UNIVERSIDAD DE BALEARES JUNIO – 2010 (GENERAL) (RESUELTOS por Antonio Menguiano) MATEMÁTICAS II Tiempo máximo: 1 horas y 30 minutos

Considerando que el punto A(0, 1) es un punto de la curva y todo lo anterior se puede hacer un dibujo aproximado de la situación, que es el indicado en la figura.. Haga un dibujo de la [r]

12 Lee mas

PRUEBA DE ACCESO (LOGSE) UNIVERSIDAD DE BALEARES JUNIO – 2013 (RESUELTOS por Antonio Menguiano) MATEMÁTICAS II Tiempo máximo: 1 horas y 30 minutos

PRUEBA DE ACCESO (LOGSE) UNIVERSIDAD DE BALEARES JUNIO – 2013 (RESUELTOS por Antonio Menguiano) MATEMÁTICAS II Tiempo máximo: 1 horas y 30 minutos

Se valorarán la corrección y la claridad en el lenguaje (matemático y no matemático) empleado por el alumno. Se valorarán negativamente los errores de cálculo.. b ) Resuélvalo en el ca[r]

14 Lee mas

PRUEBA DE ACCESO (LOGSE) UNIVERSIDAD DE BALEARES JUNIO - 2003 (RESUELTOS por Antonio Menguiano) MATEMÁTICAS II Tiempo máximo: 1 horas y 30 minutos

PRUEBA DE ACCESO (LOGSE) UNIVERSIDAD DE BALEARES JUNIO - 2003 (RESUELTOS por Antonio Menguiano) MATEMÁTICAS II Tiempo máximo: 1 horas y 30 minutos

Con objeto de facilitar la representación gráfica de la función vamos a determinar su punto máximo que, según el apartado a ) se produce para x = -1, ya que la función es continua y pasa de ser creciente a decreciente para x = -1; no obstante, vamos a justifi- car analíticamente que se trata de un máximo.

14 Lee mas

PRUEBA DE ACCESO (LOGSE) UNIVERSIDAD DE BALEARES JUNIO – 2012 (GENERAL) (RESUELTOS por Antonio Menguiano) MATEMÁTICAS II Tiempo máximo: 1 horas y 30 minutos

PRUEBA DE ACCESO (LOGSE) UNIVERSIDAD DE BALEARES JUNIO – 2012 (GENERAL) (RESUELTOS por Antonio Menguiano) MATEMÁTICAS II Tiempo máximo: 1 horas y 30 minutos

Para − 1 < a < 1 el valor de x de la expresión − a ± a 2 − 1 carece de soluciones reales, lo que implica que la función es monótona en su dominio, que es R, indepen- dientemente del valor real de α . Teniendo en cuenta que, por ser una función polinómica de grado impar, su recorrido es R, implica necesariamente que:

11 Lee mas

PRUEBA DE ACCESO (LOGSE) UNIVERSIDAD DE BALEARES JUNIO - 2008 (RESUELTOS por Antonio Menguiano) MATEMÁTICAS II Tiempo máximo: 1 horas y 30 minutos

PRUEBA DE ACCESO (LOGSE) UNIVERSIDAD DE BALEARES JUNIO - 2008 (RESUELTOS por Antonio Menguiano) MATEMÁTICAS II Tiempo máximo: 1 horas y 30 minutos

Como el denominador de la derivada es siempre positivo y el denominador es siempre negativo, la derivada es negativa para cualquier valor real de x perteneciente al dominio de la función, que es D ( ) f ⇒ R − {} 1 , lo cual significa que f(x) es decreciente en su dominio.

15 Lee mas

Show all 10000 documents...

Related subjects