• No se han encontrado resultados

Algorithms

Some algorithms of this thesis in Wolfram language.

On-axis stigmatic collector singlet lens

1 (∗ parameters ∗)

2 za[ra ]:=−raˆ2/(4∗50);

3

4 f [ ra ]:=−ta+n t+tb+Sign[ta] Sqrt[raˆ2+(ta−za[ra]) ˆ2];

5

6 \[Tau][ ra ]:= za[ra]−t−tb;

7

8 \[CurlyRho]z[ra ]:=(( zaˆ\[Prime])[ra] (ra+(−ta+za[ra]) (zaˆ\[Prime])[ra ]) )/(−Sign[ta]n Sqrt[raˆ2+(

ta−za[ra])ˆ2] (1+((zaˆ\[Prime])[ra ]) ˆ2) )+Sqrt[1−(ra+(−ta+za[ra]) (zaˆ\[Prime])[ra]) ˆ2/( nˆ2 (ra ˆ2+(ta−za[ra])ˆ2) (1+((zaˆ\[Prime])[ra ]) ˆ2) ) ]/ Sqrt[1+((zaˆ\[Prime])[ra ]) ˆ2];

9

10 \[CurlyRho]r[ra ]:=( ra+(−ta+za[ra]) (zaˆ\[Prime])[ra ]) /(−Sign[ta]n Sqrt[raˆ2+(ta−za[ra])ˆ2] (1+((

zaˆ\[Prime])[ra ]) ˆ2) )−((zaˆ\[Prime])[ra] Sqrt[1−(ra+(−ta+za[ra]) (zaˆ\[Prime])[ra]) ˆ2/( nˆ2 (ra ˆ2+(ta−za[ra])ˆ2) (1+((zaˆ\[Prime])[ra ]) ˆ2) ) ]) /Sqrt[1+((zaˆ\[Prime])[ra ]) ˆ2];

11

12 \[CurlyTheta][ra ]:=(−n f [ ra]−ra

13 \[CurlyRho]r[ra]−\[CurlyRho]z[ra] \[Tau][ra]+Sign[n]Sign[tb]Sqrt[(n f [ ra]+ra \[CurlyRho]r[ra]+\[

CurlyRho]z[ra] \[Tau][ra ]) ˆ2−(1−nˆ2) (raˆ2−f[ra]ˆ2+\[Tau][ra ]ˆ2) ]) /(1−nˆ2)

14

15 zb[ra ]:= za[ra]+\[CurlyTheta][ra ]\[ CurlyRho]z[ra];

16 rb[ ra ]:= ra+\[CurlyTheta][ra ]\[ CurlyRho]r[ra ];

17

18 (∗ Define system configuration’s ∗)

19 n = 1.5;

20 t = 5;

21 ta = −60;

22 tb = 60;

23 Rmax = 12.5;

24 zb[0]

25

26 (∗ System plot ∗)

27 g1 =Plot[{za[ra ]}, {ra, −Rmax, Rmax}, PlotStyle −> {Black},

28 AspectRatio −> Automatic, AxesLabel −> {r, z}];

29 g2 =ParametricPlot[{rb[ra], zb[ra ]}, {ra, −Rmax, Rmax},

30 AspectRatio −> 1/1, AxesOrigin −> {0, 0}, PlotStyle −> {Black},

90

31 Mesh −> None];

32 Show[g1, g2, PlotRange −> All]

On-axis stigmatic collimator singlet lens

1 (∗ parameters ∗)

2 za[ra ]:=−raˆ2/(4∗50);

3

4 \[CurlyRho]z[ra ]:=(( zaˆ\[Prime])[ra] (ra+(−ta+za[ra]) (zaˆ\[Prime])[ra ]) )/(−Sign[ta]n Sqrt[raˆ2+(

ta−za[ra])ˆ2] (1+((zaˆ\[Prime])[ra ]) ˆ2) )+Sqrt[1−(ra+(−ta+za[ra]) (zaˆ\[Prime])[ra]) ˆ2/( nˆ2 (ra ˆ2+(ta−za[ra])ˆ2) (1+((zaˆ\[Prime])[ra ]) ˆ2) ) ]/ Sqrt[1+((zaˆ\[Prime])[ra ]) ˆ2];

5

6 \[CurlyRho]r[ra ]:=( ra+(−ta+za[ra]) (zaˆ\[Prime])[ra ]) /(−Sign[ta]n Sqrt[raˆ2+(ta−za[ra])ˆ2] (1+((

zaˆ\[Prime])[ra ]) ˆ2) )−((zaˆ\[Prime])[ra] Sqrt[1−(ra+(−ta+za[ra]) (zaˆ\[Prime])[ra]) ˆ2/( nˆ2 (ra ˆ2+(ta−za[ra])ˆ2) (1+((zaˆ\[Prime])[ra ]) ˆ2) ) ]) /Sqrt[1+((zaˆ\[Prime])[ra ]) ˆ2];

7

8 \[CurlyTheta][ra ]:=((−1+n)t−ta+za[ra]+Sign[ta]Sqrt[raˆ2+ (za[ra]−ta) ˆ2]) /( n−\[CurlyRho]z[ra]);

9 zb[ra ]:= za[ra]+\[CurlyTheta][ra ]\[ CurlyRho]z[ra];

10 rb[ ra ]:= ra+\[CurlyTheta][ra ]\[ CurlyRho]r[ra ];

11

12 (∗ Define system configuration’s ∗)

13 n = 1.5;

14 t = 5;

15 ta = −60;

16 Rmax = 15;

17 zb[0]

18

19 (∗ System plot ∗)

20 g1 =Plot[{za[ra ]}, {ra, −Rmax, Rmax}, PlotStyle −> {Black},

21 AspectRatio −> Automatic, AxesLabel −> {r, z}];

22 g2 =ParametricPlot[{rb[ra], zb[ra ]}, {ra, −Rmax, Rmax},

23 AspectRatio −> 1/1, AxesOrigin −> {0, 0}, PlotStyle −> {Black},

24 Mesh −> None];

25 Show[g1, g2, PlotRange −> All]

On-axis stigmatic singlet lens infinite object finite image

1 (∗ parameters ∗)

2 za[ra ]:=Module[{h},h=−raˆ2/(4∗50)];

3

4 f [ ra ]:=Module[{h},h=n t+tb−za[ra]];

5

6 \[Tau][ ra ]:= Module[{h},h=za[ra]−t−tb];

7

8 \[CurlyRho]z[ra ]:=Module[{h},h=(zaˆ\[Prime])[ra]ˆ2/(n+n (zaˆ\[Prime])[ra]ˆ2)+Sqrt[1+(−1+1/(1+(za ˆ\[Prime])[ra]ˆ2))/nˆ2]/Sqrt[1+(zaˆ\[Prime])[ra ]ˆ2]];

9

10 \[CurlyRho]r[ra ]:= Module[{h},h=(zaˆ\[Prime])[ra] (1/(n+n (zaˆ\[Prime])[ra]ˆ2)−Sqrt[1+(−1+1/(1+(

zaˆ\[Prime])[ra]ˆ2))/nˆ2]/Sqrt[1+(zaˆ\[Prime])[ra ]ˆ2]) ];

11

12 \[CurlyTheta][ra ]:= Module[{h},h=(−n f[ra]−ra \[CurlyRho]r[ra]−\[CurlyRho]z[ra] \[Tau][ra]+Sign[n]

Sign[tb]Sqrt[(n f[ra]+ra \[CurlyRho]r[ra]+\[CurlyRho]z[ra] \[Tau][ra ]) ˆ2−(1−nˆ2) (raˆ2−f[ra ]ˆ2+\[Tau][ra ]ˆ2) ]) /(1−nˆ2)]

13

14 zb[ra ]:=Module[{h},h=za[ra]+\[CurlyTheta][ra]\[CurlyRho]z[ra]];

15

16 rb[ ra ]:=Module[{h},h=ra+\[CurlyTheta][ra]\[CurlyRho]r[ra]];

17

18 (∗ Define system configuration’s ∗)

19 n = 1.5;

20 t = 5;

21 tb = 60;

22 Rmax = 18.5;

23 zb[0]

24

25 (∗ System plot ∗)

26 g1 =Plot[{za[ra ]}, {ra, −Rmax, Rmax}, PlotStyle −> {Black},

27 AspectRatio −> Automatic, AxesLabel −> {r, z}];

28 g2 =ParametricPlot[{rb[ra], zb[ra ]}, {ra, −Rmax, Rmax},

29 AspectRatio −> 1/1, AxesOrigin −> {0, 0}, PlotStyle −> {Black},

30 Mesh −> None];

31 Show[g1, g2, PlotRange −> All]

Single-lens telescope

1 (∗ parameters ∗)

2 za[ra ] := raˆ2/80;

3 4

5 \[CurlyRho]z[ra ] :=

6 Derivative[1][za ][ ra ]ˆ2/( n + n Derivative[1][za ][ ra ]ˆ2) + Sqrt[(

7 nˆ2 + (−1 + nˆ2)Derivative[1][za ][ ra ]ˆ2) /(

8 nˆ2 (1 +Derivative[1][za ][ ra ]ˆ2) ) ]/ Sqrt[

9 1 +Derivative[1][za ][ ra ]ˆ2];

10 11

12 \[CurlyRho]r[ra ] := −((

13 Derivative[1][za ][

14 ra ] (−1 +

15 n Sqrt[1 + Derivative[1][za ][ ra ]ˆ2] Sqrt[(

16 nˆ2 + (−1 + nˆ2)Derivative[1][za ][ ra ]ˆ2) /(

17 nˆ2 (1 +Derivative[1][za ][ ra ]ˆ2) ) ]) ) /(

18 n (1 +Derivative[1][za ][ ra ]ˆ2) ) ) ;

19

20 \[CurlyTheta][ra ] := ((−1 + n) t ) /( n − \[CurlyRho]z[ra])

21

22 zb[ra ] := za[ra ] + \[CurlyTheta][ra] \[CurlyRho]z[ra];

23

24 rb[ ra ] := ra + \[CurlyTheta][ra] \[CurlyRho]r[ra ];

25

26 (∗ Define system configuration’s ∗)

27 n = 1.5;

28 t = 15;

29 Rmax = 20;

30 zb[0]

31

32 (∗ System plot ∗)

33 g1 =Plot[{za[ra ]}, {ra, −Rmax, Rmax}, PlotStyle −> {Black},

34 AspectRatio −> Automatic, AxesLabel −> {r, z}];

35 g2 =ParametricPlot[{rb[ra], zb[ra ]}, {ra, −Rmax, Rmax},

36 AspectRatio −> 1/1, AxesOrigin −> {0, 0}, PlotStyle −> {Black},

37 Mesh −> None];

38 Show[g1, g2, PlotRange −> All]

On-axis stigmatic triplet lens

1 <<MaTeX‘

2 3 n0=1;

4 n1=1.5;

5 n2=1;

6 n3=1.5;

7 n4=1;

8 9 f1=60;

10 f2=80;

11 f3=−70;

12

13 t0=−50;

14 t1=8;

15 t2=11;

16 t3=9;

17 t4=90;

18 t=t1+t2+t3+t4;

19

20 step=0.05; (∗0.05∗)

21 rmax=17.5;

22 density=1;

23 d=22;

24

25 Z1[R1 ]:=R1ˆ2/(4f1);

26

27 na[ra ]:=Sqrt[Z1’[ra ]ˆ2+1];

28

29 Zz2[R2 ]:=t1−R2ˆ2/(4f2);

30

31 Zz3[R3 ]:=t1+t2−(R3)ˆ2/(4f3 ) ;

32

33 z1=Table[Z1[R1],{R1,step,Floor[rmax],step}];

34

35 dz1=Table[Z1’[R1],{R1,step,Floor[rmax],step}];

36

37 r1=Table[R1,{R1,step,Floor[rmax],step}];

38

39 zz2=Table[Zz2[R2],{R2,step,Floor[rmax],step}];

40

41 zz3=Table[Zz3[R3],{R3,step,Floor[rmax],step}];

42 43 44

45 L1=Join[Reverse[Table[{z1[[i]],r1[[ i ]]},{ i ,1, Length[z1]}]],List [{0,0}], Table[{z1[[ i ]],− r1 [[ i ]]},{ i ,1,Length[z1]}]];

46

47 \[CurlyRho]z1=(n0(dz1(r1+(−t0+z1) dz1)))/(n1 Sqrt[r1ˆ2+(t0−z1)ˆ2] (1+(dz1)ˆ2))+Sqrt[1−(n0ˆ2 (r1 +(−t0+z1) dz1)ˆ2)/(n1ˆ2 (r1ˆ2+(t0−z1)ˆ2) ((1+(dz1)ˆ2)))]/Sqrt[(1+(dz1)ˆ2)];

48

49 \[CurlyRho]r1=(n0(r1+(−t0+z1) dz1))/(n1 Sqrt[r1ˆ2+(t0−z1)ˆ2] (1+(dz1)ˆ2))−(dz1 Sqrt[1−(n0ˆ2 (r1 +(−t0+z1) dz1)ˆ2)/(n1ˆ2 (r1ˆ2+(t0−z1)ˆ2) ((1+(dz1)ˆ2)))])/Sqrt[(1+(dz1)ˆ2)];

50

51 \[CurlyTheta]1=1/\[CurlyRho]r1ˆ2 (−r1 \[CurlyRho]r1−2 f2 \[CurlyRho]z1+2 Sqrt[f2] Sqrt[\[

CurlyRho]r1ˆ2 (t1−z1)+r1 \[CurlyRho]r1 \[CurlyRho]z1+f2 \[CurlyRho]z1ˆ2]);

52

53 r2=r1+\[CurlyTheta]1 \[CurlyRho]r1;

54

55 z2=z1+\[CurlyTheta]1 \[CurlyRho]z1;

56

57 L2=Join[Reverse[Table[{Re[z2[[i]]],Re[r2[[i ]]]},{ i ,1, Length[z2]}]],List[{ t1 ,0}], Table[{Re[z2[[i ]]],−Re[r2[[ i ]]]},{ i ,1, Length[z2]}]];

58

59 dr21=ListConvolve[{1,−1},r2]/ListConvolve[{1,−1},r1];

60

61 dr2=Join[dr21,{Last[dr21]}];

62

63 dz21=ListConvolve[{1,−1},z2]/ListConvolve[{1,−1},r1];

64

65 dz2=Join[dz21,{Last[dz21]}];

66

67 \[CurlyRho]r2=−((n1 dr2((r1−r2) dr2+(z1−z2)dz2))/(n2 Sqrt[(r1−r2)ˆ2+(z1−z2)ˆ2] (dr2ˆ2+dz2ˆ2)))

−(dz2 Sqrt[1−(n1ˆ2 ((r1−r2) dr2+(z1−z2)dz2)ˆ2)/(n2ˆ2 ((r1−r2)ˆ2+(z1−z2)ˆ2) (dr2ˆ2+dz2ˆ2))])/

Sqrt[(dr2ˆ2+dz2ˆ2)];

68

69 \[CurlyRho]z2=−((n1 dz2 ((r1−r2) dr2+(z1−z2)dz2))/(n2 Sqrt[(r1−r2)ˆ2+(z1−z2)ˆ2] (dr2ˆ2+dz2ˆ2))) +(dr2Sqrt[1−(n1ˆ2 ((r1−r2) dr2+(z1−z2)dz2)ˆ2)/(n2ˆ2 ((r1−r2)ˆ2+(z1−z2)ˆ2) (dr2ˆ2+dz2ˆ2))])/

Sqrt[(dr2ˆ2+dz2ˆ2)];

70

71 \[CurlyTheta]2=1/\[CurlyRho]r2ˆ2 (−r2 \[CurlyRho]r2−2 f3 \[CurlyRho]z2+2 Sqrt[f3] \[Sqrt]((t1+t2−

z2) \[CurlyRho]r2ˆ2+r2 \[CurlyRho]r2 \[CurlyRho]z2+f3 \[CurlyRho]z2ˆ2));

72

73 r3=r2+\[CurlyTheta]2 \[CurlyRho]r2;

74

75 z3=z2+\[CurlyTheta]2 \[CurlyRho]z2;

76

77 L3=Join[Reverse[Table[{Re[z3[[i]]],Re[r3[[i ]]]},{ i ,1, Length[z3]}]],List[{ t1+t2 ,0}], Table[{Re[z3[[i ]]],−Re[r3[[ i ]]]},{ i ,1, Length[z3]}]];

78

79 dr31=ListConvolve[{1,−1},r3]/ListConvolve[{1,−1},r1];

80

81 dr3=Join[dr31,{Last[dr31]}];

82

83 dz31=ListConvolve[{1,−1},z3]/ListConvolve[{1,−1},r1];

84

85 dz3=Join[dz31,{Last[dz31]}];

86

87 \[CurlyRho]r3=−((n2 dr3((r2−r3) dr3+(z2−z3) dz3))/(n3 Sqrt[(r2−r3)ˆ2+(z2−z3)ˆ2] ((dr3)ˆ2+(dz3)ˆ2) ))−(dz3Sqrt[1−(n2ˆ2 ((r2−r3) dr3+(z2−z3) dz3)ˆ2)/(n3ˆ2 ((r2−r3)ˆ2+(z2−z3)ˆ2)((dr3)ˆ2+(dz3) ˆ2))])/Sqrt[((dr3)ˆ2+(dz3)ˆ2)];

88

89 \[CurlyRho]z3=−((n2 dz3 ((r2−r3) dr3+(z2−z3) dz3))/(n3 Sqrt[(r2−r3)ˆ2+(z2−z3)ˆ2] ((dr3)ˆ2+(dz3) ˆ2)))+(dr3Sqrt[1−(n2ˆ2 ((r2−r3) dr3+(z2−z3) dz3)ˆ2)/(n3ˆ2 ((r2−r3)ˆ2+(z2−z3)ˆ2)((dr3)ˆ2+(dz3) ˆ2))])/Sqrt[((dr3)ˆ2+(dz3)ˆ2)];

90

91 F=−n0 t0+n1 t1+n2 t2+n3 t3+n4 t4−(n0Sqrt[r1ˆ2+(−t0+z1)ˆ2]+n1 Sqrt[(−r1+r2)ˆ2+(−z1+z2)ˆ2]+n2 Sqrt[(−r2+r3)ˆ2+(−z2+z3)ˆ2]);

92

93 \[CurlyTheta]3=1/(n3ˆ2−n4ˆ2) (F n3+n4ˆ2 (r3 \[CurlyRho]r3+(−t+z3) \[CurlyRho]z3)−1/2 \[Sqrt](−4 (−n3ˆ2+n4ˆ2) (−Fˆ2+n4ˆ2 (r3ˆ2+(t−z3)ˆ2))+4 (F n3+n4ˆ2 (r3 \[CurlyRho]r3+(−t+z3) \[CurlyRho ]z3))ˆ2));

94

95 r4=r3+\[CurlyTheta]3 \[CurlyRho]r3;

96

97 z4=z3+\[CurlyTheta]3 \[CurlyRho]z3;

98

99 L4=Join[Reverse[Table[{Re[z4[[i]]],Re[r4[[i ]]]},{ i ,1, Length[z4]}]],List[{ t1+t2+t3 ,0}], Table[{Re[z4 [[i ]]],−Re[r4[[ i ]]]},{ i ,1, Length[z4]}]];

100

101 dr41=ListConvolve[{1,−1},r4]/ListConvolve[{1,−1},r1];

102 dr4=Join[dr41,{Last[dr41]}];

103

104 dz41=ListConvolve[{1,−1},z4]/ListConvolve[{1,−1},r1];

105 dz4=Join[dz41,{Last[dz41]}];

106

107 \[CurlyRho]r4=−((n3 dr4((r3−r4) dr4+(z3−z4) dz4))/(n4 Sqrt[(r3−r4)ˆ2+(z3−z4)ˆ2] ((dr4)ˆ2+(dz4)ˆ2) ))−(dz4Sqrt[1−(n3ˆ2 ((r3−r4) dr4+(z3−z4) dz4)ˆ2)/(n4ˆ2 ((r3−r4)ˆ2+(z3−z4)ˆ2)((dr4)ˆ2+(dz4) ˆ2))])/Sqrt[((dr4)ˆ2+(dz4)ˆ2)];

108

109 \[CurlyRho]z4=−((n3 dz4 ((r3−r4) dr4+(z3−z4) dz4))/(n4 Sqrt[(r3−r4)ˆ2+(z3−z4)ˆ2] ((dr4)ˆ2+(dz4) ˆ2)))+(dr4Sqrt[1−(n3ˆ2 ((r3−r4) dr4+(z3−z4) dz4)ˆ2)/(n4ˆ2 ((r3−r4)ˆ2+(z3−z4)ˆ2)((dr4)ˆ2+(dz4) ˆ2))])/Sqrt[((dr4)ˆ2+(dz4)ˆ2)];

110

111 Surface := {ParametricPlot[{raˆ2/(4 f1), ra}, {ra, −rmax, rmax},

112 PlotStyle −> {Black}, Axes −> False,

113 PlotRange −> {{−60, 130}, {−1.5 rmax, 1.5 rmax}}],

114 ParametricPlot[{t1 − raˆ2/(4 f2) , ra}, {ra, L2 [[1, 2]],

115 L2[[Length[L2], 2]]}, PlotStyle −> {Black}],

116 ParametricPlot[{t1 + t2 − raˆ2/(4 f3) , ra}, {ra, L3 [[1, 2]],

117 L3[[Length[L3], 2]]}, PlotStyle −> {Black}], ListLinePlot[{L4}],

118 Graphics[{Black,

119 Line[{{rmaxˆ2/(4 f1), rmax}, {rmaxˆ2/(4 f2), rmax}}]}]}

120

121 Show[Surface, ImageSize −> {1280, Automatic}]

Off-axis stigmatic singlet lens

1 (∗ parameters ∗)

2 za[ra ]:=Module[{h},h=raˆ2/100];

3

4 \[CurlyRho]r0[ra ]:=Module[{h},h=−ha/(n Sqrt[(ha)ˆ2+(ta)ˆ2])]

5

6 \[CurlyRho]z0[ra ]:=Module[{h},h=Sqrt[1−(−ha)ˆ2/(nˆ2 ((ha)ˆ2+(ta)ˆ2))]]

7

8 f [ ra ]:=Module[{h},h=Sqrt[(ta)ˆ2+(ha)ˆ2]+n t+Sqrt[(\[CurlyRho]r0[ra]t−hb)ˆ2+(tb)ˆ2]−Sqrt[(ra−ha) ˆ2+(za[ra]−ta)ˆ2]];

9

10 \[Tau][ ra ]:= Module[{h},h=za[ra]−t \[CurlyRho]z0[ra]−tb];

11

12 \[CurlyRho]r[ra ]:= Module[{h},h=(−ha+ra+(−ta+za[ra]) (zaˆ\[Prime])[ra])/(n Sqrt[(ha−ra)ˆ2+(ta−za [ra])ˆ2] (1+((zaˆ\[Prime])[ra])ˆ2) )−((zaˆ\[Prime])[ra] Sqrt[1−(−ha+ra+(−ta+za[ra]) (zaˆ\[Prime ])[ra])ˆ2/(nˆ2 ((ha−ra)ˆ2+(ta−za[ra])ˆ2) (1+((zaˆ\[Prime])[ra ]) ˆ2) ) ]) /Sqrt[1+((zaˆ\[Prime])[ra ])

ˆ2]];

13

14 \[CurlyRho]z[ra ]:=Module[{h},h=((zaˆ\[Prime]) [ra](−ha+ra+(−ta+za[ra]) (zaˆ\[Prime])[ra]))/(n Sqrt[(ha−ra)ˆ2+(ta−za[ra])ˆ2] (1+((zaˆ\[Prime])[ra ]) ˆ2) )+ Sqrt[1−(−ha+ra+(−ta+za[ra]) (zaˆ\[

Prime])[ra])ˆ2/(nˆ2 ((ha−ra)ˆ2+(ta−za[ra])ˆ2) (1+((zaˆ\[Prime])[ra ]) ˆ2) ) ]/ Sqrt[1+((zaˆ\[Prime])[

ra ]) ˆ2]];

15

16 \[CurlyTheta][ra ]:= Module[{h},h=(−n f[ra]−(ra−hb) \[CurlyRho]r[ra]−\[CurlyRho]z[ra] \[Tau][ra]+

s1Sqrt[(n f[ra]+(ra−hb)\[CurlyRho]r[ra]+\[CurlyRho]z[ra] \[Tau][ra ]) ˆ2−(1−nˆ2) ((ra−hb)ˆ2−f[

ra]ˆ2+\[Tau][ra]ˆ2) ]) /(1−nˆ2)]

17

18 zb[ra ]:=Module[{h},h=za[ra]+\[CurlyTheta][ra]\[CurlyRho]z[ra]];

19

20 rb[ ra ]:=Module[{h},h=ra+\[CurlyTheta][ra]\[CurlyRho]r[ra]];

21

22 (∗ Define system configuration’s ∗)

23 s1=1;

24 n=1.5;

25 t=10;

26 ta=−20;

27 tb=25;

28 ha=5;

29 hb=−3;

30 Rmax=14;

31 Sqrt[(zb[0]−za[0])ˆ2+(rb[0]−0)ˆ2]

32

33 (∗ System plot ∗)

34 g1=Plot[{za[ra]},{ra,−Rmax,Rmax},PlotStyle−>{Black},AspectRatio−>Automatic,AxesLabel

−>{r,z}];

35

36 g2=ParametricPlot[{rb[ra],zb[ra]},{ra,−Rmax,Rmax},AspectRatio−>1/1, AxesOrigin−>{0,0}, PlotStyle−>{Black}, Mesh −>None];

37 Show[g1,g2,PlotRange−>All]

Conclusions

In conclusion, this doctoral work found not only the general equation of stigmatic lenses but also a new methodology for optical design. This methodology is purely analytical free of approximations and iterations, it is entirely based on Fermat’s principle. The myth of the nonexistence of a stigmatic lens collapsed and at the same time. The uniqueness of stigmatic solutions was demonstrated. This study opens a new paradigm in optical design, which nat-urally generated a lot of work and implications. We study rotationally symmetrical stigmatic lenses, free-form lenses, free-form axicons, stigmatic telescopes, stigmatic systems with an arbitrary number of refractive surfaces, off-axis aberration-free systems, lenses that meet the Abbe sine condition for each ray. There are other implications in the conclusions of this work, but only the time will tell who they are.

The following list shows the works carried out and published during my period as a doctoral student.

Books:

1. Rafael G. Gonz´alez-Acu ˜na, H´ector Chaparro Romo and Julio Guiterrez-Vega, Analyt-ical Lens Design, Institute of Physics Publishing, April 2020.

2. Rafael G. Gonz´alez-Acu ˜na and H´ector Chaparro Romo, Stigmatic Optics, Institute of Physics Publishing, Oct 2020.

3. Rafael G. Gonz´alez-Acu ˜na, H´ector Chaparro Romo and Israel Mel´endez Optics and Artificial Vision, Institute of Physics Publishing, Dec 2020.

Papers:

1. Rafael G. Gonz´alez-Acu ˜na, Julio Guiterrez-Vega, Generalization of axicons shape:

the gaxicon, Journal of the Optical Society of America A, 2018.

2. Rafael G. Gonz´alez-Acu ˜na, H´ector Chaparro Romo, General formula for bi-aspheric singlet lens design free of spherical aberration, Applied Optics, 2018. Editor’s picks.

3. Rafael G. Gonz´alez-Acu ˜na, Abundio Davila, Julio Guiterrez-Vega, Optical flow of non-integer order in particle image velocimetry techniques, Singal Processing, 2019.

97

4. Rafael G. Gonz´alez-Acu ˜na, H´ector Chaparro Romo, Julio Guiterrez-Vega, General formula for freeform lens free of spherical aberrations and astigmatisim, Applied Op-tics, 2019.

5. Rafael G. Gonz´alez-Acu ˜na, Maximino Avenda˜no-Alejo, Julio Guiterrez-Vega, Singlet lens for generating aberration-free patterns on deformed surfaces, Journal of the Opti-cal Society of America A, 2019.

6. Rafael G. Gonz´alez-Acu ˜na, Julio C. Guitierrez-Vega, Analytic formulation of a refractive-reflective telescope free of spherical aberration, Optical Engineering, 2019.

7. Rafael G. Gonz´alez-Acu ˜na, Julio C. Guitierrez-Vega, General formula to eliminate spherical aberration produced by an arbitrary number of lenses, Optical Engineering, 2019.

8. Rafael G. Gonz´alez-Acu ˜na, Julio C. Guitierrez-Vega, A transition integral transform obtained by the generalization of the Fourier transform, Ain Shams Engineering Jour-nal, 2019.

9. Rafael G. Gonz´alez-Acu ˜na, Julio C. Guitierrez-Vega, Analytic design of a spherochro-matic singlet, Journal of the Optical Society of America A, 2020.

10. Rafael G. Gonz´alez-Acu ˜na, H´ector Chaparro Romo, Julio C. Guitierrez-Vega, Ana-lytic aplanatic singlet lens: setting and design for three point objects and images in the meridional plane, Optical Engineering, 2020.

11. Rafael G. Gonz´alez-Acu ˜na, H´ector Chaparro Romo, Julio C. Guitierrez-Vega, Ana-lytic solution of the eikonal for a stigmatic singlet lens, Physica Scripta, 2020.

12. Rafael G. Gonz´alez-Acu ˜na, Michelle C. Rocha, Julio C. Guitierrez-Vega, Freeform axicon with azimuthal variation, Journal of Modern Optics, 2020.

13. Rafael G. Gonz´alez-Acu ˜na, H´ector Chaparro Romo, Julio C. Guitierrez-Vega, Exact equations for stigmatic singlet design meeting the Abbe sine condition, Optics Commu-nications, 2020.

14. Rafael G. Gonz´alez-Acu ˜na, H´ector Chaparro Romo, Julio C. Guitierrez-Vega, Unique-ness of stigmatic solutions, Journal of the Optical Society of America A, 2020.

Proceedings:

1. Rafael G. Gonz´alez-Acu ˜na, Julio Guiterrez-Vega; General formula for aspheric col-limator lens design free of spherical aberrationCurrent Developments in Lens Design and Optical Engineering XX, July, 2019 San Diego, USA.

2. Rafael G. Gonz´alez-Acu ˜na, Julio Guiterrez-Vega; General formula of the refractive telescope design free spherical aberration Novel Optical Systems, Methods, and Ap-plications XXII, July, 2019 San Diego, USA.

3. Rafael G. Gonz´alez-Acu ˜na, Julio Guiterrez-Vega; General formula for freeform colli-mator lens design free of spherical aberration and astigmatisimNovel Optical Systems, Methods, and Applications XXII, July, 2019 San Diego, USA.

4. Rafael G. Gonz´alez-Acu ˜na, Julio Guiterrez-Vega; Analytical solution to the Wasserman-Wolf problemX Iberoamerican Optics Meeting, September, 2019 Cancun, Mexico.

5. Rafael G. Gonz´alez-Acu ˜na, Julio Guiterrez-Vega; Analytical solution to Levi-Civita problemX Iberoamerican Optics Meeting, September, 2019 Cancun, Mexico.

6. Rafael G. Gonz´alez-Acu ˜na, Julio Guiterrez-Vega; The entrance pupil of an on-axis stigmatic singlet lens Current Developments in Lens Design and Optical Engineering XXI, September, 2020 San Diego, USA.

7. Rafael G. Gonz´alez-Acu ˜na, Julio Guiterrez-Vega; Analytic formulation of a sphe-rochromatic collimator lensCurrent Developments in Lens Design and Optical Engi-neering XXI, September, 2020 San Diego, USA.

[1] R. G. Gonz´alez-Acu˜na and H. A. Chaparro-Romo, “General formula for bi-aspheric singlet lens design free of spherical aberration,” Appl. Opt. 57, 9341–9345 (2018).

[2] B. Vitrac, “Euclid,” The Encyclopedia of Ancient History (2013).

[3] R. Descartes, De la nature des lignes courbes (1637).

[4] R. Descartes, The Geometry of Rene Descartes: With a facsimile of the first edition (Courier Corporation, 2012).

[5] R. G. Gonz´alez-Acu˜na, H. A. Chaparro-Romo, and J. C. Guti´errez-Vega, Analytical Lens Design, 2053-2563 (IOP Publishing, 2020).

[6] C. Brownson, “Euclid’s optics and its compatibility with linear perspective,” Archive for history of Exact Sciences 24, 165–194 (1981).

[7] T. L. Heath et al., The thirteen books of Euclid’s Elements (Courier Corporation, 1956).

[8] I. Mueller, “Philosophy of mathematics and deductive structure of euclid’s” elements”,”

(1981).

[9] C. Thomas-Stanford, Early editions of Euclid’s Elements, 20 (Bibliographical society, 1926).

[10] R. Hartshorne, Geometry: Euclid and beyond (Springer Science & Business Media, 2013).

[11] G. J. Toomer, Apollonius: Conics Books V to VII: The Arabic Translation of the Lost Greek Original in the Version of the Ban¯u M¯us¯a, vol. 9 (Springer Science & Business Media, 2012).

[12] G. J. Toomer, Diocles, On Burning Mirrors: The Arabic Translation of the Lost Greek Original, vol. 1 (Springer Science & Business Media, 2012).

[13] H. Bellosta, “Burning instruments: From diocles to ibn sahl,” Arab. Sci. Philos. 12, 285–303 (2002).

[14] J. F. Scott, The Scientific Work of Ren´e Descartes: 1596-1650 (Routledge, 2016).

[15] M. Serfati, “Ren´e descartes, g´eom´etrie, latin edition (1649), french edition (1637),” in

“Landmark Writings in Western Mathematics 1640-1940,” (Elsevier, 2005), pp. 1–22.

100

[16] A. E. Bell, Christian Huygens (Read Books Ltd, 2012).

[17] C. Huygens, Trait´e de la lumi`ere:... (chez Pierre vander Aa, marchand libraire, 1920).

[18] I. Newton, Opticks, or, a treatise of the reflections, refractions, inflections & colours of light(Courier Corporation, 1979).

[19] F. J. Dijksterhuis, Lenses and waves: Christiaan Huygens and the mathematical science of optics in the seventeenth century, vol. 9 (Springer Science & Business Media, 2004).

[20] T. Levi-Civita, Complementi al teorema di Malus-Dupin: nota (Tipografia della R. Ac-cademia dei Lincei, 1900).

[21] R. G. G.-A. na and J. C. Guti´errez-Vega, “General formula to eliminate spherical aber-ration produced by an arbitrary number of lenses,” Opt. Eng. 58, 1 – 6 (2019).

[22] R. G. Gonz´alez-Acu˜na and J. C. Guti´errez-Vega, “Analytic formulation of a refractive-reflective telescope free of spherical aberration,” Opt. Eng. 58, 085105 (2019).

[23] R. G. Gonz´alez-Acu˜na, H. A. Chaparro-Romo, and J. C. Gut´ıerrez-Vega, “Single lens telescope,” arXiv preprint arXiv:1903.11129 (2019).

[24] R. G. G. Acu˜na and J. C. Guti´errez-Vega, “General formula to design freeform colli-mator lens free of spherical aberration and astigmatism,” in “Novel Optical Systems, Methods, and Applications XXII,” , vol. 11105 (International Society for Optics and Photonics, 2019), vol. 11105, p. 111050A.

[25] R. G. Gonz´alez-Acu˜na and J. C. Guti´errez-Vega, “General formula of the refractive tele-scope design free spherical aberration,” in “Novel Optical Systems, Methods, and Appli-cations XXII,” , vol. 11105, C. F. Hahlweg and J. R. Mulley, eds., International Society for Optics and Photonics (SPIE, 2019), vol. 11105, pp. 162 – 166.

[26] R. G. Gonz´alez-Acu˜na and J. C. Guti´errez-Vega, “General formula for aspheric col-limator lens design free of spherical aberration,” in “Current Developments in Lens Design and Optical Engineering XX,” , vol. 11104, R. B. Johnson, V. N. Mahajan, and S. Thibault, eds., International Society for Optics and Photonics (SPIE, 2019), vol.

11104, pp. 181 – 184.

[27] R. G. Gonz´alez-Acu˜na and J. C. Guiti´errez-Vega, “Generalization of the axicon shape:

the gaxicon,” J. Opt. Soc. Am. A 35, 1915–1918 (2018).

[28] R. G. Gonz´alez-Acu˜na, M. Avenda˜no-Alejo, and J. C. Guti´errez-Vega, “Singlet lens for generating aberration-free patterns on deformed surfaces,” J. Opt. Soc. Am. A 36, 925–

929 (2019).

[29] R. G. Gonz´alez-Acu˜na, H. A. Chaparro-Romo, and J. C. Guti´errez-Vega, “General for-mula to design freeform singlet free of spherical aberration and astigmatism,” Appl. Opt.

58, 1010–1015 (2019).

[30] J.-B. Volatier and G. Druart, “Differential method for freeform optics applied to two-mirror off-axis telescope design,” Opt. Lett. 44, 1174–1177 (2019).

[31] B. A. Hristov, “Analytical solution of Wassermann-Wolf differential equations for opti-cal system aplanatism,” in “Holography 2005: International Conference on Holography, Optical Recording, and Processing of Information,” , vol. 6252 (International Society for Optics and Photonics, 2006), vol. 6252, p. 625213.

[32] E. Wolf and W. Preddy, “On the determination of aspheric profiles,” Proc. Phys. Soc. 59, 704 (1947).

[33] E. Wolf, “On the designing of aspheric surfaces,” Proc. Phys. Soc. 61, 494 (1948).

[34] G. Forbes, “Characterizing the shape of freeform optics,” Opt. Express 20, 2483–2499 (2012).

[35] E. Muslimov, E. Hugot, W. Jahn, S. Vives, M. Ferrari, B. Chambion, D. Henry, and C. Gaschet, “Combining freeform optics and curved detectors for wide field imaging: a polynomial approach over squared aperture,” Opt. Express 25, 14598–14610 (2017).

[36] I. Kaya, K. P. Thompson, and J. P. Rolland, “Comparative assessment of freeform poly-nomials as optical surface descriptions,” Opt. Express 20, 22683–22691 (2012).

[37] A. Bauer and J. P. Rolland, “Design of a freeform electronic viewfinder coupled to aber-ration fields of freeform optics,” Opt. Express 23, 28141–28153 (2015).

[38] M. A. Moiseev, L. L. Doskolovich, and N. L. Kazanskiy, “Design of high-efficient freeform led lens for illumination of elongated rectangular regions,” Opt. Express 19, A225–A233 (2011).

[39] K. Fuerschbach, J. P. Rolland, and K. P. Thompson, “Extending nodal aberration the-ory to include mount-induced aberrations with application to freeform surfaces,” Opt.

Express 20, 20139–20155 (2012).

[40] G. Forbes, “Fitting freeform shapes with orthogonal bases,” Opt. Express 21, 19061–

19081 (2013).

[41] Z. Feng, B. D. Froese, R. Liang, D. Cheng, and Y. Wang, “Simplified freeform optics design for complicated laser beam shaping,” Appl. Opt. 56, 9308–9314 (2017).

[42] Y. Ding, X. Liu, Z.-r. Zheng, and P.-f. Gu, “Freeform led lens for uniform illumination,”

Opt. Express 16, 12958–12966 (2008).

[43] J.-J. Chen, T.-Y. Wang, K.-L. Huang, T.-S. Liu, M.-D. Tsai, and C.-T. Lin, “Freeform lens design for led collimating illumination,” Opt. Express 20, 10984–10995 (2012).

[44] Z. Zhenrong, H. Xiang, and L. Xu, “Freeform surface lens for led uniform illumination,”

Appl. Opt. 48, 6627–6634 (2009).

[45] Y. Zhong and H. Gross, “Initial system design method for non-rotationally symmet-ric systems based on gaussian brackets and nodal aberration theory,” Opt. Express 25, 10016–10030 (2017).

[46] F. Fang, X. Zhang, A. Weckenmann, G. Zhang, and C. Evans, “Manufacturing and mea-surement of freeform optics,” CIRP Annals 62, 823–846 (2013).

[47] O. Cakmakci, B. Moore, H. Foroosh, and J. P. Rolland, “Optimal local shape description for rotationally non-symmetric optical surface design and analysis,” Opt. Express 16, 1583–1589 (2008).

[48] J. C. Mi˜nano, P. Ben´ıtez, P. Zamora, M. Buljan, R. Mohedano, and A. Santamar´ıa, “Free-form optics for fresnel-lens-based photovoltaic concentrators,” Opt. Express 21, A494–

A502 (2013).

[49] G. Forbes, “Robust, efficient computational methods for axially symmetric optical as-pheres,” Opt. Express 18, 19700–19712 (2010).

[50] G. Forbes, “Shape specification for axially symmetric optical surfaces,” Opt. Express 15, 5218–5226 (2007).

[51] K. Fuerschbach, J. P. Rolland, and K. P. Thompson, “Theory of aberration fields for general optical systems with freeform surfaces,” Opt. Express 22, 26585–26606 (2014).

[52] Y. Zhong and H. Gross, “Vectorial aberrations of biconic surfaces,” J. Opt. Soc. Am. A 35, 1385–1392 (2018).

[53] D. Malacara, “Two lenses to collimate red laser light,” Appl. Opt. 4, 1652–1654 (1965).

[54] D. Malacara-Hern´andez and Z. Malacara-Hern´andez, Handbook of optical design (CRC Press, 2016).

[55] R. K. Luneburg and M. Herzberger, Mathematical theory of optics (University of Cali-fornia Press, 1964).

[56] J. Lefaivre, “A new approach in the analytical study of the spherical aberrations of any order,” J. Opt. Soc. Am. A 41, 647–647 (1951).

[57] G. Wassermann and E. Wolf, “On the theory of aplanatic aspheric systems,” Proc. Phys.

Soc. Section B 62, 2 (1949).

[58] M. Born and E. Wolf, Principles of optics: electromagnetic theory of propagation, in-terference and diffraction of light(Elsevier, 2013).

[59] A. S. Glassner, An introduction to ray tracing (Elsevier, 1989).

[60] R. Kingslake and R. B. Johnson, Lens design fundamentals (academic press, 2009).

[61] M. Bass, Handbook of optics, Volume I: Fundamentals techniques and Design (McGraw-Hill, Inc., 1995).

[62] H. Sun, Lens Design: A Practical Guide (Crc Press, 2016).

[63] J. Chaves, Introduction to nonimaging optics, second edition (CRC press, 2016).

[64] F. Duerr, P. Ben´ıtez, J. C. Minano, Y. Meuret, and H. Thienpont, “Analytic design method for optimal imaging: coupling three ray sets using two free-form lens profiles,”

Opt. Express 20, 5576–5585 (2012).

[65] W. P. McCray, “Stargazer: The life and times of the telescope,” (2006).

[66] J. Nagar, S. Campbell, and D. Werner, “Apochromatic singlets enabled by metasurface-augmented grin lenses,” Optica 5, 99–102 (2018).

[67] O. Dross, R. Mohedano, P. Benitez, J. C. Minano, J. Chaves, J. Blen, M. Hernandez, and F. Munoz, “Review of sms design methods and real-world applications,” in “Nonimaging Optics and Efficient Illumination Systems,” , vol. 5529 (International Society for Optics and Photonics, 2004), vol. 5529, pp. 35–48.

[68] R. Winston, J. C. Mi˜nano, P. G. Benitez et al., Nonimaging optics (Elsevier, 2005).

[69] J. C. Mi˜nano, P. Ben´ıtez, W. Lin, F. Mu˜noz, J. Infante, and A. Santamar´ıa, “Overview of the sms design method applied to imaging optics,” in “Novel Optical Systems De-sign and Optimization XII,” , vol. 7429 (International Society for Optics and Photonics, 2009), vol. 7429, p. 74290C.

[70] W. Lin, P. Ben´ıtez, J. Mi˜nano, J. Infante, and G. Biot, “Advances in the sms design method for imaging optics,” in “Optical Design and Engineering IV,” , vol. 8167 (Inter-national Society for Optics and Photonics, 2011), vol. 8167, p. 81670M.

[71] O. N. Stavroudis, The mathematics of geometrical and physical optics: the k-function and its ramifications(John Wiley & Sons, 2006).

[72] B. Braunecker, R. Hentschel, and H. J. Tiziani, Advanced optics using aspherical ele-ments, vol. 173 (SPIE Press, 2008).

[73] O. N. Stavroudis and D. P. Feder, “Automatic computation of spot diagrams,” J. Opt.

Soc. Am. A 44, 163–170 (1954).

[74] O. Stavroudis, The optics of rays, wavefronts, and caustics, vol. 38 (Elsevier, 2012).

[75] G. Schulz, “Achromatic and sharp real imaging of a point by a single aspheric lens,”

Appl. Opt. 22, 3242–3248 (1983).

[76] T. Yang, G.-F. Jin, and J. Zhu, “Automated design of freeform imaging systems,” Light:

Science & Applications 6, e17081 (2017).

[77] J. C. V. Estrada, ´A. H. B. Calle, and D. M. Hern´andez, “Explicit representations of all refractive optical interfaces without spherical aberration,” J. Opt. Soc. Am. A 30, 1814–

1824 (2013).

[78] J. C. Valencia-Estrada, R. B. Flores-Hern´andez, and D. Malacara-Hern´andez, “Singlet lenses free of all orders of spherical aberration,” Proc. R. Soc. A 471, 20140608 (2015).

[79] J. C. Valencia-Estrada and D. Malacara-Doblado, “Parastigmatic corneal surfaces,”

Appl. Opt. 53, 3438–3447 (2014).

[80] M. Avenda˜no-Alejo, E. Rom´an-Hern´andez, L. Casta˜neda, and V. I. Moreno-Oliva, “Ana-lytic conic constants to reduce the spherical aberration of a single lens used in collimated light,” Appl. Opt. 56, 6244–6254 (2017).

[81] G. Castillo-Santiago, M. Avenda˜no-Alejo, R. D´ıaz-Uribe, and L. Casta˜neda, “Analytic aspheric coefficients to reduce the spherical aberration of lens elements used in colli-mated light,” Appl. Opt. 53, 4939–4946 (2014).

[82] E. M. Vaskas, “Note on the wasserman-wolf method for designing aspheric surfaces,” J.

Opt. Soc. Am. A 47, 669–670 (1957).

[83] P. D. Lin and C.-Y. Tsai, “Determination of unit normal vectors of aspherical surfaces given unit directional vectors of incoming and outgoing rays: reply,” J. Opt. Soc. Am. A 29, 1358–1358 (2012).

[84] D. Korsch, “Closed form solution for three-mirror telescopes, corrected for spherical aberration, coma, astigmatism, and field curvature,” Appl. Opt. 11, 2986–2987 (1972).

[85] Y. B. Pierre, “The design and construction of large optical telescopes,” (2003).

[86] S. Hanany and D. P. Marrone, “Comparison of designs of off-axis gregorian telescopes for millimeter-wave large focal-plane arrays,” Appl. Opt. 41, 4666–4670 (2002).

[87] S. K. Saha, Diffraction-limited imaging with large and moderate telescopes (World Sci-entific, 2007).

[88] A. Romano and R. Cavaliere, Geometric Optics: Theory and Design of Astronomical Optical Systems Using Mathematica (Birkh¨auser, 2016).R

[89] C. W. Baker, Introduction to Topology (Krieger Pub., 1991).

[90] A. H. Wallace, Differential topology: first steps (Courier Corporation, 2006).

[91] E. Kreyszig, Introductory functional analysis with applications, vol. 1 (wiley New York, 1978).

[92] H. S. M. Coxeter, Non-euclidean geometry (Cambridge University Press, 1998).

[93] D. Hestenes, New foundations for classical mechanics, vol. 15 (Springer Science &

Business Media, 2012).

[94] D. Hestenes and G. Sobczyk, Clifford algebra to geometric calculus: a unified language for mathematics and physics, vol. 5 (Springer Science & Business Media, 2012).

[95] I. Newton, Opticks, or, a treatise of the reflections, refractions, inflections & colours of light(1704).

[96] R. Descartes, La Gomtrie (1637).

[]

Documento similar