Top PDF PRUEBA DE ACCESO (LOGSE) UNIVERSIDAD DE CASTILLA Y LEÓN JUNIO - 2002 (RESUELTOS por Antonio Menguiano) MATEMÁTICAS II Tiempo máximo: 1 horas y 30 minutos
... Optatividad: Se proponen dos pruebas, A y B. Cada una de ellas consta de dos proble- mas y cuatro cuestiones. Cada problema tendrá una puntuación máxima de tres puntos, y cada cuestión se puntuará, como máximo, ...
... Debe responderse necesariamente a los tres bloques, escogiendo en cada uno de ellos una sola de las opciones (A o B). 2.- Debe exponerse con claridad el planteamiento [r] ...
... Debe responderse necesariamente a los tres bloques, escogiendo en cada uno de ellos una sola de las opciones (A o B). 2.- Debe exponerse con claridad el planteamiento [r] ...
... Optatividad: Se proponen dos pruebas, A y B. Cada una de ellas consta de dos proble- mas y cuatro cuestiones. Cada problema tendrá una puntuación máxima de tres puntos, y cada cuestión se puntuará, como máximo, ...
... Optatividad: Se proponen dos pruebas, A y B. Cada una de ellas consta de dos proble- mas y cuatro cuestiones. Cada problema tendrá una puntuación máxima de tres puntos, y cada cuestión se puntuará, como máximo, ...
... Optatividad: Se proponen dos pruebas, A y B. Cada una de ellas consta de dos proble- mas y cuatro cuestiones. Cada problema tendrá una puntuación máxima de tres puntos, y cada cuestión se puntuará, como máximo, ...
... (Los nú- meros negativos no tienen logaritmo y el logaritmo de cero es menos infinito, que no es real). De los límites de los apartados anteriores se deduce que no tiene asíntotas. Con [r] ...
... Optatividad: Se proponen dos pruebas, A y B. Cada una de ellas consta de dos proble- mas y cuatro cuestiones. Cada problema tendrá una puntuación máxima de tres puntos, y cada cuestión se puntuará, como máximo, ...
... Optatividad: Se proponen dos pruebas, A y B. Cada una de ellas consta de dos proble- mas y cuatro cuestiones. Cada problema tendrá una puntuación máxima de tres puntos, y cada cuestión se puntuará, como máximo, ...
... [-1, 1] y deriva- ble en todos los puntos del intervalo (-1, 1) le es aplicable el Teorema de Bolzano, que dice que: “si una función f es continua en un intervalo cerrado [a, b] y en los ...
... 1º) Se consideran los planos π 1 ≡ x + y + z = 0 y π 2 ≡ x − y + z = 1 . Se pide: a ) Hallar un plano π , perpendicular a ambos y que pase por el punto P(1, 2, -1). b ) Determinar una recta r ...
... Las asíntotas pueden ser horizontales, verticales y oblicuas.. Para que existe un punto de inflexión para x = 0 es necesario que no se anule la tercera derivada para este valor. Para d[r] ...
... En el caso del ejemplo que nos ocupa se observa que la segunda derivada también se anula para el valor que anula la primera derivada: f '' ( ) x = 6 x ⇒ f '' ( ) 0 = 0 , con lo cual no puede existir ni máximo ni ...
... Se valorarán positivamente la corrección y la claridad en el lenguaje (matemático y no ma- temático) empleado por el alumno. Se valorarán negativamente los errores de cálculo. Todos lo[r] ...
... (Para que una función racional tenga asíntotas oblicuas es necesario que el grado del numerador sea una unidad mayor que el grado del denominador).. Se pide: a ) Hallar la ecuación gen[r] ...
... Considerando que el punto A(0, 1) es un punto de la curva y todo lo anterior se puede hacer un dibujo aproximado de la situación, que es el indicado en la figura.. Haga un dibujo de la [r] ...
... Se valorarán la corrección y la claridad en el lenguaje (matemático y no matemático) empleado por el alumno. Se valorarán negativamente los errores de cálculo.. b ) Resuélvalo en el ca[r] ...
... punto máximo que, según el apartado a ) se produce para x = -1, ya que la función es continua y pasa de ser creciente a decreciente para x = -1; no obstante, vamos a justifi- car analíticamente que ...
... − 1 < a < 1 el valor de x de la expresión − a ± a 2 − 1 carece de soluciones reales, lo que implica que la función es monótona en su dominio, que es R, indepen- dientemente del valor real de α ...
... Como el denominador de la derivada es siempre positivo y el denominador es siempre negativo, la derivada es negativa para cualquier valor real de x perteneciente al dominio de la función, que es D ( ) f ⇒ R − {} 1 ...