PDF superior PRUEBA DE ACCESO (LOGSE) UNIVERSIDAD DE CASTILLA Y LEÓN SEPTIEMBRE – 2000 (RESUELTOS por Antonio Menguiano) MATEMÁTICAS II Tiempo máximo: 1 horas y 30 minutos

PRUEBA DE ACCESO (LOGSE) UNIVERSIDAD DE CASTILLA Y LEÓN SEPTIEMBRE – 2000 (RESUELTOS por Antonio Menguiano) MATEMÁTICAS II Tiempo máximo: 1 horas y 30 minutos

PRUEBA DE ACCESO (LOGSE) UNIVERSIDAD DE CASTILLA Y LEÓN SEPTIEMBRE – 2000 (RESUELTOS por Antonio Menguiano) MATEMÁTICAS II Tiempo máximo: 1 horas y 30 minutos

Optatividad: Se proponen dos pruebas, A y B. Cada una de ellas consta de dos proble- mas y cuatro cuestiones. Cada problema tendrá una puntuación máxima de tres puntos, y cada cuestión se puntuará, como máximo, con un punto. El alumno deberá escoger una de las pruebas, A o B, y desarrollar las preguntas de la misma.

9 Lee mas

PRUEBA DE ACCESO (LOGSE) UNIVERSIDAD DE CANTABRIA SEPTIEMBRE - 2005 (RESUELTOS por Antonio Menguiano) MATEMÁTICAS II Tiempo máximo: 1 horas y 30 minutos

PRUEBA DE ACCESO (LOGSE) UNIVERSIDAD DE CANTABRIA SEPTIEMBRE - 2005 (RESUELTOS por Antonio Menguiano) MATEMÁTICAS II Tiempo máximo: 1 horas y 30 minutos

1-B) a ) Considera una caja de cartón de base rec- tangular y sin tapa superior. La longitud de uno de los lados del rectángulo de la base es siete veces la del otro. Calcula las dimensiones que ha de tener esta caja para que su volumen sea de 49 cm 3 y para que su fabricación sea lo más económica posible. b ) Si el metro cuadrado de cartón se vende a 2’5 euros, ¿cuánto cuesta cada caja?

17 Lee mas

PRUEBA DE ACCESO (LOGSE) UNIVERSIDAD DE CANTABRIA SEPTIEMBRE - 2004 (RESUELTOS por Antonio Menguiano) MATEMÁTICAS II Tiempo máximo: 1 horas y 30 minutos

PRUEBA DE ACCESO (LOGSE) UNIVERSIDAD DE CANTABRIA SEPTIEMBRE - 2004 (RESUELTOS por Antonio Menguiano) MATEMÁTICAS II Tiempo máximo: 1 horas y 30 minutos

Al igual que en el apartado anterior, nos limitamos al estudio de la función g(x).. 2-B) Una ventana tiene forma de un semicírculo colocado sobre un rectángulo. El rectángulo es de cris[r]

12 Lee mas

PRUEBA DE ACCESO (LOGSE) UNIVERSIDAD DE CANTABRIA SEPTIEMBRE - 2003 (RESUELTOS por Antonio Menguiano) MATEMÁTICAS II Tiempo máximo: 1 horas y 30 minutos

PRUEBA DE ACCESO (LOGSE) UNIVERSIDAD DE CANTABRIA SEPTIEMBRE - 2003 (RESUELTOS por Antonio Menguiano) MATEMÁTICAS II Tiempo máximo: 1 horas y 30 minutos

El producto de una matriz por un número es otra matriz cuyos elementos resultan de multiplicar cada elemento de la primera matriz por el número. Otra propiedad de los determinantes:[r]

11 Lee mas

PRUEBA DE ACCESO (LOGSE) UNIVERSIDAD DE CANTABRIA SEPTIEMBRE - 2002 (RESUELTOS por Antonio Menguiano) MATEMÁTICAS II Tiempo máximo: 1 horas y 30 minutos

PRUEBA DE ACCESO (LOGSE) UNIVERSIDAD DE CANTABRIA SEPTIEMBRE - 2002 (RESUELTOS por Antonio Menguiano) MATEMÁTICAS II Tiempo máximo: 1 horas y 30 minutos

Debe responderse necesariamente a los tres bloques, escogiendo en cada uno de ellos una sola de las opciones (A o B). 2.- Debe exponerse con claridad el planteamiento [r]

10 Lee mas

PRUEBA DE ACCESO (LOGSE) UNIVERSIDAD DE CANTABRIA SEPTIEMBRE - 2001 (RESUELTOS por Antonio Menguiano) MATEMÁTICAS II Tiempo máximo: 1 horas y 30 minutos

PRUEBA DE ACCESO (LOGSE) UNIVERSIDAD DE CANTABRIA SEPTIEMBRE - 2001 (RESUELTOS por Antonio Menguiano) MATEMÁTICAS II Tiempo máximo: 1 horas y 30 minutos

El ejercicio consta de tres bloques de problemas y cada bloque tiene dos opcio- nes. Debe exponerse con claridad el planteamiento del problema o el método utilizado pa[r]

13 Lee mas

PRUEBA DE ACCESO (LOGSE) UNIVERSIDAD DE BALEARES SEPTIEMBRE 2001 (RESUELTOS por Antonio Menguiano) MATEMÁTICAS II Tiempo máximo: 1 horas y 30 minutos

PRUEBA DE ACCESO (LOGSE) UNIVERSIDAD DE BALEARES SEPTIEMBRE 2001 (RESUELTOS por Antonio Menguiano) MATEMÁTICAS II Tiempo máximo: 1 horas y 30 minutos

En ningún caso la ecuación tendrá dos raíces reales en el intervalo [0, 1], c.q.d.. Gráficamente también se puede demostrar la cuestión pedida.. 2º) Encontrar el valor máximo que p[r]

12 Lee mas

PRUEBA DE ACCESO (LOGSE) UNIVERSIDAD DE BALEARES SEPTIEMBRE - 2009 (RESUELTOS por Antonio Menguiano) MATEMÁTICAS II Tiempo máximo: 1 horas y 30 minutos

PRUEBA DE ACCESO (LOGSE) UNIVERSIDAD DE BALEARES SEPTIEMBRE - 2009 (RESUELTOS por Antonio Menguiano) MATEMÁTICAS II Tiempo máximo: 1 horas y 30 minutos

Siendo M y M’ las matrices de coeficientes y ampliada, respectivamente, que de- terminan los tres planos, según sus rangos, pueden presentarse los seis siguientes casos: Rango M = Rango M’ = 3 → S. C. D. → Los tres planos se cortan en un punto. Rango M = Rango M’ = 2 → S. C. I. → Los tres planos se cortan en una recta. Rango M = Rango M’ = 1 → S. C. I. → Los tres planos son coincidentes.

12 Lee mas

PRUEBA DE ACCESO (LOGSE) UNIVERSIDAD DE BALEARES SEPTIEMBRE - 2008 (RESUELTOS por Antonio Menguiano) MATEMÁTICAS II Tiempo máximo: 1 horas y 30 minutos

PRUEBA DE ACCESO (LOGSE) UNIVERSIDAD DE BALEARES SEPTIEMBRE - 2008 (RESUELTOS por Antonio Menguiano) MATEMÁTICAS II Tiempo máximo: 1 horas y 30 minutos

Se valorará la corrección y la claridad en el lenguaje (matemático o no matemático) em- pleado por el alumno. Penalizan los errores de cálculo. Los errores graves, y especial- mente, aqu[r]

13 Lee mas

PRUEBA DE ACCESO (LOGSE) UNIVERSIDAD DE BALEARES SEPTIEMBRE – 2007 (RESUELTOS por Antonio Menguiano) MATEMÁTICAS II Tiempo máximo: 1 horas y 30 minutos

PRUEBA DE ACCESO (LOGSE) UNIVERSIDAD DE BALEARES SEPTIEMBRE – 2007 (RESUELTOS por Antonio Menguiano) MATEMÁTICAS II Tiempo máximo: 1 horas y 30 minutos

Como quiera que resulta un sistema de dos ecuaciones con cuatro incógnitas es compatible indeterminado, por lo tanto tiene infinitas soluciones.. Existen infinitas matrices [r]

13 Lee mas

PRUEBA DE ACCESO (LOGSE) UNIVERSIDAD DE BALEARES SEPTIEMBRE - 2006 (RESUELTOS por Antonio Menguiano) MATEMÁTICAS II Tiempo máximo: 1 horas y 30 minutos

PRUEBA DE ACCESO (LOGSE) UNIVERSIDAD DE BALEARES SEPTIEMBRE - 2006 (RESUELTOS por Antonio Menguiano) MATEMÁTICAS II Tiempo máximo: 1 horas y 30 minutos

2º) Busca la ecuación implícita o general del plano π que contiene a la recta dada en forma vectorial r ≡ ( x , y , z ) ( = 1 , 2 , − 1 ) ( + k − 1 , 1 , 2 ) y es paralelo a la recta que pasa por los puntos A(0, 1, 2) y B(1, -1, 1). Calcula la distancia al origen de coordenadas del plano π .

12 Lee mas

PRUEBA DE ACCESO (LOGSE) UNIVERSIDAD DE BALEARES SEPTIEMBRE - 2005 (RESUELTOS por Antonio Menguiano) MATEMÁTICAS II Tiempo máximo: 1 horas y 30 minutos

PRUEBA DE ACCESO (LOGSE) UNIVERSIDAD DE BALEARES SEPTIEMBRE - 2005 (RESUELTOS por Antonio Menguiano) MATEMÁTICAS II Tiempo máximo: 1 horas y 30 minutos

MATEMÁTICAS II Tiempo máximo: 1 horas y 30 minutos Contesta de manera clara y razonada una de las dos opciones propuestas. Cada cuestión se puntúa sobre 10 puntos. La calificac[r]

15 Lee mas

PRUEBA DE ACCESO (LOGSE) UNIVERSIDAD DE BALEARES SEPTIEMBRE - 2004 (RESUELTOS por Antonio Menguiano) MATEMÁTICAS II Tiempo máximo: 1 horas y 30 minutos

PRUEBA DE ACCESO (LOGSE) UNIVERSIDAD DE BALEARES SEPTIEMBRE - 2004 (RESUELTOS por Antonio Menguiano) MATEMÁTICAS II Tiempo máximo: 1 horas y 30 minutos

Como puede observarse, la función f(x) cumple las condiciones del teorema, ex- cepto la de ser continua, y en este caso no existe ningún valor del intervalo [ ] a, b para el cual se a[r]

11 Lee mas

PRUEBA DE ACCESO (LOGSE) UNIVERSIDAD DE BALEARES SEPTIEMBRE – 2013 (RESUELTOS por Antonio Menguiano) MATEMÁTICAS II Tiempo máximo: 1 horas y 30 minutos

PRUEBA DE ACCESO (LOGSE) UNIVERSIDAD DE BALEARES SEPTIEMBRE – 2013 (RESUELTOS por Antonio Menguiano) MATEMÁTICAS II Tiempo máximo: 1 horas y 30 minutos

La función f(x) es continua y derivable en su dominio, que es R, por lo cual le es aplicable el teorema de Bolzano a cualquier intervalo real que se considere. Los máximos y mínimos re[r]

14 Lee mas

PRUEBA DE ACCESO (LOGSE) UNIVERSIDAD DE BALEARES SEPTIEMBRE – 2012 (RESUELTOS por Antonio Menguiano) MATEMÁTICAS II Tiempo máximo: 1 horas y 30 minutos

PRUEBA DE ACCESO (LOGSE) UNIVERSIDAD DE BALEARES SEPTIEMBRE – 2012 (RESUELTOS por Antonio Menguiano) MATEMÁTICAS II Tiempo máximo: 1 horas y 30 minutos

Oblicuas: Para que una función racional tenga asíntotas oblicuas es necesario que el grado del numerador sea una unidad mayor que el grado del denominador; como [r]

13 Lee mas

PRUEBA DE ACCESO (LOGSE) UNIVERSIDAD DE CANTABRIA JUNIO - 2000 (RESUELTOS por Antonio Menguiano) MATEMÁTICAS II Tiempo máximo: 1 horas y 30 minutos

PRUEBA DE ACCESO (LOGSE) UNIVERSIDAD DE CANTABRIA JUNIO - 2000 (RESUELTOS por Antonio Menguiano) MATEMÁTICAS II Tiempo máximo: 1 horas y 30 minutos

Debe responderse necesariamente a los tres bloques, escogiendo en cada uno de ellos una sola de las opciones (A o B). 2.- Debe exponerse con claridad el planteamiento [r]

11 Lee mas

PRUEBA DE ACCESO (LOGSE) UNIVERSIDAD DE BALEARES SEPTIEMBRE – 2010 (GENERAL) (RESUELTOS por Antonio Menguiano) MATEMÁTICAS II Tiempo máximo: 1 horas y 30 minutos

PRUEBA DE ACCESO (LOGSE) UNIVERSIDAD DE BALEARES SEPTIEMBRE – 2010 (GENERAL) (RESUELTOS por Antonio Menguiano) MATEMÁTICAS II Tiempo máximo: 1 horas y 30 minutos

Una función tiene un extremo relativo (máximo o mínimo) para los valores que anulan la primera derivada; para diferenciar los máximos de los mínimos se recurre a la segunda derivada: según que sea negativa o positiva para los valores que anulan la pri- mera, se tratará de un máximo o de un mínimo, respectivamente.

12 Lee mas

PRUEBA DE ACCESO (LOGSE) UNIVERSIDAD DE BALEARES SEPTIEMBRE – 2011 (GENERAL) (RESUELTOS por Antonio Menguiano) MATEMÁTICAS II Tiempo máximo: 1 horas y 30 minutos

PRUEBA DE ACCESO (LOGSE) UNIVERSIDAD DE BALEARES SEPTIEMBRE – 2011 (GENERAL) (RESUELTOS por Antonio Menguiano) MATEMÁTICAS II Tiempo máximo: 1 horas y 30 minutos

Si la función tuviera al menos otra raíz real positiva en el intervalo (0, 1), x = β, indicaría que f(β) = 0, con lo cual se podría aplicar a la función f(x) el Teorema de Rolle que dice que: “Si f(x) es una función continua en el intervalo [a, b] y derivable en (a, b) y si se cumple que f(a) = f(b), existe al menos un punto c ∈ ( a , b ) tal que f ' ( ) c = 0 ”.

10 Lee mas

PRUEBA DE ACCESO (LOGSE) UNIVERSIDAD DE CANTABRIA JUNIO - 2008 (RESUELTOS por Antonio Menguiano) MATEMÁTICAS II Tiempo máximo: 1 horas y 30 minutos

PRUEBA DE ACCESO (LOGSE) UNIVERSIDAD DE CANTABRIA JUNIO - 2008 (RESUELTOS por Antonio Menguiano) MATEMÁTICAS II Tiempo máximo: 1 horas y 30 minutos

La condición de continuidad de una función en un punto para que sea derivable es necesaria, pero no suficiente. Por ejemplo, la función f ( ) x = x es continua en x = 0 y, sin embargo, no es derivable para x = 0, por ser sus derivadas laterales por la izquierda y por la derecha –1 y 1, respectivamente.

16 Lee mas

PRUEBA DE ACCESO (LOGSE) UNIVERSIDAD DE CANTABRIA SEPTIEMBRE - 2006 (RESUELTOS por Antonio Menguiano) MATEMÁTICAS II Tiempo máximo: 1 horas y 30 minutos

PRUEBA DE ACCESO (LOGSE) UNIVERSIDAD DE CANTABRIA SEPTIEMBRE - 2006 (RESUELTOS por Antonio Menguiano) MATEMÁTICAS II Tiempo máximo: 1 horas y 30 minutos

En este caso los vértices no son consecutivos, como se aprecia en el dibujo. El área del paralelogramo pedido es de 12 unidades cuadradas.. a ) Estudia, según los valores del parámetro m[r]

13 Lee mas

Show all 10000 documents...

Related subjects