• No se han encontrado resultados

HU and SUV thresholds slightly affect maximal BAT activity

In document Role of brown adipose tissue in the (página 111-124)

(SUVpeak) values across different cohorts

BARCIST 1.0 recommends to report SUVpeak instead of SUVmax to avoid overestimation in the quantification of BAT activity [1], because SUVmax is the single highest uptake pixel in the ROI and could easily be an outlier whereas SUVpeak is the highest average SUV in a 1 cc spherical volume, thereby reducing a potential effect of outliers. This sphere may, or may not, be centered on the highest SUVmax. Letiner et al. [11] found that PET image resolution substantially influences observed BAT SUVmax but whether this resolution also affects SUVpeak in currently unknown. Compared to the BARCIST 1.0 criteria, we found similar SUVpeak values across thresholds in young lean men and overweight/obese men. However, differences were observed between the thresholds that did not use HU vs. all the other thresholds in middle-aged overweight-obese adults. This could be based on the lower amount of 18F-FDG injected with respect to the size/body weight of the participant [ratio between amount of 18F-FDG to BMI (6.8±0.3, 6.5±0.8, and 3.8±0.3 MBq/(kg/m2) in young lean adults, young overweight/obese adults, and middle-aged overweight/obese adults, respectively]. Therefore, the distribution of the tracer among the various tissues may partially explain this finding. In fact, lower doses of 18F-FDG, as used in the cohort of middle-aged overweight/obese adults, may increase noise in the image and, therefore, raise SUVpeak levels [1,8,9]. We found that SUVmax was located in BAT regions irrespective of the threshold used in young lean and young overweight/obese men.

However, in middle-aged overweight/obese men, SUVmax was found

in an unexpected region when no threshold for HU was used. Therefore, omission of HU threshold may have resulted in an artificial SUVmax and consequently SUVpeak, especially in the middle-aged overweight-obese men who received a low dose of 18F-FDG. Similar differences between thresholds and cohort studies were found with SUVmax (data not shown). Therefore, in light of these findings, we support that SUVpeak is the most consistent BAT-related outcome between criteria in the three independently cohorts of adults.

Limitations

We quantified BAT in six different ROIs from cerebellum to thoracic vertebra 4 (Figure 1).

Although most of the BAT detected in humans is localized in the areas covered by the selected ROIs [11], we may have missed BAT depots in axillary, paraspinal or abdominal adipose tissue located in anatomical areas beneath the thoracic vertebra 4 [11]. Our ROIs did not include mouth, nose, or thyroid to avoid false positive results, yet, results persisted when a single ROI from cerebellum to thoracic vertebrae 4 was drawn and when HU criteria were applied (data not shown). In addition, we do not know if these findings can be replicated when the SUV threshold of BARCIST criteria is used in combination with other ranges of HU.

Besides the selection of HU and SUV thresholds, quantification of human BAT volume and activity also depends on other methodological issues such as the cooling protocol, 18F-FDG-PET/CT methodology, segmentation software [17], tracer used (18F-FDG vs. 18F-FTHA [23]), intrinsic factors of the participants such as age, sex, or body composition, or extrinsic factors as outdoor temperature [24] or daily light [25] ,which limit comparisons across studies. To improve the understanding of human BAT measured by 18F-FDG-PET/CT, the reconstruction settings should be harmonized in a similar manner as proposed by the EANM guidelines for 18F-FDG tumor PET imaging[26]. In the present study, the PET/CT scans from young overweight/obese adults did not follow these guidelines, therefore we cannot guarantee that the recovery coefficients of the used

reconstructions are the same. Moreover, methodological differences between cohorts did not allow us to check whether differences between HU and SUV thresholds are of different magnitude. Also the use of different cooling techniques (cooling vests vs.

mattresses) and protocols might have introduced some bias. This study included only healthy male adults. The results should be applicable to other populations, such as women and men with different fat distributions, although this should be verified by replication in other cohorts with larger sample size. Moreover, biopsies of BAT-classical depots would be necessary to identify the density window (in terms of HU) of this tissue in different populations.

CONCLUSIONS

BAT volume and activity as determined by 18F-FDG PET/CT highly depend on the quantification criteria used. Future human BAT studies should conduct sensitivity analysis with different thresholds in order to understand whether results are driven by the selected HU and SUV thresholds. According to our findings, when following an individualized cooling protocol, SUVpeak is

the most consistent marker of maximal BAT activity across study cohorts independent of the HU and SUV threshold used, which may therefore facilitate comparisons across studies. The design of the present study precludes providing any conclusive threshold, but before more definitive thresholds for HU and SUV are available, we support the use of BARCIST 1.0 criteria to facilitate interpretation of BAT characteristics between research groups.

Table 5. Hounsfield Units and standardized uptake value thresholds and software used in BAT human studies from 1st of January 2007 to 10th of March 2017

Studies Hounsfield units Standardized

uptake values Software to quantify BAT

Hadi et al. 2007 [27] NR NR NR

Kim et al. 2008 [28] NR NR NR

Alkhawaldeh et al. 2008 [29] NR NR NR

Basu et al. 2008 [30] NR NR NR

Zukotynski et al. 2009 [31] NR NR NR

Cypess et al. 2009 [2] -250,-50 2.0 PET/CT viewer shareware

Van Marken et al. 2009 [3] NR NR PMOD 2.85

Virtanen et al. 2009 [32] NR NR NR

Saito et al. 2009 [5] NR NR VOX-BASE

Au-Yong et al. 2009 [33] Not used Not used Leonardo workstation

Paidisetty et al. 2009 [34] NR NR NR

Lee et al. 2010 [35] -250,-50 2.0 NR

Skarulis et al. 2010 [36] NR NR MEDx image

Aukema et al. 2010[37] NR NR Osirix DICOM viewer

Pfannenberg et al. 2010 [38] -250,-50 2.0 NR

Park et al. 2010 [39] NR NR NR

Zukotynski et al. 2010 [40] NR NR NR

Garcia et al. 2010 [41] NR NR NR

Rakheja et al. 2011[42] NR NR NR

Ouellet et al. 2011 [43] -100,-10 1.0 MIM software

Pace et al. 2011[44] -250,-50 NR Volumetrix

Orava et al. 2011 [45] NR NR NR

Vijgen et al. 2011 [18] NR NR NR

Lee et al. 2011 [46] NR 2.0 NR

Lee et al. 2011 [47] NR 2.0 NR

Jacene et al. 2011 [48] NR NR NR

Huang et al. 2011 [49] -250,-50 2.0 OsiriX 64-bit software

Yoneshiro et al. 2011 [50] NR NR VOX-BASE workstation

Yilmaz et al. 2011 [51] NR NR NR

Yoneshiro et al. 2012 [52] NR 2.0 VOX-BASE workstation

Vrieze et al. 2012 [53] -250,-50 2.0 Hybrid Viewer; HERMES

Muzik et al. 2012 [54] -250,-50 2.0 NR

Vijgen et al. 2012 [55] NR NR PMOD 2.85

Chalfant et al. 2012 [56] NR NR SliceOmatic image software

Vosselman et al. 2012 [57] -180,-10 1.5 PMOD 3.0

Cypess et al. 2012 [58] -250,-10 2.0 PET/CT Viewer shareware

Ouellet et al. 2012 [59] -100, -10 1.0 NR

Bredella et al. 2012 [60] -250, -50 70%SUVmax PET/CT Viewer shareware

Miao et al. 2012 [61] -250, -50 NR PET/CT Viewer shareware

Vogel et al. 2012 [62] NR NR Osirix DICOM viewer

Schlögl et al. 2013 [63] -250, -10 2.0 SPM8

Ahmadi et al. 2013 [64] -87, -10 NR NR

Banzo et al. 2013 [65] NR NR NR

Carey et al. 2013 [66] -180, -10 1.0 Extended

BrillianceWorkstation

Ruth et al. 2013 [67] -200,-10 2.0 Mathworks, Natick, MA

Lee et al. 2013 [68] NR 2.0 IDL software

Pasanisi et al. 2013 [69] -250, -50 NR Volumetrix

Sugita et al. 2013 [70] NR 2.0 VOX-BASE workstation

Van Rooijen et al. 2013 [71] -150, -50 NR PMOD

Yonsehiro et al. 2013 [72] NR 2.0 VOX-BASE workstation

Yoneshiro et al. 2013 [73] NR 2.0 VOX-BASE workstation

Yoneshiro et al. 2013 [74] NR 2.0 VOX-BASE workstation

Orava et al. 2013 [75] NR NR NR

Muzik et al. 2013 [76] -250,-50 2.0 AMIDE software

Chen et al. 2013 [77] NR 2.0 NR

Vosselman et al. 2013 [78] -180, -10 1.5 PMOD 3.0

Perkins et al. 2013 [79] -250, -50 No limit Syngo MI workplace Bredella et al. 2013 [80] -250, -50 70%SUVmax PET/CT Viewer shareware

van der Lans et al. 2013 [81] -180, -10 1.5 PMOD 3.0

Zhang et al. 2013 [82] -250, -50 2.0 PET/CT viewer software

Admiraal et al. 2013 [83] -250, -50 2.0 Hermes Hybrid Viewer

Admiraal et al. 2013 [84] -250, -50 2.0 Hermes Hybrid Viewer

Persichetti et al. 2013 [85] -250, -50 2.0 MIM software

Vijgen et al. 2013 [86] NR NR PMOD

Boon et al. 2014 [87] Not used 2.0 Hermes Hybrid Viewer

Lee et al. 2014 [88] -300,-10 2.0 NR

Lee et al. 2014 [89] -300, -10 2.0 Software built with IDL

Jang et al. 2014 [90] NR 1.5 syngo.via software

Chondronikola et al. 2014 [91] -100, -10 1.0 NR

Schopman et al. 2014 [92] -250,-50 2.0 Hybrid Viewer; HERMES

Blondin et al. 2014 [93] -150,-30 1.5 NR

Bakker et al. 2014 [12] Not used 2.0 Hermes Hybrid Viewer

Zhang et al. 2014 [94] -250, -50 2.0 NR

Matsushita et al. 2014 [95] Not used 2.0 VOX-BASE workstation

Vosselman et al. 2014 [96] -180, -10 1.5 NR

Zhang et al. 2014 [97] NR NR PET/CT Viewer shareware

Choi et al. 2014 [98] -250,-50 2.0 Extended Brilliance Workspace

Bredella et al. 2014 [99] -250, -50 70%SUVmax PET/CT Viewer shareware

Orava et al. 2014 [100] Not used 1.14 Vinci 2.54.0 software

Cao et al. 2014 [101] NR NR NR

Hanssen et al. 2015 [102] -180, -10 1.5 PMOD 3.0

Hanssen et al. 2015 [103] -180, -10 1.5 PMOD 3.0

Hanssen et al. 2015 [104] -180, -10 1.5 PMOD 3.0

Blondin et al. 2015 [105] -150, -30 1.5 NR

Blondin et al. 2015 [23] -150, -30 1.5 NR

Dinas et al. 2015 [106] Not used Not limit NR

Vosselman et al. 2015 [107] -180, -10 1.5 PMOD 3.0

Cypess et al. 2015 [108] -250,-10 2.0 PET/CT Viewer shareware

Nirengi et al. 2015 [109] -300, -10 2.0 VOX-BASE workstation

Carey et al. 2015 [110] -180,-10 2.0 Extended

BrillianceWorkstation

Wei et al. 2015 [111] -150,-30 2.5 PET/CT viewer shareware

Butler et al. 2015 [112] -250,-50 2.0 NR

Raiko et al. 2015 [113] NR NR NR

Wang et al. 2015 [114] -250,-50 2.0 Volume Viewer software

Puar et al. 2016 [115] -180, -10 1.5 Inveon Research software

Hanssen et al. 2016 [116] -180, -10 1.5 PMOD 3.0

Singhal et al. 2016 [117] -250, -10 1.0 to 30 Fiji Software

Oxguven et al. 2016 [118] -250,-50 2.0 Advantage Windows

Workstation 4.5 Chondronikola et al. 2016 [119] -190, -30 1.5 MIM software

Chondronikola et al. 2016 [120] NR NR NR

Gifford et al. 2016 [121] -200, -1 No limits NR

Yoneshiro et al. 2016 [122] Not used 2.0 NR

Ramage et al. 2016 [123] -150, -30 2.0 PMOD 3.409

Bahler et al. 2016 [124] NR NR NR

Bahler et al. 2016 [125] -250,-50 2.0 Hermes Hybrid Viewer

Salem et al. 2016 [126] -150, -5 2.0 NR

Bahler et al. 2016 [127] -250,-50 2.0 Hermes Hybrid Viewer

Van der Lans et al. 2016 [128] -180, -10 1.5 PMOD 3.0

Gatidis et al. 2016 [129] NR NR NR

Nirengi et al. 2016 [130] NR NR NR

Shao et al. 2016 [131] -100, -10 1.0 TrueD system

Hibi et al. 2016 [132] Not used 2.0 VOX-BASE workstation

Chen et al. 2016 [133] -180, -10 1.5 NR

Lee et al. 2016 [134] -300, -10 2.0 Software built with IDL

Becker et al. 2016 [135] -250, -50 3.0 AW version 4.6, GE

Healthcare

Takx et al. 2016 [136] -250, -50 2.0 TrueD system

Shao et al. 2016 [137] -250, -50 2.0 Syngo True D system

Muzik et al. 2016 [138] -250, -50 2.0 AMIDE software

Blondin et al. 2016 [139] -150, -30 1.5 NR

Blondin et al. 2017 [140] NR NR NR

Gerngrob et al. 2017 [19] -250, -50 2.0 "SYNGO" workstation (Siemens)

Hussein et al. 2017 [141] -190,-30 2.0 NR

Yoneshiro et al. 2017 [142] -300, -10 2.0 NR

NR: Not reported or cited in the study.

Chapter 6

 REFERENCES

1. Chen KY, Cypess AM, Laughlin MR, et al. Brown Adipose Reporting Criteria in Imaging STudies (BARCIST 1.0): Recommendations for Standardized FDG-PET/CT Experiments in Humans. Cell Metab [Internet]. 2016;24:210–222.

Available from:

http://linkinghub.elsevier.com/retrieve/pii/S15504 13116303606

2. Cypess AM, Lehman S, Williams G, et al.

Identification and importance of brown adipose tissue in adult humans. N Engl J Med [Internet].

2009;360:1509–1517. Available from:

http://www.pubmedcentral.nih.gov/articlerender.

fcgi?artid=2859951&tool=pmcentrez&rendertype

=abstract

3. van Marken Lichtenbelt WD, Vanhommerig JW, Smulders NM, et al. Cold-activated brown adipose tissue in healthy men. N Engl J Med [Internet].

2009;360:1500–1508. Available from:

http://www.ncbi.nlm.nih.gov/pubmed/21566561 4. Virtanen KA, Lidell ME, Orava J, et al. Functional

brown adipose tissue in healthy adults. N Engl J Med [Internet]. 2009 [cited 2016];360:1518–1525.

Available from:

http://www.ncbi.nlm.nih.gov/pubmed/19357407 5. Saito M, Okamatsu-Ogura Y, Matsushita M, et al.

High incidence of metabolically active brown adipose tissue in healthy adult humans: effects of cold exposure and adiposity. Diabetes [Internet].

2009;58:1526–1531. Available from:

http://www.pubmedcentral.nih.gov/articlerender.

fcgi?artid=2699872&tool=pmcentrez&rendertype

=abstract

6. Peirce V, Vidal-Puig A. Regulation of glucose homoeostasis by brown adipose tissue. Lancet Diabetes Endocrinol [Internet]. Elsevier Ltd;

2013;1:353–360. Available from:

http://www.sciencedirect.com/science/article/pii/

S221385871370055X

7. Hoeke G, Kooijman S, Boon MR, et al. Role of Brown Fat in Lipoprotein Metabolism and Atherosclerosis. Circ Res. 2016;118:173–182.

8. Bauwens M, Wierts R, Van Royen B, et al.

Molecular imaging of brown adipose tissue in health and disease. Eur J Nucl Med Mol Imaging.

2014;41:776–791.

9. van der Lans a. a. JJ, Wierts R, Vosselman MJ, et al. Cold-activated brown adipose tissue in human adults: methodological issues. AJP Regul Integr Comp Physiol [Internet]. 2014;307:R103–R113.

Available from:

http://ajpregu.physiology.org/cgi/doi/10.1152/ajpre gu.00021.2014

10. Paulus A, van Marken Lichtenbelt W, Mottaghy FM, et al. Brown adipose tissue and lipid metabolism imaging. Methods [Internet]. Elsevier Inc.; 2017;1–9. Available from:

http://linkinghub.elsevier.com/retrieve/pii/S10462 02316303218

11. Leitner BP, Huang S, Brychta RJ, et al. Mapping of human brown adipose tissue in lean and obese young men. Proc Natl Acad Sci U S A [Internet].

2017;114:8649–8654. Available from:

http://www.pnas.org/lookup/doi/10.1073/pnas.170 5287114

12. Bakker LEH, Boon MR, van der Linden R a D, et al.

Brown adipose tissue volume in healthy lean south Asian adults compared with white Caucasians: a prospective, case-controlled observational study. lancet Diabetes Endocrinol [Internet]. 2014;2:210–217. Available from:

http://www.ncbi.nlm.nih.gov/pubmed/24622751 13. Sanchez-Delgado G, Martinez-Tellez B, Olza J, et

al. Activating brown adipose tissue through exercise (ACTIBATE) in young adults: Rationale, design and methodology. Contemp Clin Trials [Internet]. Elsevier Inc.; 2015;45:416–425. Available from:

http://linkinghub.elsevier.com/retrieve/pii/S155171 4415301154

14. Martinez-Tellez B, Sanchez-Delgado G, Garcia-Rivero Y, et al. A New Personalized Cooling Protocol to Activate Brown Adipose Tissue in Young Adults. Front Physiol [Internet]. 2017;8:1–10.

Available from:

http://journal.frontiersin.org/article/10.3389/fphys.

2017.00863/full

15. Schindelin J, Arganda-Carreras I, Frise E, et al. Fiji:

an open-source platform for biological-image analysis. Nat Methods [Internet]. 2012;9:676–682.

Available from:

http://www.nature.com/doifinder/10.1038/nmeth.

2019

16. Lin LI, McBride G, Bland JM, et al. A proposal for strength-of-agreement criteria for Lin’s Concordance Correlation Coefficient. NIWA Client Rep [Internet]. 2005;45:307–310. Available from:

http://www.sciencedirect.com/science/article/pii/

S0140673686908378%5Cn%3CGo to ISI%3E://A1989U124500022

17. Martinez-Tellez B, Sanchez-Delgado G, Boon MR, et al. Activation and quantification of human brown adipose tissue: Methodological considerations for between studies comparisons.

Eur J Intern Med [Internet]. European Federation of Internal Medicine.; 2017;6–8. Available from:

http://linkinghub.elsevier.com/retrieve/pii/S09536 20517300687

18. Vijgen GHEJ, Bouvy ND, Teule GJJ, et al. Brown adipose tissue in morbidly obese subjects. PLoS One. 2011;6:2–7.

19. Gerngroß C, Schretter J, Klingenspor M, et al.

Active brown fat during 18 FDG-PET/CT imaging defines a patient group with characteristic traits and an increased probability of brown fat redetection. J Nucl Med [Internet].

2017;jnumed.116.183988. Available from:

http://www.ncbi.nlm.nih.gov/pubmed/28104743

%0Ahttp://jnm.snmjournals.org/lookup/doi/10.296 7/jnumed.116.183988

20. Baba S, Jacene HA, Engles JM, et al. CT Hounsfield Units of Brown Adipose Tissue Increase with Activation : Preclinical and Clinical Studies.

2010;51:246–250.

21. U Din M, Raiko J, Saari T, et al. Human Brown Fat Radiodensity Indicates Underlying Tissue Composition and Systemic Metabolic Health. J Clin Endocrinol Metab [Internet]. 2017 [cited 2014];102:2258–2267. Available from:

http://www.sciencedirect.com/science/article/pii/

S0091743512000503

22. Hu HH, Gilsanz V. Developments in the imaging of brown adipose tissue and its associations with muscle, puberty, and health in children. Front Endocrinol (Lausanne) [Internet]. 2011;2:33.

Available from:

http://www.ncbi.nlm.nih.gov/pubmed/22649372

PART 2

23. Blondin DP, Labbé SM, Noll C, et al. Selective Impairment of Glucose but Not Fatty Acid or Oxidative Metabolism in Brown Adipose Tissue of Subjects With Type 2 Diabetes. Diabetes [Internet]. 2015;64:2388–2397. Available from:

http://www.ncbi.nlm.nih.gov/pubmed/25677914 24. Ouellet V, Routhier-Labadie A, Bellemare W, et al.

Outdoor temperature, age, sex, body mass index, and diabetic status determine the prevalence, mass, and glucose-uptake activity of 18F-FDG-detected BAT in humans. J Clin Endocrinol Metab [Internet]. 2011;96:192–199. Available from:

http://www.ncbi.nlm.nih.gov/pubmed/20943785 25. Kooijman S, van den Berg R, Ramkisoensing A, et

al. Prolonged daily light exposure increases body fat mass through attenuation of brown adipose tissue activity. Proc Natl Acad Sci U S A [Internet].

2015;112:6748–6753. Available from:

http://www.pubmedcentral.nih.gov/articlerender.

fcgi?artid=4450411&tool=pmcentrez&rendertype

=abstract

26. Boellaard R, Delgado-bolton R, Oyen WJG, et al.

FDG PET / CT : EANM procedure guidelines for tumour imaging : version 2 . 0. 2015;328–354.

27. Hadi M, Chen CC, Whatley M, et al. Brown fat imaging with (18)F-6-fluorodopamine PET/CT, (18)F-FDG PET/CT, and (123)I-MIBG SPECT: a study of patients being evaluated for pheochromocytoma. J Nucl Med [Internet].

2007;48:1077–1083. Available from:

http://jnm.snmjournals.org/cgi/doi/10.2967/jnume d.106.035915

28. Kim S, Krynyckyi BR, Machac J, et al. Temporal relation between temperature change and FDG uptake in brown adipose tissue. Eur J Nucl Med Mol Imaging. 2008;35:984–989.

29. Alkhawaldeh K, Alavi A. Quantitative assessment of FDG uptake in brown fat using standardized uptake value and dual-time-point scanning. Clin Nucl Med [Internet]. 2008;33:663–667. Available from:

http://www.ncbi.nlm.nih.gov/pubmed/18806563 30. Basu S, Alavi A. Optimizing interventions for

preventing uptake in the brown adipose tissue in FDG-PET. Eur J Nucl Med Mol Imaging [Internet].

2008;35:1421–1423. Available from:

http://www.ncbi.nlm.nih.gov/pubmed/18350289 31. Zukotynski KA, Fahey FH, Laffin S, et al. Constant

ambient temperature of 24 degrees C significantly reduces FDG uptake by brown adipose tissue in children scanned during the winter. Eur J Nucl Med Mol Imaging [Internet].

2009;36:602–606. Available from:

http://www.ncbi.nlm.nih.gov/pubmed/19037639 32. Virtanen KA, Lidell ME, Orava J, et al. Functional

brown adipose tissue in healthy adults. N Engl J Med [Internet]. 2009;360:1518–1525. Available from:

http://www.ncbi.nlm.nih.gov/pubmed/19357407 33. Au-Yong ITH, Thorn N, Ganatra R, et al. Brown

adipose tissue and seasonal variation in humans.

Diabetes [Internet]. 2009;58:2583–2587. Available from:

http://www.ncbi.nlm.nih.gov/pubmed/19696186 34. Paidisetty S, Blodgett TM. Brown fat: atypical

locations and appearances encountered in PET/CT. AJR Am J Roentgenol [Internet].

2009;193:359–366. Available from:

http://www.ajronline.org/doi/abs/10.2214/AJR.09.3 052

35. Lee P, Greenfield JR, Ho KKY, et al. A critical

appraisal of the prevalence and metabolic significance of brown adipose tissue in adult humans. 2010;601–606.

36. Skarulis MC, Celi FS, Mueller E, et al. Thyroid hormone induced brown adipose tissue and amelioration of diabetes in a patient with extreme insulin resistance. J Clin Endocrinol Metab [Internet]. 2010;95:256–262. Available from:

http://www.ncbi.nlm.nih.gov/pubmed/19897683 37. Aukema TS, Vogel W V, Hoefnagel CA, et al.

Prevention of brown adipose tissue activation in 18F-FDG PET/CT of breast cancer patients receiving neoadjuvant systemic therapy. J Nucl Med Technol [Internet]. 2010;38:24–27. Available from:

http://www.ncbi.nlm.nih.gov/pubmed/20159933 38. Pfannenberg C, Werner MK, Ripkens S, et al.

Impact of age on the relationships of brown adipose tissue with sex and adiposity in humans.

Diabetes. 2010;59:1789–1793.

39. Park SA, Lee KM, Choi U, et al. Normal physiologic and benign foci with F-18 FDG avidity on PET/CT in patients with breast cancer. Nucl Med Mol Imaging (2010). 2010;44:282–289.

40. Zukotynski KA, Fahey FH, Laffin S, et al. Seasonal variation in the effect of constant ambient temperature of 24°C in reducing FDG uptake by brown adipose tissue in children. Eur J Nucl Med Mol Imaging. 2010;37:1854–1860.

41. Garcia C, Bandaru V, Van Nostrand D, et al.

Effective reduction of brown fat FDG uptake by controlling environmental temperature prior to PET scan: An expanded case series. Mol Imaging Biol. 2010;12:652–656.

42. Rakheja R, Ciarallo A, Alabed YZ, et al. Intravenous administration of diazepam significantly reduces brown fat activity on 18F-FDG PET/CT. Am J Nucl Med Mol Imaging [Internet]. 2011;1:29–35. Available from:

http://www.pubmedcentral.nih.gov/articlerender.

fcgi?artid=3477718&tool=pmcentrez&rendertype

=abstract%5Cnhttp://www.ncbi.nlm.nih.gov/pub med/23133792%5Cnhttp://www.pubmedcentral.n ih.gov/articlerender.fcgi?artid=PMC3477718 43. Ouellet V, Routhier-Labadie A, Bellemare W, et al.

Outdoor temperature, age, sex, body mass index, and diabetic status determine the prevalence, mass, and glucose-uptake activity of 18F-FDG-detected BAT in humans. J Clin Endocrinol Metab.

2011;96:192–199.

44. Pace L, Nicolai E, D’Amico D, et al. Determinants of physiologic 18F-FDG uptake in brown adipose tissue in sequential PET/CT examinations. Mol Imaging Biol. 2011;13:1029–1035.

45. Orava J, Nuutila P, Lidell ME, et al. Different metabolic responses of human brown adipose tissue to activation by cold and insulin. Cell Metab [Internet]. 2011;14:272–279. Available from:

http://www.ncbi.nlm.nih.gov/pubmed/21803297 46. Lee P, Zhao JT, Swarbrick MM, et al. High

prevalence of brown adipose tissue in adult humans. J Clin Endocrinol Metab [Internet].

2011;96:2450–2455. Available from:

http://www.ncbi.nlm.nih.gov/pubmed/21613352 47. Lee P, Swarbrick MM, Zhao JT, et al. Inducible

brown adipogenesis of supraclavicular fat in adult humans. Endocrinology. 2011;152:3597–3602.

48. Jacene HA, Cohade CC, Zhang Z, et al. The relationship between patients’ serum glucose

levels and metabolically active brown adipose tissue detected by PET/CT. Mol Imaging Biol [Internet]. 2011;13:1278–1283. Available from:

http://www.ncbi.nlm.nih.gov/pubmed/25792328 49. Huang Y-C, Chen T-B, Hsu C-C, et al. The

relationship between brown adipose tissue activity and neoplastic status: an (18)F-FDG PET/CT study in the tropics. Lipids Health Dis [Internet]. BioMed Central Ltd; 2011;10:238.

Available from:

http://www.pubmedcentral.nih.gov/articlerender.

fcgi?artid=3267802&tool=pmcentrez&rendertype

=abstract

50. Yoneshiro T, Aita S, Matsushita M, et al. Brown Adipose Tissue, Whole-Body Energy Expenditure, and Thermogenesis in Healthy Adult Men. Obesity [Internet]. Nature Publishing Group; 2011;19:13–16.

Available from:

http://onlinelibrary.wiley.com/doi/10.1038/oby.201 0.105/abstract%5Cnhttp://onlinelibrary.wiley.com/

doi/10.1038/oby.2010.105/full%5Cnhttp://onlinelibr ary.wiley.com/store/10.1038/oby.2010.105/asset/ob y.2010.105.pdf?v=1&t=h7tkncvh&s=6da7 70bb7e50ace68e275

51. Yilmaz Y, Ones T, Purnak T, et al. Association between the presence of brown adipose tissue and non-alcoholic fatty liver disease in adult humans. Aliment Pharmacol Ther [Internet].

2011;34:318–323. Available from:

http://doi.wiley.com/10.1111/j.1365-2036.2011.04723.x%5Cnhttp://www.ncbi.nlm.nih.g ov/pubmed/21631560

52. Yoneshiro T, Aita S, Kawai Y, et al. Nonpungent capsaicin analogs (capsinoids) increase energy expenditure through the activation of brown adipose tissue in humans. Am J Clin Nutr [Internet]. 2012;95:845–850. Available from:

http://www.ncbi.nlm.nih.gov/pubmed/22378725 53. Vrieze A, Schopman JE, Admiraal WM, et al.

Fasting and postprandial activity of brown adipose tissue in healthy men. J Nucl Med [Internet]. 2012;53:1407–1410. Available from:

http://www.ncbi.nlm.nih.gov/pubmed/22851631 54. Muzik O, Mangner TJ, Granneman JG. Assessment

of oxidative metabolism in brown fat using PET imaging. Front Endocrinol (Lausanne) [Internet].

2012;3:15. Available from:

http://www.pubmedcentral.nih.gov/articlerender.

fcgi?artid=3355936&tool=pmcentrez&rendertype

=abstract

55. Vijgen GHEJ, Bouvy ND, Teule GJJ, et al. Increase in brown adipose tissue activity after weight loss in morbidly obese subjects. J Clin Endocrinol Metab [Internet]. 2012;97:E1229-33. Available from:

http://press.endocrine.org/doi/abs/10.1210/jc.2012-1289%5Cnhttp://www.ncbi.nlm.nih.gov/pubmed/

22535970

56. Chalfant JS, Smith ML, Hu HH, et al. Inverse association between brown adipose tissue activation and white adipose tissue accumulation in successfully treated pediatric malignancy. Am J Clin Nutr. 2012;95:1144–1149.

57. Vosselman MJ, van der Lans AAJJ, Brans B, et al.

Systemic Ⱦ-adrenergic stimulation of thermogenesis is not accompanied by brown adipose tissue activity in humans. Diabetes [Internet]. 2012;61:3106–3113. Available from:

http://www.pubmedcentral.nih.gov/articlerender.

fcgi?artid=3501890&tool=pmcentrez&rendertype

=abstract

58. Cypess AM, Chen Y-C, Sze C, et al. Cold but not sympathomimetics activates human brown

adipose tissue in vivo. Proc Natl Acad Sci U S A [Internet]. 2012;109:10001–10005. Available from:

http://www.pubmedcentral.nih.gov/articlerender.

fcgi?artid=3382513&tool=pmcentrez&rendertype=

abstract

59. Ouellet V, Labbé SM, Blondin DP, et al. Brown adipose tissue oxidative metabolism contributes to energy expenditure during acute cold exposure in humans. J Clin Invest [Internet].

2012;122:545–552. Available from:

http://www.pubmedcentral.nih.gov/articlerender.

fcgi?artid=3266793&tool=pmcentrez&rendertype

=abstract

60. Bredella MA, Fazeli PK, Freedman LM, et al. Young women with cold-activated brown adipose tissue have higher bone mineral density and lower Pref-1 than women without brown adipose tissue: A study in women with anorexia nervosa, women recovered from anorexia nervosa, and normal-weight women. J Clin Endocrinol Metab.

2012;97:584–590.

61. Miao Q, Zhao XL, Zhang QY, et al. Stability in brain glucose metabolism following brown adipose tissue inactivation in chinese adults. AJNR Am J Neuroradiol [Internet]. 2012;33:1464–1469.

Available from:

http://www.ncbi.nlm.nih.gov/pubmed/22576895 62. Vogel W V., Valdes Olmos R a., Tijs TJW, et al.

Intervention to Lower Anxiety of 18F-FDG PET/CT Patients by Use of Audiovisual Imagery During the Uptake Phase Before Imaging. J Nucl Med Technol. 2012;40:92–98.

63. Schlögl M, Piaggi P, Thiyyagura P, et al.

Overfeeding over 24 hours does not activate brown adipose tissue in humans. J Clin Endocrinol Metab. 2013;98:1956–1960.

64. Ahmadi N, Hajsadeghi F, Conneely M, et al.

Accurate detection of metabolically active

“brown” and “white” adipose tissues with computed tomography. Acad Radiol [Internet].

Elsevier Ltd; 2013;20:1443–1447. Available from:

http://dx.doi.org/10.1016/j.acra.2013.08.012 65. Banzo J, Ubieto MA, Berisa MF, et al. Extensive

hypermetabolic pattern of brown adipose tissue activation on 18F-FDG PET/CT in a patient diagnosed of catecholamine-secreting para-vesical paraganglioma. Rev Esp Med Nucl Imagen Mol [Internet]. SEMNIM; 2013;32:397–399. Available from: http://dx.doi.org/10.1016/j.remn.2013.05.005 66. Carey AL, Formosa MF, Van Every B, et al.

Ephedrine activates brown adipose tissue in lean but not obese humans. Diabetologia. 2013;56:147–

155.

67. Ruth MR, Wellman T, Mercier G, et al. An automated algorithm to identify and quantify brown adipose tissue in human 18F-FDG-PET/CT scans. Obesity (Silver Spring) [Internet].

2013;21:1554–1560. Available from:

http://www.ncbi.nlm.nih.gov/pubmed/23455523 68. Lee P, Brychta RJ, Collins MT, et al. Cold-activated

brown adipose tissue is an independent predictor of higher bone mineral density in women.

Osteoporos Int [Internet]. 2013;24:1513–1518.

Available from:

http://www.ncbi.nlm.nih.gov/pubmed/22890364 69. Pasanisi F, Pace L, Fonti R, et al. Evidence of brown

fat activity in constitutional leanness. J Clin Endocrinol Metab. 2013;98:1214–1218.

70. Sugita J, Yoneshiro T, Hatano T, et al. Grains of paradise (Aframomum melegueta) extract

In document Role of brown adipose tissue in the (página 111-124)