• No se han encontrado resultados

Effects of the chemical characteristics of the water in a future CO 2

641

storage 642

During the ALGECO2 project (IGME, 2010), a favourable tectonic and sedimentary 643

structure for CO2 storage was identified in the studied area (the Leyre-Berdún structure;

644

Suárez et al., 2014) in the Paleocene-Eocene carbonate rocks, which probably is the 645

aquifer of the Tiermas thermal waters. If the features of the waters in that structure are 646

similar to those deduced in the thermal waters, then some important conclusions about 647

some plausible processes effective during the CO2 injection could be drawn. For 648

example, in the vicinity of the injection well, the desiccation of the saline waters in 649

contact with dry CO2 could easily induce the precipitation of carbonates and sulphates 650

(Gaus, 2010; Gimeno et al., 2011; Gutierrez et al., 2011) as the waters at depth are in 651

equilibrium with calcite, dolomite and anhydrite. In the long term, injection of CO2 will 652

promote the acidification of the saline groundwaters, which will lead to the dissolution 653

of carbonate minerals (calcite and dolomite). In this context, precipitation of sulphates 654

(gypsum or anhydrite) may be triggered as the waters are in equilibrium with anhydrite 655

(e.g. with high concentrations of dissolved sulphate). A similar situation has been found 656

in the Spanish test site for CO2 geological storage, located at Hontomin (Burgos), in a 657

limestone reservoir, also with sulphate-rich saline groundwaters in equilibrium with 658

gypsum/anhydrite (García-Ríos et al., 2014).

659

These processes involving carbonate and sulphate minerals are kinetically fast and their 660

effects on the porosity and permeability of the reservoir rocks or in the well 661

environment should be evaluated in future and more detailed site selection studies.

662

6. Conclusions 663

Two hydrogeochemical groups of waters have been identified in Tiermas springs: a 664

group with TDS about 7,500 ppm and low sulphate contents (low-sulphate group) and 665

other with TDS close to 11,000 ppm and higher sulphate contents (high-sulphate 666

group).

667

The temperature of the waters in the reservoir has been determined by combining 668

various chemical and isotopic geothermometers with geothermometrical modelling, and 669

a reliable range of temperatures has been established. The temperatures predicted for the 670

waters are also slightly different for each group; being 90 ± 20 ºC for the low-sulphate 671

group and slightly lower 82 ± 15 ºC for the high-sulphate one.

672

It is remarkable the good results obtained with some cationic geothermometers, such as 673

the Na/K geothermometer, in a geothermal system of low temperature and hosted in 674

carbonate-evaporitic rocks like the studied here. This unusual situation may be 675

attributed to the presence of detrital rocks (silicate minerals) in the carbonate-evaporitic 676

aquifer, which provides for equilibrium between albite and K-feldspar as found in the 677

geothermometrical modelling.

678

The two water groups are in equilibrium with the same mineral assemblage in the 679

reservoir (calcite, dolomite, quartz, anhydrite, albite, K-feldspar and other 680

aluminosilicate phases). However they show slight differences in the temperature at 681

depth and in the concentration of some chemical elements, which suggests that each 682

group of waters could represent a different flow path with different types and/or 683

intensities of water-rock interaction processes.

684

The influence of halite dissolution has also been evaluated and the results indicate that 685

apart from temperature, chloride contents of the thermal waters have a significant 686

influence on the concentrations of SO4, Na, K, Ca and Mg measured in these waters. As 687

demonstrated in the simulations presented here, if halite dissolution had occurred during 688

the ascent of the thermal waters (without the influence of the mineral equilibria at 689

depth) their chemical characteristics would be different. These results, along with the 690

fact that anhydrite is included in the mineral assemblage in equilibrium in the reservoir, 691

indicate that the waters should be in contact with an evaporitic facies in the reservoir 692

and not during their ascent to surface.

693

Finally, as a favourable structure for CO2 storage has recently been identified in the 694

Paleocene-Eocene carbonates, the probable aquifer of the Tiermas geothermal system, 695

the groundwaters studied here could be used as analogues to the waters in that site.

696

Therefore, the results of this study are useful for understanding the main processes 697

related to the CO2 injection and mixing with this type of water. Near the injection wells, 698

the waters will desiccate causing the precipitation of calcite, dolomite and anhydrite, 699

since the waters are in equilibrium with respect to these phases in the reservoir, 700

affecting the porosity and permeability of the rocks. And in the long term, the water will 701

acidify leading to the carbonate dissolution and sulphate precipitation.

702

7. Acknowledgements 703

M. Blasco is working in this study thanks to a scholarship from the Ministry of 704

Education, Culture and Sports of Spain, for the Training of University Teachers (ref.

705

FPU14/01523). This study forms part of the activities of the Geochemical Modelling 706

Group (University of Zaragoza; Aragón Government). The comments of Dr. M.H. Reed 707

and of an anonymous reviewer have contributed to improve the work and are gratefully 708

appreciated.

709

Appelo, C.A.J. and Postma, D. (2005). Geochemistry, Groundwater and Pollution. 2nd 711

Edition. Rotterdam: A.A. Balkema.

712

Arnorsson, S., Gunnlaugsson, E. and Svavarsson, H. (1983). The chemistry of 713

geothermal waters in Iceland. III. Chemical geothermometry in geothermal 714

investigations. Geochimica et Cosmochimica Acta, 47, 567-577.

715

Asta, M.P, Gimeno, M.J., Auqué, L.F., Gómez, J., Acero, P. and Lapuente, P. (2010).

716

Secondary processes determining the pH of alkaline waters in crystalline rock 717

systems.Chemical Geology, 276, 41-52.

718

Auqué, L.F. (1993). Estudio de sistemas geotermales en Aragón. Pautas de especiación 719

y reacción aplicadas a la modelización de sistemas de baja - media entalpía.

720

Doctoral Thesis. Zaragoza, Spain: University of Zaragoza.

721

Ayora, C., Garcia-Veigas, J. and Puevo, J. (1994). The chemical and hydrological 722

evolution of an ancient potash-forming evaporite basin as constrained by mineral 723

sequence, fluid inclusion compostion and numerical simulation. Geochimica et 724

Cosmochimica Acta, 58, 3779-3794.

725

Ayora, C., Taberner, C., Pierre, C. and Pueyo J.J. (1995). Modeling the sulfur and 726

oxygen isotopic composition of sulfates through a halite-potash sequence:

727

Implications for the hydrological evolution of the Upper Eocene South Pyrenean 728

Basin. Geochimica et Cosmochimica Acta, 59, 1799 - 1808.

729

Awaleh, M.O., Hoch, F.B., Boschetti, T., Soubaneh, Y.D., Egueh, N.M, Elmi, S.K., 730

Mohamed, J. and Khaireh, M.A. (2015). The geotermal resources of the 731

Republic of Djibouti - II: Geochemical study of the Lake Abhe geothermal field.

732

Journal of Geochemical Exploration, 159, 129-147.

733

Baeza, J., Torreano, R. and Cerezuela, M.A. (2000). Estudio para caracterizar, evaluar y 734

proteger las aguas minerales y termales de una comunidad: Aragón. In: J.A.

735

López Geta and J.L. Pinuaga (Eds.), Panorama actual de las aguas minerales y 736

minero-medicinales en España. Madrid: Instituto Geológico y Minero de España 737

(IGME). pp. 283-303.

738

Bauluz, B., González, J.M., Yuste, A. and Mayayo, M.J. (2008). Evolución Diagenética 739

de las Turbiditas del Grupo Hecho (Eoceno) en la Cuenca de Jaca (España).

740

Revista de la sociedad española de mineralogía (Macla), 9, 47-48.

741

Boschetti, T. (2013). Oxygen isotope equilibrium in sulfate-water systems: A revisión 742

of geothermometric applications in low-enthalpy systems. Journal of 743

Geochemical Exploration, 124, 92-100.

744

Boschetti, T., Giampiero, V., Toscani, L., Barbieri, M. and Mucchino, C. (2005). The 745

Bagni di Lucca termal waters (Tuscany, Italy): an example of Ca-SO4 waters 746

with high Na/Cl and low Ca/SO4 ratios. Journal of Hydrology, 307, 270-293.

747

Boschetti, T., Cortecci, G., Toscani, L. and Iacumin, P. (2011). Sulfur and oxygen 748

isotope compositions of Upper Triassic sulfates from northern Apennines (Italy):

749

paleogeographic and hydrogeochemical implications. Geologica Acta, 9 (2), 750

129-147.

751

Brenninkmeijer, C.A.M., Kraft, P. and Mook, W.G. (1983). Oxygen isotope 752

fractionation between CO2 and H2O. Isotope Geoscience, 1, 181-190.

753

Chiba, H., Kusakabe, M., Hirano, S.I, Matsuo, S. and Somiya, A. (1981). Oxygen 754

isotope fractionation factors between anhydrite and water from 100 to 550°C.

755

Earth and Planetary Science Letters, 53, 55-62.

756

Chiodini, G., Cioni, R., Guidi, M. and Marini, L. (1991). Chemical geothermometry 757

and geobarometry in hydrothermal aqueous solutions: A theoretical investigation 758

based on a mineral-solution equilibrium model. Geochimica et Coscmochimica 759

Acta, 55, 2709-2727.

760

Chiodini, G., Frondini, F. and Marini, L. (1995). Theoretical geothermometers and 761

pCO2 indicators for aqueous solutions coming from hydrothermal systems of 762

medium-low temperature hosted in carbonate-evaporite rocks. Application to the 763

thermal springs of the Etruscan Swell. Italy. Applied Geochemistry, 10, 337-346.

764

Clark, I. and Fritz, P. (1997). Environmental Isotopes in Hydrogeology. Boca -Raton 765

(Florida): CRC Press/Lewis Publishers.

766

Consulnima S.L. (2011). Informe piezómetro de Romanzado: 090.031.001. Inspección 767

y vigilancia de las obras de Construcción de sondeos para la Adecuación de las 768

Redes de Piezometría y Calidad de las Aguas Subterráneas. Cuenca del Ebro.

769

Zaragoza: Confederación Hidrográfica del Ebro.

770

Craig, H. (1961). Isotopic variations in meteoric waters. Science, 133, 1702-1703.

771

D´Amore, F., Fancelli, R. and Caboi, R. (1987). Observations of the application of 772

chemical geothermometers to some hydrothermal systems in Sardinia.

773

Geothermics, 16, 271-282.

774

D’Amore F. and Arnórsson S. (2000). Geothermometry. In: Arnórsson S., (Ed.), 775

Isotopic and chemical techniques in geothermal exploration, development and 776

use (pp. 152-199). Vienna: International Atomic Agency.

777

Deines, P., Languir, D. and Harmon, R.S. (1974). Stable carbon isotope ratios and the 778

existence of a gas phase in the evolution of carbonate ground water. Geochimica 779

et Cosmochimica Acta, 38, 1147-1168.

780

Díaz-Teijeiro, M. F., Rodríguez-Arévalo, J. and Castaño, S (2009). La Red Española de 781

Vigilancia de Isótopos en la Precipitación (REVIP): distribución isotópica 782

espacial y aportación al conocimiento del ciclo hidrológico. Ingeniería Civil, 783

155, 87-97.

784

Faci, E. (Dir.) (1997). Cartografía Geológica de Navarra. E, 1:25000. Hoja 175-I:

785

Tiermas. Navarra: Gobierno de Navarra. Departamento de Obras Públicas, 786

Transportes y Comunicaciones.

787

Fernández, J., Auqué, L.F. Sánchez Cela, V.S. and Guaras, B. (1988). Las aguas 788

termales de Fitero (Navarra) y Arnedillo (Rioja). Análisis comparativo de la 789

aplicación de técnicas geotermométricas químicas a aguas relacionadas con 790

reservorios carbonatado-evaporíticos. Estudios geológicos, 44, 453-469.

791

Fournier, R.O. (1977). Chemical geothermometers and mixing models for geothermal 792

systems. Geothermics, 5, 41-50.

793

Fournier, R.O. (1979). A revised equation for the Na-K geothermometer. Geothermal 794

Resources Council Transactions, 3, 221-224.

795

Fournier, R.O. (1982). Water geothermometers applied to geothermal energy. In: (F.

796

D’Amore, Co-ordinator) Applications of Geochemistry in Geothermal reservoir 797

Development. UNITAR/UNDO centre on Small Energy Resources: Rome. pp.

798

37-69.

799

Fournier, R.O. and Truesdell, A.H. (1973). An empirical Na-K-Ca geothermometer for 800

natural waters. Geochimica et Cosmochimica Acta, 37, 1255-1275.

801

Fournier, R.O. and Potter, R.W. (1982). An equation correlating the solubility of quartz 802

in water from 25 to 900°C at pressures up to 10000 bars. Geochimica et 803

Cosmochimica Acta, 46, 1975-1978.

804

Friedman, I. and O'Neil, J.R. (1977). Compilation of stable isotope fractionation factors 805

of geochemical interest. In: M. Fleischer (Ed.), Data on Geochemistry (6th ed.).

806

Chapter KK. USGS Professional Paper 440-KK. Washington: United States 807

Government Printing Office.

808

Garcia-Rios, M., Cama, J., Luquot, L. and Soler, J.M. (2014). Interaction between CO2 -809

rich sulfate solutions and carbonate reservoir rocks from atmospheric to 810

supercritical CO2 conditions: Experiments and modeling. Chemical Geology, 811

383, 107-122.

812

Gaus, I. (2010). Role and impact of CO2-rock interactions during CO2 storage in 813

sedimentary rocks. International Journal of Greenhouse Gas Control, 4, 73-89.

814

Giggenbach, W., Gonfiantini, R., Jangi, B.L. and Truesdell, A.H. (1983). Isotopic and 815

chemical composition of Parbati valley geothermal discharges, N.W. Himalaya.

816

India. Geothermics, 12, 199‑222.

817

Giggenbach, W.F. (1988). Geothermal solute equilibria. Derivation of Na-K-Mg-Ca 818

geoindicators. Geochimica et Cosmochimica Acta, 52, 2749-2765.

819

Gimeno, M.J., Acero, P., Gutiérrez, V, Auqué, L.F., Asta, M.P. & Gómez, J.B. (2011).

820

Evaluation of thermodynamic data and activity coefficient models for the 821

geochemical modeling of CO2 storage systems. Mineralogical Magazine, 75(3):

822

918.

823

Grimaud, D,, Beaucaire, C. and Michard, G. (1990). Modelling of the evolution of 824

ground waters in a granite system at low temperature: the Stripa ground waters, 825

Sweden. Applied Geochemistry, 5, 515-525.

826

Gupta, K.D. and Pickering, K. T. (2008). Petrography and temporal changes in 827

petrofacies of deep-marine Aínsa-Jaca basin sandstone systems, Early and 828

Middle Eocene, Spanish Pyrenees. Sedimentology, 55, 1083-1114.

829

Gutiérrez, V., Acero, P., Auqué, L.F., Gimeno, M.J. (2011). Modelización geoquímica 830

de la evolución del entorno de un pozo de inyección de CO2 y evaluación de 831

condicionantes termodinámicos. Macla, 15.

832

Halas, S. and Pluta, I. (2000). Empirical calibration of isotope thermometer δ18O 833

(SO42−)-δ18O (H2O) for low temperature brines, In: V Isotope Workshop.

834

Kraków, Poland. pp. 68-71.

835

Hanor, J.S. (1994). Physical and chemical controls on the composition of waters in 836

sedimentary basins. Marine and Petroleum Geology, 11, 31-45.

837

Hanor, J.S. (1996). Variations of chloride as a driving force in siliciclastic diagenesis.

838

Siliciclastic Diagenesis and Fluid Flow: Concepts and applications, SEPM 839

Special Publication, 55, 3-12.

840

Hanor, J.S. (2001). Reactive transport involving rock-buffered fluids of varying 841

salinity. Geochmica et Cosmochimica Acta, 65, 3721-3732.

842

Helgeson, H.C. (1970). Description and interpretation of phase relations in geochemical 843

processes involving aqueous solutions. American Journal of Science, 268, 415-844

438.

845

Helgeson, H.C., Delany, J.M., Nesbitt, H.W. and Bird, D.K. (1978). Summary and 846

critique of the thermodynamic properties of rock-forming minerals. American 847

Journal of Science, 278ª.

848

IGME (1973). Mapa Geológico de España. E. 1:50000. Hoja 175: Sigües. Madrid:

849

Instituto Geológico y Minero de España (IGME).

850

IGME (2010). Selección y caracterización de áreas y estructuras geológicas favorables 851

para el almacenamiento geológico de CO2 en España.

852

http://info.igme.es/algeco2/ (accessed 21-03-2016).

853

ITGE-DGA (1994). Estudio de las aguas minero-medicinales, minero-industriales, 854

termales y de bebida envasada en la Comunidad Autónoma de Aragón. Madrid:

855

Instituto Geológico y Minero de España (IGME).

856

Jiménez, M. (1838). Tratado de materia farmacéutica (2ª ed.). Madrid: Imprenta de la 857

Viuda de Sanchiz e hijos.

858

Kharaka, Y.K. and Mariner, R.H. (1989). Chemical geothermometers from water-859

mineral equilibria. In: Abstracts of the 28th International Geological Congress 860

(vol. 2), Washington D.C. pp. 184-185.

861

Larrasoaña, J.C., Pueyo, E.I., del Valle, J., Millán, H., Pocoví, A. and Dinarés, J.

862

(1996). Datos magnetotectónicos del Eoceno de la Cuenca de Jaca - Pamplona:

863

resultados iniciales. Geogaceta, 30, 1058-1061.

864

Lloyd, R.M. (1968). Oxygen isotope behaviour in the sulfate-water system. Journal of 865

Geophysical Research, 73, 6099-6110.

866

López-Chicano, M., Cerón, J.C., Vallejos, A. and Pulido-Bosch, A. (2001).

867

Geochemistry of thermal springs, Alhama de Granada (southern Spain). Applied 868

Geochemistry, 16, 1153-1163.

869

Marini, L. (2004). Geochemical techniques for the exploration and exploitation of 870

geothermal energy. Genova: Laboratorio di Geochimica, Università degli Studi 871

di Genova.

872

Marini, L. Chidioni, G. and Cioni, R. (1986). New geothermometers for carbonate-873

evaporite geothermal reservoirs. Geothermics, 15, 77-86.

874

Marini, L., Bonaria, V., Guidi, M., Hunziker, J.C., Ottonello, G., and Vetuschi 875

Zuccolini, M. (2000). Fluid geochemistry of the Acqui Terme-Visone 876

geothermal area (Piemonte, Italy). Applied Geochemistry, 15, 917-935.

877

Merino, E. and Ramson, B. (1982). Free energies of formation of illite solid solutions 878

and their compositional dependence. Clays and Clay Minerals, 30, 29-39.

879

Mey, P.H.W., Nagtegaal, P.J.C., Roberti, K.J. and Hartevelt, J.J.A. (1968).

880

Lithostratigraphic subdivision of post-hercynian deposits in the south-central 881

Pyrenees, Spain. Leidse Geologische Mededelingen, 41, 221-228.

882

Michard, G. (1979). Géothermomètres chimiques. B.R.G.M. (2nd Ser.), section III, 2, 883

183-189.

884

Michard, G. (1987). Controls of the chemical composition of geothermal waters. In:

885

H.C. Helgeson (ed.), Chemical Transport in Metasomatic Processes (pp. 323-886

Michard, G. and Fouillac, C. (1980). Contrôle de la composition chimique des eaux 888

thermals sulfurées sodiques du Sud de la France. In: Tardy, Y. (Ed.), 889

Geochimique des interactions entre les eaux, les minéraux et les roches.

890

Elements: Tarbes, pp. 147-166.

891

Michard, G. and Roekens, E. (1983). Modeling of the chemical composition of alkaline 892

hot waters. Geothermics, 12, 161-169.

893

Michard, G., Sanjuan, B., Criaud, A., Fouillac, C., Pentcheva, E.N., Petrov, P.S. and 894

Alexieva, R. (1986). Equilibra and geothermometry in hot waters from granites 895

of SW Bulgaria. Geochemical Journal, 20, 159-171.

896

Michard, G. and Bastide, J.P. (1988). Etude Geochimique de la nappe du Dogger du 897

Bassin Parisien. Journal of Volcanology and Geothermal Research, 35, 151-163.

898

Michard, G., Pearson, F.J.Jr. and Gautschi, A. (1996). Chemical evolution of waters 899

during long term interaction with granitic rocks in northern Switzerland. Applied 900

Geochemistry, 11, 757-774.

901

Mizutani, Y. and Rafter, T.A. (1969). Oxygen isotopic composition of sulphates. 3.

902

Oxygen isotopic fractionation in the bisulfate ion-water system. New Zeland 903

Journal of Science, 12, 54-59.

904

Mook, W.G., Bommerson, J.C. and Staverman, W.H. (1974). Carbon isotope 905

fractionation between dissolved bicarbonate and gaseous carbon dioxide. Earth 906

and Planetary Science Letters, 22, 169-176.

907

Nordstrom, D.K., Ball, J.W., Donahoe, R.J. and Whittemore, D. (1989). Groundwater 908

chemistry and water-rock interactions at Stripa. Geochimica et Cosmochimica 909

Acta, 53, 1727-1740.

910

Nordstrom, D. K., Plummer, L. N., Langmuir, L., Busenberg, E., May, H. M., Jones, B.

911

F. and Parkhurst, D. L. (1990). Revised chemical equilibrium data for major 912

water-mineral reactions and their limitation. In: Melchior, D.C. and Basset, R.L.

913

(Eds.), Chemical Modeling of Aqueous Systems II. Symposium Series 416.

914

Washington DC: American Chemical Society. pp. 398-413.

915

Oliva, B., Millán, H., Pocoví, A. and Casas A.M. (1996). Estructura de la Cuenca de 916

Jaca en el sector occidental de las Sierras Exteriores Aragonesas. Geogaceta, 20, 917

800-802.

918

Olivia-Urcia, B., Casas, A.M., Pueyo, E.L. and Pocoví-Juan, A. (2012). Structural and 919

paleomagnetic evidence for non-rotanional kinematics of the South Pyrenean 920

Frontal Thrust at the western termination of the External Sierras (southwestern 921

central Pyrenees). Geologica Acta, 10, 125-144.

922

O’Neil, J.R. and Adami, L. H. (1969). The oxygen isotope partition function ratio of 923

water and the structure of liquid water. Journal of Physical Chemistry, 73 (5), 924

1553-1558.

925

Palandri, J.L. and Reed M.H. (2001). Reconstruction of in situ composition of 926

sedimentary formation waters. Geochimica et Cosmochimica Acta, 65, 1741-927

1767.

928

Pang, Z. and Reed, M.H. (1998). Theoretical chemical thermometry on geothermal 929

waters: Problems and methods. Geochimica et Cosmochimica Acta, 62, 1083-930

1091.

931

Parkhurst, D.L. and Appelo, C.A.J. (2013). Description of Input and Examples for 932

PHREEQC Version 3. A Computer Program for Speciation, Batch‐Reaction, 933

Geological Survey (Ed.). Techniques and Methods, book 6, chap. A43, Denver, 935

Colorado: U.S.G.S., available only at http://pubs.usgs.gov/tm/06/a43.

936

Pastorelli, S., Marini, L. and Hunziker, J.C. (1999). Water chemistry and isotope 937

composition of the Acquarossa thermal system, Ticino, Switzerland.

938

Geothermics, 28, 75-93.

939

Payros, A., Orue-Etxebarria, X., Bacera, J.I. and Pujalte, V. (1994). Las 940

“megaturbiditas” y otros depósitos de resedimentación carbonatada a gran escala 941

del Eoceno surpirenaico: nuevos datos del área Urrobi-Ultzama (Navarra).

942

Geogaceta, 16, 94-97.

943

Peiffer, L., Wanner, C., Spycher, N., Sonnenthal, E.L., Kennedy, B.M., Iovenitti, J.

944

(2014). Optimized multicomponent vs. classical geothermometry: Insights from 945

modeling studies at the Dixie Valley geothermal area. Geothermics, 51, 154-946

169.

947

Pueyo, E.L., Calvin, P., Casas, A.M., Olivia-Ucria, B., Klimowitz, J., Garcia-Lobón, 948

J.L., Rubio, F.M., Ibarra, P.I., Martínez-Duran, P., Rey-Moral, M.C., Pérez, I.

949

and Martín, J. M. (2012). A research plan for a large potential CO2 reservoir in 950

the Southern Pyrenees. Geotemas, 13, 1970-1973.

951

Puigdefàbregas, C. (1975). La sedimentación molásica en la cuenca de Jaca. Pirineos, 952

104.

953

Reed, M. and Spycher, N. (1984). Calculation of pH and mineral equilibria in 954

hydrothermal waters with application to geothermometry and studies of boiling 955

and dilution. Geochimica et Cosmochimica Acta, 48, 1479-1492.

956

Sáenz, C. (1999). Patrimonio geológico del Camino de Santiago. Madrid: Instituto 957

Tecnológico GeoMinero de España.

958

Sánchez Guzmán, J. and García de la Noceda, C. (2005). Geothermal Energy 959

Development in Spain - Country Update Report. In: Proceedings World 960

Geothermal Congress 2005. Antalya, Turkey. pp. 1-10 961

Sánchez, J.A. (2000). Las aguas termales en Aragón: Estudio hidrogeotérmico.

962

Zaragoza: Consejo de Protección de la Naturaleza de Aragón.

963

Sánchez, J.A., Coloma, P., Pérez-García, A. and De Leiva, A. (2000). Evaluación del 964

flujo geotérmico en manantiales de Aragón. Geogaceta, 27, 155-158.

965

Sánchez, J.A., Colom, P. and Pérez-García, A. (2004). Evaluation of geothermal flow at 966

the springs in Aragón (Spain), and its relation to geologic structure.

967

Hydrogeology Journal, 12, 601-609.

968

Saura, E. and Teixell, A. (2006). Inversion of small basins: effects on structural 969

variations at the leading edge of the Axial Zone antiformal stack (Southern 970

Pyrenees, Spain). Journal of Structural Geology, 28, 1909-1920.

971

Seal, R.R.I., Alpers, C.N. and Rye, R.O. (2000). Stable isotope systematics of sulfate 972

minerals. In: C.N. Alpers, J.L. Jambor, and D.K Nordstrom, D.K. (Eds.), Sulfate 973

Minerals — Crystallography: Geochemistry and Environmental Significance 974

(pp. 541-602). Chantilly (Virginia): Mineral Society of America.

975

Spycher, N., Peiffer, L., Sonnenthal, E.L., Saldi, G., Reed, M.H.; Kennedy, B.M.

976

(2014). Integrated multicomponent solute geothermometry. Geothermics, 51, 977

113-123.

978

Suárez, I., Arenillas, A., Medaito, J.F., García, J., Molinero, R. and Catalina, R. (2014).

979

Atlas de estructuras del subsuelo susceptibles de almacenamiento geológico de 980

CO2 en España. Madrid: Instituto Geológico y Minero de España (IGME).

981

Instituto para la Reestructuración de la Minería del carbón y desarrollo 982

Alternativo de las Comarcas Mineras.

983

Tole, M.P., Armannsson, H., Pang, Z. and Arnorsson, S. (1993). Fluid/mineral 984

equilibrium calculations for geothermal fluids and chemical geothermometry.

985

Geothermics, 22, 17-37.

986

Trotignon L., Beaucaire, C., Louvat, D. and Aranyossy, J.F. (1999). Equilibrium 987

geochemical modelling of Äspö groundwaters: a sensitivity study of 988

thermodynamic equilibrium constants. Applied Geochemistry, 14, 907-916.

989

Truesdell, A.H. (1974) Oxygen isotope activities and concentrations in aqueous salt 990

solutions at elevated temperatures: Consequences for isotope geochemistry.

991

Earth Planet Science Letters, 23, 387-396.

992

Truesdell, A.H. (1976). Geochemical Techniques in Exploration. Summary of Section 993

III. In: Proceedings of the Second United Nations Symposium on the 994

Development and Use of Geothermal Resources. San Francisco, California. pp.

995

iii-xxix 996

Utrilla, R., Pierre, C., Ortí, F., Rosell, L., Inglés, M. and Pueyo, J.J. (1987). Estudio 997

isotópico de los sulfatos en formaciones evaporíticas mesozoicas y terciarias 998

continentales. In: II Congreso de Geoquímica de España. Soria. pp. 91-94.

999

Wang, J., Jin, M., Jia, B. and Kang, F. (2015). Hydrochemical characteristics and 1000

geothermometry applications of thermal groundwater in northern Jinan, 1001

Shandong, China. Geothermics, 57, 185-195.

1002

Zeebe, R.E. (2010). A new value for the stable oxygen isotope fractionation between 1003

dissolved sulfate ion and water. Geochimica et Cosmochimica Acta, 74, 818-1004

828.

1005

Zheng, Y.F. (1999). Oxygen isotope fractionation in carbonate and sulfate minerals.

1006

Geochemical Journal, 33, 109-126.

1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022

1023

Figure 1 1024

1025

Figure 2 1026

1027

1028

1029

Figure 3 1030

1031

1032

1034

Figure 5 1035

1036

Figure 6 1037

1038 1039 1040 1041 1042 1043 1044

1045

Figure 7 1046

1047 1048 1049

Figure captions 1050

Figure 1. Location of the Tiermas geothermal system and geological map of the area (modified from Oliva-Urcia et

1051

al., 2012).

1052

Figure 2. Cross section showing the general structure of the Jaca-Pamplona Basin and the location of Tiermas

1053

Springs (modified from ALGECO2 project: http://info.igme.es/algeco2/; IGME, 2010).

1054

Figure 3. δ2H – δ18O diagram showing the isotopic composition of sample T1, two samples from the Yesa Reservoir

1055

(one taken in 1985 and the other in 2012, this last one still unpublished) and one sample from a borehole in Tiermas

1056

from the study performed by Baeza et al. (2000). The Global Meteoric Water Line (GMWL), the Regional Meteoric

1057

Water Line (RMWL) and Local Meteoric Water Line (LMWL) are also represented.

1058

Figure 4. Location of all the samples in the Giggenbach diagram. The dotted line is calculated with the Na-K

1059

Fournier (1979) calibration and with the Giggenbach (1988) one for Mg-K; the solid line is calculated with Na-K and

1060

Mg-K calibrations of Giggenbach (1988). If the dotted line is considered, the samples of the group 2 are close of

1061

being fully equilibrated.

1062

Figure 5. Evolution with temperature of the saturation indices of the minerals supposed to be in equilibrium with the

1063

water of samples T1 (a) and B1 (b) in the reservoir. These results were obtained after the theoretical CO2 addition to

water of samples T1 (a) and B1 (b) in the reservoir. These results were obtained after the theoretical CO2 addition to

Documento similar